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Abstract. We report three-dimensional spin noise imaging (SNI) of nuclear spin density from spin noise data ac-
quired by Faraday detection. Our approach substantially extends and improves the two-dimensional SNI method
for excitation-less magnetic resonance tomography reported earlier (Müller and Jerschow, 2006). This proof of
principle was achieved by taking advantage of the particular continuous nature of spin noise acquired in the
presence of constant magnitude magnetic field gradients and recent advances in nuclear spin noise spectroscopy
acquisition as well as novel processing techniques. In this type of projection–reconstruction-based spin noise
imaging the trade-off between signal-to-noise ratio (or image contrast) and resolution can be adjusted a poste-
riori during processing of the original time-domain data by iterative image reconstruction in a unique way not
possible in conventional rf-pulse-dependent magnetic resonance imaging (MRI). The 3D SNI is demonstrated as
a proof of concept on a commercial 700 MHz high-resolution NMR spectrometer, using a 3D-printed polymeric
phantom immersed in water.

1 Introduction

The phenomenon of nuclear spin noise, first predicted by Fe-
lix Bloch in 1946 (Bloch, 1946), can be ascribed to the in-
complete cancellation of the fluctuating spin magnetic mo-
ments in a specimen. Owing to the extremely low amplitudes
of these residual fluctuations of the bulk magnetic moment,
very low-noise rf (radio-frequency) circuitry is required to
separate nuclear spin noise signals from background noise
(Müller et al., 2013; Ferrand et al., 2015; Pöschko et al.,
2017). Therefore, experimental detection of nuclear spin
noise succeeded only in 1985 (Sleator et al., 1985). Today
readily available low-noise rf electronics enable one to ob-
serve nuclear spin noise in reasonable amounts of time, in
particular if a cryogenically cooled probe circuit is used (Ko-
vacs et al., 2005; Müller and Jerschow, 2006). In spite of low
intrinsic sensitivity, nuclear spin noise-based spectroscopy

and imaging techniques have an intriguing potential, mainly
for three reasons: (1) the spin noise signal magnitude exceeds
the thermal polarization-derived signal for very low numbers
(<∼ 108) of nuclear spins as it scales with the square root
of the number of spins and not linearly. (2) The observation
of undisturbed spin systems becomes possible. (3) Signals
acquired in the absence of rf pulses are devoid of limita-
tions imposed by pulse imperfections and bandwidth. The
theoretical and technical aspects of nuclear spin noise de-
tected by Faraday induction have been studied extensively
in recent years (Marion and Desvaux, 2008; Nausner et al.,
2009; Desvaux et al., 2009; Müller et al., 2013; Chandra et
al., 2013; Ferrand et al., 2015; Pöschko et al., 2017; Ginthör
et al., 2018). In the research we report here, a major sensitiv-
ity and image quality improvement in the case of spin noise
imaging (SNI; Müller and Jerschow, 2006) is achieved by
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exploiting the tuning dependence of the spin noise line shape
(Pöschko et al., 2014).

1.1 Magnetic resonance imaging

Spatial resolution in magnetic resonance imaging (MRI) re-
lies on frequency encoding of the positions in magnetic field
gradients (Kumar et al., 1975). Thus, spectra recorded in the
presence of magnetic field gradients can be interpreted as the
result of a forward radon transformation applied to the spin
density function of the sample along the gradient direction
(Deans, 2007).

Most of today’s MRI approaches are based on the idea of
Fourier imaging originally introduced by Richard R. Ernst
(Kumar et al., 1975) and use rf pulses preceding excita-
tion and evolution periods, in which phase encoding via
field gradients is attained, followed by a two-dimensional
(2D) Fourier transformation (FT; Wright, 1997; Brown et
al., 2014). The resolution in the third dimension is com-
monly obtained by using slice selection, i.e., by applying
rf pulses simultaneously with magnetic field gradients (Gar-
roway et al., 1974). A multi-dimensional Fourier transform
approach could, in principle, also work for noise data. How-
ever, it would suffer from even lower sensitivity due to trans-
verse relaxation, in particular if no refocusing rf pulses are
applied, which would counteract the goal of imaging with-
out rf pulses. It should be noted here that when detecting
noise from very low numbers of spins refocusing pulses are
a viable option, in particular if indirect detection by optical
means is used (Meriles et al., 2010).

1.2 Projection reconstruction

Alternatively, multi-dimensional MRI can be based on the
principle of reconstruction from projected data in the di-
rect (frequency or spatial) observation dimension (Chetih
and Messali, 2015), which closely corresponds to the only
approach available in radiation-based computer tomography
(CT). In the case of MRI, projections are provided through
acquisition of free induction decays, while different magnetic
field gradients spanning the entire directional space are ap-
plied sequentially.

An intrinsic problem of the inverse radon transform is that
it almost always produces artifacts if the projections contain
substantial noise contributions or if the imaged distribution
function is not smooth (Kabanikhin, 2008). In particular, the
latter is a relevant restriction in most practical applications, as
hard edges are very common features (e.g., bones in the hu-
man body). Therefore, alternatives to the inverse radon trans-
form are required. The processing protocol presented here
aims to minimize these artifacts while maintaining resolu-
tion limited by transverse relaxation and maximizing the spin
noise to random noise contrast.

Different from spectroscopic applications of magnetic res-
onance, where the chemical shift is of main interest, for

imaging purposes one often assumes that all spins inside the
imaged object have indistinguishable chemical shifts. We are
going to use that assumption here, being aware that methods
to cope with imaging artifacts caused by non-uniform chem-
ical shifts (e.g., water and fat) within a specimen exist (Diet-
rich et al., 2008) but may not be applicable straightforwardly
in the case of spin noise detection.

2 Results and discussion

In order to optimize the spin noise detection, we take ad-
vantage of the progress in nuclear spin noise spectroscopy
that has been achieved since the introduction of 2D nuclear
spin noise imaging (Müller and Jerschow, 2006). In order to
obtain symmetrical line shapes and optimize receiver sensi-
tivity, the cryogenically cooled NMR probe is tuned to the
SNTO (spin noise tuning optimum; Marion and Desvaux,
2008; Nausner et al., 2009; Pöschko et al., 2014). As resid-
ual static field gradients can lead to spectral artifacts under
conditions where radiation damping occurs (Pöschko et al.,
2017), careful optimization of the basic magnetic field ho-
mogeneity (achieved by shimming) and sufficiently strong
gradients, so that T ∗−1

2 exceeds the broadening caused by
the radiation damping rate λ0

rd, are prerequisites for obtain-
ing accurate nuclear spin noise images. While the sensitivity
of spin noise acquisition depends in a highly non-linear way
on the radiation damping rate λrd (McCoy and Ernst, 1989;
Nausner et al., 2009; Bechmann and Müller, 2017; Pöschko
et al., 2017), it is proportional to the radiation damping rate
at equilibrium in this imaging regime.

λ0
rd =

µ0

2
ηQγM0 (1)

Here, the only variables which depend on the instrumental
setup are the filling factor η and the probe quality factor Q,
while the gyromagnetic ratio γ and µ0, the permeability of
the vacuum, are immutable. Note that apart from maximizing
the coupling between the spins and the rf circuit by increas-
ing η and Q, the SNR (signal-to-noise ratio) of spin-noise-
detected experiments can be improved by reducing the noise
from all other sources.

We demonstrate nuclear spin noise 3D tomography on the
phantom shown and described in Fig. 1 using the acquisition
and processing procedures outlined in Sect. 3.

The detected noise voltage was digitized quasi-
continuously for each of 900 gradient directions uniformly
distributed in 3D space. Each of the raw noise time-domain
data blocks was divided into overlapping windows, which
were Fourier transformed and the resulting power spectral
data added up to yield individual projections for each
gradient setting. Our newly developed iterative projection–
reconstruction protocol combines projections obtained
by Fourier transform of the time-domain noise data with
different sliding window sizes (Desvaux et al., 2009) to
obtain a 3D tomogram. This approach affords superior
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Figure 1. Phantom used for the spin noise imaging experiments.
(a) Rendered image of the phantom from a front perspective.
(b) Rendered image of the phantom from a front/top perspective.
(c) Typical cross section, which is a star-shaped octagon (white).
This shape was rotated around and translated along the Z axis si-
multaneously to form the 3D phantom object. (d) The 3D printed
phantom from a polylactide (PLA) polymer inserted into a standard
5 mm NMR tube filled with H2O/D2O (9 : 1). The black frame in
panel (a) indicates the sensitive area within the NMR spectrometer’s
probe.

image quality with respect to resolution and contrast as
compared to using a single fixed sliding window size only.
A final reconstructed image of the phantom obtained from
the projections of spin noise with different gradients by the
optimized iterative reconstruction based on the simultaneous
algebraic reconstruction technique (SART) introduced by
Andersen and Kak (Andersen and Kak, 1984) can be seen in
Fig. 2a and d.

In Fig. 2b and e we show the corresponding views, ob-
tained using a fixed sliding window size of 1024 data points
(corresponding to 103 ms).

This resolution is less than the maximum obtainable one
based on the experimentally determined water proton trans-
verse relaxation time (T2 = 380 ms) in a reference sample.
But increasing the window size beyond 1024 data points re-
duces the SNR too much. The same raw data processed with
a small window size (128 data points) result in a correspond-
ingly higher SNR but achieve an overly smoothed represen-
tation of the phantom as shown in Fig. 2c and f. The win-
dow length of the smaller blocks was chosen empirically by
halving the length of the longer windows until the SNR was
acceptable while still being able to resolve courser details in
the image.

In Fig. 2d–f images of cross sections of the phantom
obtained by the different processing schemes are com-
pared, demonstrating the flexibility of adjusting the con-
trast/resolution trade-off a posteriori from the same raw data.
The high-resolution image (Fig. 2c and f) obtained by the
conventional SART method might accurately represent the
phantom, but the low SNR makes it difficult to draw a clear
separation line between the phantom and the surrounding wa-
ter in the cross section in Fig. 2f.

Figure 2. Comparison of reconstructed 1H-NMR spin noise tomo-
grams of the phantom immersed in H2O/D2O (9 : 1) recorded at
700 MHz obtained with three different processing procedures from
the same raw data. The acquired signal originates from the water
protons around the solid phantom, which is not observable due to
the extremely broad lines of the polymer. Total noise data recording
time was 40 h. (a–c) Four different views for each processing proce-
dure visualized as iso-surfaces representing the boundary between
liquid and solid. (d–f) Comparison of density plots of (X–Y ) a 2D
cross section extracted from the center (along theZ direction) of the
corresponding 3D image of the 1H noise magnitude signal (white
representing zero amplitude and black the maximum magnitude).
Panels (d), (e) and (f) display 2D cross sections of the 3D images
shown in panels (a), (b) and (c), respectively. (a, d) Images ob-
tained by our new iterative reconstruction processing using combi-
nations of different time-domain sliding window sizes (as described
in the main text). (b, e) Images processed with the standard pro-
jection reconstruction algorithm (Andersen and Kak, 1984), using a
time-domain sliding window size of 1024 data points (correspond-
ing to 103 ms), resulting in high resolution but a low signal-to-noise
ratio (contrast). (c, f) Images processed with standard projection re-
construction using a time-domain sliding window size of 128 data
points (corresponding to 13 ms), resulting in low resolution and a
higher signal-to-noise ratio (contrast).

The low-resolution image in Fig. 2b and e, also obtained
by SART, shows this boundary more clearly, but the resolu-
tion is too low to make out the correct shape of the phantom
in the cross section in Fig. 2e. Only the image calculated with
the iterative reconstruction method (Fig. 2a and d) shows a
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phantom with clear boundaries and a non-circular shape in
the cross section in Fig. 2d, where the four “pockets” of wa-
ter formed by the phantom can be resolved.

In Sect. 3 we describe the new processing procedure yield-
ing the images in Fig. 2a and d, which, to our knowledge, is
the most efficient way to obtain 3D images from spin noise
data, currently. Most notably the continuous nature of spin
noise time-domain data allows one to decide the resolution
vs. contrast trade-off by reprocessing the raw data.

For completeness, we discuss the concept of indirect de-
tection of the spatial dimension in Fourier imaging with spin
noise. Even though spin noise has random phase, one can
devise a way to encode spatial information in the indirect di-
mension similarly to the way used for 2D spin-noise-detected
spectroscopy (Chandra et al., 2013; Ginthör et al., 2018).
This would require a location-encoding gradient sandwiched
between two acquisition blocks and incremented in the usual
way to yield the indirect k-space dimension. This phase-
encoding gradient modulates the relative phase of the signal,
which could be resolved by cross-correlation of two subse-
quent acquisition blocks. However, this theoretical scheme
suffers from excessive relaxation losses occurring during this
gradient and the two acquisition periods involved. We have
so far not succeeded in obtaining sufficient image contrast
using this scheme. Notably, with this indirect time-domain
(k-space) approach one cannot take advantage of the sliding
window processing and a posteriori optimization as this ac-
quisition scheme only affords discrete short data blocks.

3 Materials and methods

The experiments were carried out on a high-resolution NMR
spectrometer equipped with a Bruker Avance III console con-
nected to a Bruker Ascend 700 MHz magnet and a TCI
cryoprobe (manufactured in 2011). The phantom is a 3D-
printed helix made of PLA (polylactic acid) fitting tightly in-
side a standard 5 mm NMR tube (Wilmad 535-PP). The tube
is filled with a mixture of H2O : D2O (9 : 1) and the filling
height made equal to the height of the phantom (50 mm). The
rf probe is tuned to the SNTO (spin noise tuning optimum;
Marion and Desvaux, 2008; Nausner et al., 2009; Pöschko
et al., 2014), and 3D shimming (using Bruker’s TopShim)
is performed on a sample (henceforth referred to as “shim
sample”) which is prepared in the same type of 5 mm tube
(Wilmad 535-PP) as the phantom but filled with the same
mixture of H2O : D2O (9 : 1) to the same filling height with-
out the phantom. The radiation damping rate of this phantom
in the probe used was determined as λ0

rd = 611.4 rad s−1 un-
der the conditions of the imaging experiment, while the trans-
verse relaxation rate in the absence of radiation damping was
1/T2 = 2.632 s−1.

A one-dimensional (1D) 1H spin noise spectrum was ac-
quired to verify the correctness of the setup and the shim. For
this imaging experiment the magnetic field gradients gener-

Figure 3. Basic acquisition sequences. (a) Acquisition sequence
of the simplest 1D pulsed experiment. (b) The corresponding spin-
noise-detected NMR acquisition sequence. The arrows in panels (a)
and (b) represent the loops for recording all the scans. (c) The
frequency-encoding gradient for panels (a) and (b) if used as an
imaging experiment. (d) Same as panel (b), but all data blocks
are recorded continuously in one long acquisition period. (e) The
frequency-encoding gradient for panel (d) if used as an imaging ex-
periment. tAQ and tR denote the acquisition time and recycle delay,
respectively.

ated by the X, Y , and Z field correction (shim) coils are used
as the imaging gradients, after calibration for the purpose of
imaging. The gradient amplitude is measured by the broad-
ening of the peak in a spectrum of the test sample. For each
projection direction the magnitude of the applied magnetic
field gradient must be the same, independent of the direction
set according to the ϕ and θ values. (The definitions of the
coordinate system and angles are given in the Supplement.)
This is achieved by calculating the individual shim values via
the trigonometric laws. A few compound gradient settings
(involving multiple individual gradients) are checked to ver-
ify orthogonality of the Cartesian field gradient components
that are used to calculate the gradient directions. After setup
and calibration, the actual phantom is inserted into the mag-
net without further shimming. A script controls the setting
of the gradients via the digital-to-analog converters of the
shim system and initiates the acquisition. For each angle ϕ
and θ 30 projections were recorded, yielding 900 projections
in total at a gradient amplitude of 78 mT m−1. The values
are sampled uniformly per angle in the range of 0 to 180◦.
The projections were recorded with the following settings:
for each projection angle two noise blocks were recorded
(time-domain points: 1024k, spectral width: 5 kHz, spectral
center: 4.670 ppm). The individual projections are recorded
like standard 1D spin-noise-detected spectra (Müller and Jer-
schow, 2006; Nausner et al., 2009). The acquisition sequence
is illustrated and compared to conventional pulsed NMR in
Fig. 3.
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As in a conventional single-pulse NMR experiment
(Fig. 3a), the direction of the projection is determined by the
magnetic field gradient active during acquisition. Gradients
for different projection directions are set to the same mag-
nitude and thus only differ in their direction. The angles are
laid out in the following way: V angles for ϕ (angle between
X axis and XY projection of the direction vector) are chosen
uniformly. For each angle ϕ we again sample U angles for
θ (angle between the Z axis and direction vector) uniformly.
A reference coordinate system is shown in the Supplement.
The θ angles have the same set of values for all ϕ angles.

Due to the random phase of spin noise, direct accumula-
tion of raw-phase sensitive data in the time domain (as is
usually done for pulsed experiments) leads to signal cancella-
tion. Instead, all acquired noise blocks (the spin noise equiv-
alent of free induction decays are stored and Fourier trans-
formed individually. After calculating the power or magni-
tude spectra, their addition yields the final projection (Mc-
Coy and Ernst, 1989; Müller and Jerschow, 2006; Nausner et
al., 2009).

Longitudinal relaxation not being an issue in the absence
of rf pulses, any recycling delay can be omitted. That allows
one to record all blocks for one gradient in a single very long
acquisition block, as indicated in Fig. 3d. During processing
the data are split into adjustable smaller blocks which can be
processed as described above for individually acquired ones.
The acquisition of a single large noise block also allows one
to take advantage of “sliding window processing”, which was
introduced by Desvaux et al. (2009). By slicing a long acqui-
sition block recorded into overlapping sub-blocks, one gains
the option to compromise a posteriori (i.e., after acquisition
of the raw data) between resolution and sensitivity, by adjust-
ing the size of the smaller sub-blocks. The optimum overlap
of the blocks or “selection windows” has been shown to be
approximately one-seventh of the windows’ size (Desvaux et
al., 2009). Due to this overlap 7 times more blocks are used in
the summation process, which improves the SNR by a factor
of about

√
2, owing to the different accumulation behavior

of correlated (spin) noise and uncorrelated (instrument and
circuit) noise. After the sliding window splitting, the indi-
vidual blocks are processed in the same way as individually
acquired ones. The processing schemes from time-domain
noise data to the final projection with and without the sliding
window processing are compared in Fig. 4.

The processing was achieved by a custom Python script
(available in the Supplement) using the numpy library
(Oliphant, 2006) for general numerical calculations and for
the FFT routine as well as scikit-image (Walt et al., 2014) for
implementing the 2D SART reconstruction algorithm (see
below). The iterative reconstruction method was used with
two different resolutions. The lower-resolution images were
processed with a sliding window length of 128 and an over-
lap of 110 data points, the higher-resolution ones with a
length of 1024 and an overlap of 878 data points. The re-

Figure 4. Comparison of sliding window processing schemes for
spin noise data without (a) and with (b) overlapping windows. The
acquisition sequence (including the frequency-encoding gradient
magnetic field BG) for recording one long noise block is shown
on top. In the second step this block is cut up into multiple smaller
noise blocks. After the fast Fourier transformation (FFT) and cal-
culating the power spectra (PS), the sum of all individual spectra
yields the final projection. In panel (b) the long noise block is cut
up into overlapping sub-blocks, yielding a higher number of smaller
noise blocks.

sulting three-dimensional (3D) images were visualized with
ParaView (Ahrens et al., 2005).

We found the SART introduced by Andersen and Kak (An-
dersen and Kak, 1984) to be most suitable as an alternative to
the inverse radon transform for the spin noise imaging data.
This algorithm sets up a set of linear equations (see Eq. 2)
that describe the dependency of the projected values on the
distribution function D(r) of the original sample (Andersen
and Kak, 1984).

℘β,i =

∫
A

D(r)dr (2)

Integration occurs over the area A and ℘β,i denotes the data
point i in the projection ℘ at the angle β. The vector r en-
codes the position of a point inside the sample. In our case,
A is an area along the projection direction through the sam-
ple with the width of one data point. No exact solution of
this system is possible because it is usually underdetermined
(owing to a finite number of projection values ℘ compared to
a continuous distribution function). ThereforeD(r), the solu-
tion of this system of linear equations, is approximated by an
appropriate method, e.g., the Kaczmarz method (Kaczmarz,
1937). For two dimensions the equations can be generated in
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the following way: given V data points for each projection,
an image matrix I of V ×V pixels is created, representing
the reconstructed image. The image matrix I is a discrete
approximation of the continuous distribution function D(r).
There are multiple ways to formulate the forward projection
process, but here a bilinear model is chosen in Eq. (3), as it
is the basis for the SART reconstruction method (Andersen
and Kak, 1984).

℘β,i =

S∑
j=1

4∑
k=1

wLj ,kILj ,k (3)

℘β,i denotes the data point i in the projection ℘ at the angle
β. The image matrix I is sampled j times along the projec-
tion direction for each point i in the projection ℘β .

The resulting value for the sampling location is the
weighted sum of the four closest pixels (index k) in the im-
age matrix, where w denotes the weighting factor for the in-
dividual pixel. This also shows the underdetermination of the
system. There are N2 variables (pixels in the image matrix)
but only x×V equations (x represents the number of projec-
tion angles). The projections can be conceptually arranged
around the matrix I at their respective projection angles. The
reconstruction works in the following way: from each pro-
jection ℘β (corresponding to angle β) an updated image is
calculated according to Eq. (4) (Andersen and Kak, 1984).

Iz+1 = Iz+ u
(
Iz,℘β

)
× r (4)

Here u denotes the update function, ℘β the projection at an-
gle β and r the image reconstruction relaxation factor (with
no relation to spin relaxation). z indicates the evolution of
the image matrix after an update has been applied. All projec-
tions℘ are processed sequentially in an order that maximizes
the difference in angles between two successive projections.
The reconstruction is complete when all the projections ℘
have been considered. The goal is to approximate D(r) with
I. The update function u performs three steps for each pro-
jection pixel ℘β,i . First, from each projection pixel ℘β,i a
ray is cast into I along the projection direction. S intermedi-
ate values of the matrix I are taken on that ray at equidistant
locations Lj . At each location the values of the four closest
matrix I pixels, weighted by their distance to the sampling
point, are summed to give the value assigned to the sampling
location Lj . In Fig. 5 this process is illustrated.

The sum of all sampling points along the projection ray
yields a new value for each projection pixel ℘β,i , named
℘calcβ,i according to Eq. (5).

℘calcβ,i =

S∑
j=1

4∑
k=1

wLj ,kILj ,k (5)

The index variable j spans all sampling locations Lj along
the ray; k is used to indicate the four surrounding pixels of a
single sampling location Lj ;w is the weight used to calculate

Figure 5. Scheme of our implementation of the SART algorithm
(Andersen and Kak, 1984). A ray is cast from every data point of
the projection ℘ into the image matrix I. Along this ray S values
of the matrix elements (pixels) are sampled from I at locations Lj
(j = 1. . .S). Each point Lj is computed as the weighted sum of the
four closest points (pixels) of I.

the contribution of the neighboring pixel in question. This is
repeated for all projection pixels ℘β,i of a given projection
℘β . The difference in value of the actual projection pixel℘β,i
and the calculated projection pixel℘calcβ,i is given in Eq. (6).

℘diffβ,i = ℘x,i −℘calcβ,i (6)

This difference is then distributed back to the individual
sampling locations and in turn to their surrounding pixels,
weighted by the respective distance from the sampling lo-
cation to the neighboring pixel, in a new previously empty
image matrix Iupdate as seen in Eq. (7).

IupdateLj ,k = ℘diffβ,i ×wLj ,k (7)

This matrix Iupdate is the result of the update function u and
used to update the image matrix in Eq. (4).

The algorithm can be initiated with a first guess of the im-
age matrix Iz = 0. Starting with a reasonable guess as the
initial matrix instead of a zero matrix improves the recon-
struction, provided the guess is not too far off; in our case we
use a low-resolution image.

The reconstruction is iterated a pre-determined number of
times (in our case two) with the same projections but al-
ways using the result from the previous step as the next ini-
tial guess. In each step the weight of narrow contributions
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Figure 6. 3D SART reconstruction process. The 3D SART recon-
struction algorithm is realized as a two-step process via two succes-
sive 2D SART reconstructions. M ×N 1D projections are grouped
by the same ϕ angle (V groups in total). Each of the V groups
contains U projections with different angles θ . The first SART
reconstruction yields V 2D images. Those images represent two-
dimensional projections of the sample, all perpendicular to the XY
plane. The individual angle between each 2D image and the X axis
corresponds to the ϕ angle of the projections the image was created
from. Every row (along the Z axis) of every 2D image then rep-
resents a 1D projection of a XY slice of the sample (at the same
height as the row) around the Z axis. The final 3D image can be
reconstructed by using a 2D SART reconstruction on each of those
rows individually.

increases (e.g., better-defined edges or increased contrast),
while at the same time the noise level is rising. The number
of iterations depends on the quality of the original projections
and is, for actual data, best determined by visual inspection
of the image improvement during the iteration process. The
relaxation factor r in Eq. (4) was set to 0.05 for all recon-
structions.

The projections are grouped by the values of the angle
ϕ, yielding V groups with U projections each. For each of
these groups a SART image reconstruction (Andersen and
Kak, 1984) is performed, yielding V 2D images. The rows
(with respect to the Z axis) with the same index from all the
images are grouped again: every first row in a group, every
second in a group, and so on. Again, for each of these groups
an image reconstruction is performed. This results in the final
3D image of the phantom. Figure 6 illustrates this procedure.

In conjunction with the SART image reconstruction the
flexibility of large noise block acquisition and the sliding
window processing turns out to be particularly advantageous.
Shorter windows yield a higher number of blocks with fewer
data points and hence lower resolution. The summation over
a larger number of noise blocks, however, improves the SNR
of the resulting projection. Larger windows have the opposite
effect and improve the resolution while losing SNR. This fact
is exemplified in Fig. 7. The initial image reconstruction (via
SART; see above) is carried out with a zero seed matrix using
projections computed from short sliding windows (e.g., 128
complex data points).

Figure 7. Qualitative comparison of resolution and signal-to-noise
ratio for different sliding window sizes using a 1D image of the
phantom. Panel (a) shows the result of the sliding window algo-
rithm with a small window size, yielding a low-resolution image
with a high signal-to-noise ratio. Panel (b) shows the result of the
same process with a longer sliding window, resulting in a spectrum
with higher resolution but lower signal-to-noise ratio as compared
to panel (a).

Figure 8. Iterative 3D SART reconstruction. The first 3D SART re-
construction uses no initial guess and reconstructs a low-resolution
image with a high signal-to-noise ratio. This intermediate result is
used as the initial guess for the second 3D SART reconstruction,
yielding the final reconstructed image. Each 3D SART reconstruc-
tion is repeated multiple times with the same projections.

The reconstructed image from these low-resolution pro-
jections then serves as the starting image matrix for the sec-
ond reconstruction using projections calculated with a longer
sliding window. A schematic overview of the procedure can
be seen in Fig. 8.

For additional clarity, we summarize the iterative recon-
struction process: the recorded noise blocks corresponding
to different projection angles are processed with different in-
creasing sliding window sizes. This procedure yields multi-
ple sets of projections that differ in their resolution and SNR.
Then a first 2D SART image reconstruction step is done sep-
arately for each set of 1D projections corresponding to a par-
ticular angle ϕ. The first reconstruction uses no initial guess
(i.e., a zero image matrix) and is reconstructed using the set
of projections with the lowest resolution and correspondingly
highest SNR. The obtained 2D image is used as an initial
guess for another reconstruction, which is improved by the
next set of projections with higher resolution but lower SNR.
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Continuing this series, the obtained 2D images now form a
sequence ranging from low-resolution, high-SNR images to
the inverse high-resolution, low-SNR case. In order to use the
lower-resolution images in the higher-resolution reconstruc-
tions, the image matrices need to be interpolated to match the
required number of data points. The sliding window sizes are
doubled on each incrementation such that the resolution al-
ways increases by a factor of 2. This procedure is used anal-
ogously in the second reconstruction step to obtain the final
3D image. We note that the SART algorithm can also be ap-
plied to all three dimensions in a single step without inter-
mediate 2D data (Mueller et al. 1999), but this has not been
done here due to higher computational demands and the easy
availability of well-tested open-source 2D SART variants.

4 Conclusion

We have improved spin-noise-detected NMR imaging and
extended it to three dimensions from the original 2D SNI
technique published in 2006 (Müller and Jerschow, 2006).
The unique properties of spin noise, in particular its aver-
age power being constant, while phase memory is lost with
the usual time constant T ∗2 , and the absence of a defined
starting point in time together with spin noise tuning opti-
mization (Nausner, 2009; Pöschko, 2014) make it possible
to use a quasi-continuous acquisition technique. Thus, one
can obtain raw noise data of arbitrary duration while apply-
ing constant magnitude magnetic field gradients in different
directions. The data can be processed in a unique way using
dynamically adapted sliding windows to define fractionally
overlapping data blocks, which are Fourier transformed and
co-added after power spectrum computation.

Based on these fundamental steps, we have introduced a
new kind of SART-based iterative image reconstruction tech-
nique, which yields 3D images that are superior in visual
quality, improving SNR and resolution at the same time with-
out introduction of artifacts. In this type of spin noise imag-
ing the well-known trade-off between SNR (or image con-
trast) and resolution can be adjusted a posteriori during pro-
cessing of the same original data by iterative image recon-
struction, which is not applicable in conventional rf-pulse-
dependent MRI.
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