
Supporting Information - Part A
for

Distance measurement between trityl radicals by pulse dressed electron
paramagnetic resonance with phase modulation

Nino Wili1, Henrik Hintz2, Agathe Vanas1,‡, Adelheidt Godt2, and Gunnar Jeschke2

1 Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2,
8093 Zurich, Switzerland. E-mail: gjeschke@ethz.ch, nwili@ethz.ch

1 Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstrasse 25, 33615
Bielefeld, Germany

Contents

Part A : EPR 2

S.1 Derivation of the nutating frame Hamiltonians 2

S.2 Setting up the dressed spin echo sequence 10

S.3 Implementation details 15

S.4 Additional experimental data 17

S.5 Additional data for figures in the main article 19

ESI part A page 1 / 22



S.1 Derivation of the nutating frame Hamiltonians

In this section we will show step-by-step how to derive the effective Hamiltonians in the nutating
frame.

S.1.1 Interaction frame transformation

We can split a Hamiltonian Ĥ arbitrarily into a dominant part Ĥ0 and all the other terms, Ĥ1.

Ĥ = Ĥ0 + Ĥ1 . (1)

We can then transform Ĥ into an interaction frame with Ĥ0 with the unitary transformation

Û = T̂ exp

−i
t∫

0

Ĥ0(t1)dt1


Ĥ′ = Û†ĤÛ , (2)

where T̂ is the Dyson time-ordering operator and † indicates the transpose and complex conjugate.
For a time-independent Ĥ0, the expression simplifies to

Û = exp
(
−iĤ0t

)
. (3)

The equation of motion of the density operator in the interaction frame is then given by

d
dt

ρ′ = −i
[
Ĥ′ − Ĥ′0,ρ′

]
(4)

Ĥ′ − Ĥ′0 = Ĥ′1 (5)

i.e. the influence of Ĥ0 is absorbed into the frame, and we only have to look at the non-dominant terms
in the interaction frame. Most of these calculations only involve simple rotations in 3-dimensional
space.

S.1.2 Rotating frame

For simplicity and illustration, we first look at an isolated spin-1/2 particle in a static magnetic field
B0 along the laboratory z-axis. If we irradiate this system with a linearly polarized electromagnetic
field with frequency ωmw and amplitude 2B1, the Hamiltonian in angular frequency units is given by

Ĥ = ωSŜz + 2ω1 cos (ωmwt + φmw) Ŝx , (6)
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We now go into a rotating frame with frequency ωmw. This corresponds to an interaction frame with
ωmwŜz, i.e. Ĥ0 = ωmwŜz, which leads to

Ĥ′1 =ωSŜz

+2ω1 cos (ωmwt + φmw)
(
cos(ωmwt)Ŝx − sin(ωmwt)Ŝy

)
−ωmwŜz

=ΩSŜz

+ω1
(
cos(φmw)Ŝx + sin(φmw)Ŝy

)
+ω1

(
cos(2ωmwt + φmw)Ŝx − sin(2ωmwt + φmw)Ŝy

)
, (7)

where we used trigonometric identities and introduced the offset ΩS = (ωS − ωmw). Equation (7)
contains two rotating waves, one that rotates with ωmw that is said to be on-resonance, and one that
rotates with−ωmw and is thus far off -resonance. The rotating wave approximation (RWA) now simply
neglects the counter-rotating component. More formally speaking, this corresponds to the first order
average Hamiltonian, obtained by integrating over one modulation period, in this case τc = 2π/ωmw,

Ĥ
(1)

=
1
τc

τc∫
0

Ĥ(t1)dt1 . (8)

Here, the bar indicates the average Hamiltonian, the number in parentheses indicates the order.
Quite often, and also in the case of the RWA, this amounts to simply neglecting the remaining time-
dependent terms, as they are off-resonant. For the Hamiltonian in Eq. (7) we obtain

Ĥ′1 ≈ΩSŜz + ω1
(
cos(φmw)Ŝx + sin(φmw)Ŝy

)
(9)

The second order contribution to the average Hamiltonian is given by

Ĥ
(2)

=
−i
2τc

τc∫
0

t2∫
0

[
Ĥ(t2),Ĥ(t1)

]
dt1dt2 . (10)

Evaluating the double-integral for Eq. (7) leads to the Bloch-Siegert shift Hamiltonian

ĤBS =
1
4

ω2
1

ωmw
Ŝz . (11)

S.1.3 Nutating Frame

The truncated rotating frame Hamiltonian in Eq. (9) can be further simplified by assuming φmw = 0,
which leaves us with

Ĥ′ = ΩSŜz + ω1Ŝx (12)
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If the Rabi frequency is much larger than the resonance offset, ω1�ΩS, the situation can be discussed
by using another interaction frame transformation with ω1Ŝx. This term is then absorbed into the
frame, and the rest transforms to

Ĥ′′ = ΩS
(
cos(ω1t)Ŝz + sin(ω1t)Ŝy

)
. (13)

Here, all terms are time-dependent. Accordingly, the first order average Hamiltonian vanishes

Ĥ
′′(1)

= 0 . (14)

It is instructive to look at the second order contribution, which amounts to

Ĥ
′′(2)

=
Ω2

S
2ω1

Ŝx . (15)

These results can be interpreted in the following way. To a first approximation, the offsets in the
rotating frame get averaged out to zero. If this approximation is good, then electrons with different
resonance frequencies in the rotating frame have the same resonance frequency in the nutating frame.
They become equivalent under the spin-lock. As a second approximation, there is a correction that
scales with Ω2

S/ω1, and this correction acts along the spin-lock axis of the nutating frame. It depends
on the bare-spin resonance offset, ΩS, and it will thus be different for electrons with different bare-spin
resonance frequencies. If the bare-spin resonance offset becomes comparable to the Rabi frequency,
it is no longer permissible to neglect higher-order terms, and it is better to use an interaction frame
with ΩSŜz + ω1Ŝx. This corresponds to a nutating frame where the axis of rotation is neither along
z nor along x, but somewhere in between. However, now the frame transformation depends on the
bare-spin resonance frequency, i.e., on a parameter of the spin system rather than only on parameters
chosen by the experimenter and being the same for all spins.

S.1.3.1 Hyperfine decoupling and NOVEL

The Hamiltonian for a single electron coupled to a single nucleus in the electron rotating frame is
given by

Ĥ′e-n = Ŝz
(

Axz Îx + Ayz Îy + Azz Îz
)
+ ωI Îz . (16)

An interaction frame transformation with ω1Ŝx leads to

Ĥ′′e-n =
(
cos(ω1t)Ŝz + sin(ω1t)Ŝy

)
·
(

Axz Îx + Ayz Îy + Azz Îz
)
+ ωI Îz . (17)

Again, all terms are time-dependent and the first order average Hamiltonian vanishes. If the dominant
electron dephasing mechanism relies on the hyperfine coupling, then the dephasing during irradiation
should be strongly reduced.

There is, however, a hidden complication, if ω1 ≈ ωI. This is best seen by going into the nuclear
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rotating frame, i.e. the interaction frame with ωI Îz. This leads to

Ĥ′′e-n =
(
cos(ω1t)Ŝz + sin(ω1t)Ŝy

)
·
[
Axz

(
cos(ωIt) Îx − sin(ωIt) Îy

)
+ Ayz

(
cos(ωIt) Îy + sin(ωIt) Îx

)
+Azz Îz

]
. (18)

If ω1 matches ωI, some terms proportional to the pseudo-secular couplings, Axz and Ayz, become
time-independent. Using trigonometric identities and neglecting time-dependent terms, we obtain

Ĥ′′e-n ≈
1
2
[
Ŝy
(

Ayz Îx − Axz Îy
)

+ Ŝz
(

Axz Îx + Ayz Îy
)]

. (19)

This Hamiltonian generates nuclear polarization ( Îz) from electron coherence (Ŝx) and is thus a mech-
anism for dynamic nuclear polarization (DNP). The matching condition ω1 = ωI is called the NOVEL
condition2. In order to avoid magnetization loss, microwave field strengths close to the NOVEL con-
dition should be avoided unless such polarization transfer is intended.

S.1.3.2 Qualitative discussion of electron dephasing in a nuclear spin bath

Let us look at an electron spin in a bath of nuclei. For simplicity and illustration, we only consider
one electron and two nuclei. We assume that the electron is only coupled to nucleus one, we neglect
the pseudosecular components of the hyperfine coupling and we do include dipole-dipole coupling
between the two nuclei. The Hamiltonian in the electron rotating frame thus reads

Ĥ′ = AzzŜz Îz + ω12

(
Î1z Î2z −

1
2
(

Î1x Î2x + Î1y Î2y
))

, (20)

where ω12 is the dipolar coupling constant of the two nuclei (and thus depends on the distance be-
tween the nuclei and on their gyromagnetic ratios). Let us assume that we created electron coherence
along x′ and that it further evolves under the sequence τ − (π)y − τ. If ω12 = 0, the π-pulse com-
pletely refocuses the hyperfine coupling, and we end up with −Ŝx′ after the second delay. However, as
the flip-flop terms in the nuclear-nuclear coupling Hamiltonian do not commute with the other terms,
for ω12 6= 0 evolution generates two- and three-spin terms of the form Ŝy Î1x Î2y (among others). The
full expression is rather large and does not provide much insight. However, one easily recognizes that
these terms are not refocused by a microwave π-pulse acting on the electron spin. Since the terms
are not refocused, the amplitude of the electron coherence must necessarily be reduced. Note that
this effect is completely coherent. It does not rely on stochastic flips of the nuclear spins. Extending
the argument to a large number of nuclear spins with a distribution of hyperfine and nuclear-nuclear
couplings, one expects an apparent decay instead of oscillations. A demonstration by numerical sim-
ulations would be computationally expensive, as matrix size grows exponentially with the number of
spins. Such computations are beyond the scope of this paper.
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Note, however, that a spin-lock that is much stronger than the hyperfine coupling averages said
coupling. The nuclear-nuclear coupling can then be neglected because it commutes with all the
remaining terms that contain electron operators. In other words, a sufficiently strong spin lock isolates
the electron spin from the nuclear spin bath, unless the NOVEL condition is met.

S.1.3.3 Electron-electron coupling in the nutating frame

The dipolar coupling Hamiltonian between two electron spins in the electron rotating frame is given
by

Ĥ′e-e,dip = ωdd

(
Ŝ1zŜ2z −

1
2
(
Ŝ1xŜ2x + Ŝ1yŜ2y

))
, (21)

as already mentioned in the main text. The situation of strong irradiation of both spins is well pictured
in a nutating frame obtained by transformation with ω1(Ŝ1x + Ŝ2x). This leads to

Ĥ′′e-e,dip = ωdd
[
(cŜ1z + sŜ1y)(cŜ2z + sŜ2y)

−1
2
(
Ŝ1xŜ2x + (cŜ1y − sŜ1z)(cŜ2y − sŜ2z)

)]
(22)

with

c = cos(ω1t)

s = sin(ω1t) . (23)

Using the first order average Hamiltonian approximation and the integrals

1
τc

∫ τc

0
c · sdt = 0 (24)

1
τc

∫ τc

0
c2dt =

1
τc

∫ τc

0
s2dt = 1/2 (25)

(26)

we obtain the result shown in the main text

Ĥ′′e-e,dip ≈ ωdd

[
1
2

Ŝ1zŜ2z +
1
2

Ŝ1yŜ2y

−1
2

(
Ŝ1xŜ2x +

1
2

Ŝ1yŜ2y +
1
2

Ŝ1zŜ2z

)]

= −ωdd

2

[
Ŝ1xŜ2x −

1
2
(
Ŝ1zŜ2z + Ŝ1yŜ2y

)]
(27)

Note that the simplification leading to this result crucially depends on the condition that both spins
are irradiated with the same strength and that the irradiation is stronger than the difference in rotating
frame offsets. If the difference in offsets is larger than the dipolar coupling or the Rabi frequency,
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∆Ω > ω1,ωdd, then the pseudosecular terms in Eq. (21) are already averaged in the doubly rotating
frame (meaning that the frames for the two electrons rotate with different frequencies). If only one
spin is irradiated, the average dipole-dipole coupling Hamiltonian will vanish. However, if the two
spins were irradiated separately with two different frequencies and the same Rabi frequency, part of
the Hamiltonian would again be time-independent. This is a situation very similar to Hartmann-Hahn
cross-polarization in solid-state NMR.

Regarding the exchange coupling, one can simply argue that it involves a scalar product of spin
operators. The scalar product is invariant under frame transformations. However, this statement is
slightly dubious because the scalar product of spin operators connects two different spin spaces and
may no longer be invariant if the transformations of the two frames differ. Therefore, depending
on the irradiation scheme the exchange coupling is not trivially the same between dressed spins as
between bare spins. Here, we show explicitly that the exchange coupling is invariant if the same frame
transformation is applied to both spins. For an exchange coupling Hamiltonian given by

Ĥ′e-e,J = J
(
~̂S1 · ~̂S2

)
= J

(
Ŝ1xŜ2x + Ŝ1y′ Ŝy + Ŝ1zŜ2z

)
, (28)

we employ an interaction frame transformation with ω1(Ŝ1x + Ŝ2x), leading to

Ĥ′′e-e,J = J
(
Ŝ1xŜ2x

+ (cŜ1y − sŜ1z)(cŜ2y − sŜ2z)

+(cŜ1z + sŜ1y)(cŜ2z + sŜ2y)
)

= J
(
Ŝ1xŜ2x + Ŝ1yŜ2y + Ŝ1zŜ2z

)
. (29)

which is the same as before the interaction frame transformation.

S.1.3.4 Details on the dressed spin echo

Here we explicitly show some more details regarding the dressed spin echo sequence. We assume
that the electron spins as well as the spin-lock are along the x′ axis. The density operator in the usual
rotating frame is then described by

σ̂′1 = Ŝ1x + Ŝ2x . (30)

The Hamiltonian describing the microwave irradiation in the rotating frame is given by

Ĥ′mw = ω1
(
cos (φmw(t)) F̂x + sin (φmw(t)) F̂y

)
, (31)

with F̂x = Ŝ1x + Ŝ2x. The above expression, in the absence of any phase-modulation (φmw(t) = 0),
reduces simply to

Ĥ′mw = ω1F̂x . (32)
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As long as the spins and the spin-lock field point along the same direction, nothing happens (apart
from relaxation, which is not treated in this formalism). This is even true if we include the dipolar
coupling, because again, the sum of polarization does not evolve under the dipolar coupling Hamilto-
nian.

In order to describe a phase pulse in the rotating frame, we would need to use the Hamiltonian in
Eq. (31). The corresponding propagator is given by

Û = T̂ exp

−i

tp∫
0

Ĥ′mw(t)dt

 (33)

where T̂ is the Dyson time ordering operator. This integral is more of a formality, because it is
usually not evaluated this way. Numerically, one can calculate the propagator by time-slicing, i.e. by
evaluating the time-dependent Hamiltonian and the corresponding propagator for short time steps
and calculating the integral by multiplying propagators of the small time steps in the correct order.
However, it is much easier to describe a phase pulse in the nutating frame! In this frame, the density
matrix above is still given by

σ̂′′1 = Ŝ1x + Ŝ2x , (34)

but the Hamiltonian, after the rotating wave approximation, reduces to

Ĥ′′mw =
ω1aPM

2
(
cos (φPM) F̂y + sin (φPM) F̂z

)
, (35)

which for φPM = π (arbitrary) reduces to

Ĥ′′mw = −ω1aPM

2
F̂y . (36)

This expression is time-independent. The corresponding propagator is then given by

Û = exp
(

i
ω1aPM

2
F̂ytp

)
. (37)

If we choose ω1aPM
2 · tp = π/2, we obtain

Û = exp
(

i
π

2
F̂y

)
, (38)

which corresponds to a pi
2 pulse in the nutating frame. Applied to the density matrix before the pulse,

we get
σ̂′′2 = Ûσ̂′′1 Û† = Ŝ1z + Ŝ2z . (39)

The last line can be represented in the product operator formalism (POF) by

Ŝ1x + Ŝ2x
−π

2 F̂y−−−→ (Ŝ1z + Ŝ2z) (40)

Now we explicitly show how this state evolves under the dipolar Hamiltonian in the nutating
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frame, i.e.

Ŝ1z + Ŝ2z
−ωdd

2 (Ŝ1x Ŝ2x− 1
2(Ŝ1zŜ2z+Ŝ1yŜ2y))·t−−−−−−−−−−−−−−−−−−−−→ ? (41)

It is important to note that all the two-spin operators in the Hamiltonian commute with each other.
This means that we can evaluate their influence on the density operator step-by-step in the POF. We
also do it for one spin only and then obtain the result of the second spin by changing the corresponding
indices.

Ŝ1z
−ωdd

2 (Ŝ1x Ŝ2x)·t−−−−−−−−−→ cos(
ωdd

4
t)Ŝ1z + sin(

ωdd

4
t)Ŝ1yŜ2x

+
ωdd

4 (Ŝ1yŜ2y+Ŝ1zŜ2z)·t−−−−−−−−−−−−−→ cos(
ωdd

4
t)
[
cos(

ωdd

8
t)Ŝ1z + sin(

ωdd

8
t)Ŝ1xŜ2z

]
+sin(

ωdd

4
t)
[
cos(

ωdd

8
t)Ŝ1yŜ2x − sin(

ωdd

8
t)Ŝ2z

]
(42)

Including the result for the second spin, and only keeping terms proportional to Ŝ1z + Ŝ2z gives the
signal

s(t) =cos(
ωdd

4
t)cos(

ωdd

8
t)− sin(

ωdd

4
t)sin(

ωdd

8
t)

=
1
2

(
cos(

3
8

ωddt) + cos(
1
8

ωddt) + cos(
3
8

ωddt)− cos(
1
8

ωddt
)

=cos(
3
8

ωddt) (43)

Note that in the main text, we display the echo intensity as a function of τ1. The effective dipolar
evolution time is 2 · τ1, leading to

s(t) = cos(
3
4

ωddτ1) (44)
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S.2 Setting up the dressed spin echo sequence

Here we give a detailed account of the measurement setup for dressed pulse sequences. We assume
that the sample is in the spectrometer at the correct temperature and field and that you are able to
get an echo.

1. Set up π/2 and π pulse lengths by maximizing the echo amplitude of a Hahn echo where the
second pulse is twice as long as the first one. This step seems trivial, but it already suffers from
some complications in the case of dipolar coupled trityls, which are seen in the following Figure
S1. Clearly, there are two close lying local maxima, which is not compatible with the behavior
of a simple spin-1/2 system. The local maxima are due to the small ratio of spectral width
compared to the dipolar coupling, and the exact curve depends on the value of the interpulse
delay. Note that for the dressed spin sequences, one generally prefers to choose this interpulse
delay for the readout as short as possible. A similar observation was reported by Meyer et al.3

0 0.5 1
Digital AWG scale

0

0.5

1

E
ch
o
in
te
ns
it
y
/
a.
u.

Fig. S1: Echo intensity of a 4/8ns echo as a function of the digital scale of our AWG. (Bis-trityl 1). Note that
starting from around 0.3, the saturation of the TWT becomes significant.

2. Set up the optimal phase of the spin-lock with a sequence π/2− Lock− τ − π − τ- echo. In
principle, this should not be necessary when using an AWG. In fact, we checked that the phase
cycling in our setup works nearly perfectly when simply programming the phases. Additionally,
in a two-pulse echo, the phase of the signal perfectly follows the expected phase shift of the
coherence order pathway. If this is the case, one would expect that one could simply apply the
spin-lock pulse at 90 degrees to the π/2 pulse, but experimentally, we observe that this is not
the case, see Fig. S2. We suspect that phase transients of the pulses due to the resonator are
responsible for this behavior.

3. Measure T1ρ with the sequence π/2− Lock− τ− π− τ -echo (SL + echo) with variable length
of the spin-lock pulse. Note that a spin-locked echo (π/2 − τ − Lock − τ - echo, SLE) gives
very different results in the case of trityl radicals at low temperatures, see the following Fig.
S3. Note also that in the case of the SLE, the decay depends on the interpulse delay. Curiously,
one can again see that the maximal echo intensity is not achieved when the spin-lock pulse
corresponds to a π pulse, but when it corresponds to a π/2 or 3π/2 pulse. The red traces in Fig.
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Fig. S2: Echo intensity after a sequence π/2− Lock− τ − π − τ- echo as a function of the digital phase of the
spin-lock pulse relative to the first pulse. The length of the spin-lock pulse was 5µs. The highest expected

absolute intensity of the echo is at around 120 degrees, while one would expect it around 90 degrees.

S3 correspond to a nutation of the second pulse. Obviously, not only the fundamental oscillation
with the Rabi frequency of slightly more than 100 MHz is present, but also an oscillation which is
twice as fast. This is due to the fact that a significant part of the echo reduction of the two-pulse
echo is due to the dipolar coupling, which is refocused by a solid echo, not a Hahn echo. The
solid echo requires a π/2 pulse. Note however, that the solid echo does not fully refocus the
dipolar coupling in the presence of significant offsets compared to the interpulse delay.
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SL + echo 200ns

SLE 200ns

SLE 1500ns

(b)

0 0.01 0.02 0.03
TSL/µs

0.4

0.6

0.8

1

Fig. S3: Measurement of T1ρ with different sequences and different settings. See main text for more details.
(b) is a zoom of (a).

4. Record a frequency-stepped dressed spin resonance spectrum. In order to set the frequency
of the phase-modulation, we need to know the Rabi frequency of the spin-lock pulse. It is also
useful to know the distribution of the Rabi frequency. One possibility to obtain this information
is to use the basic sequence introduced in the main text, but with only a single period of phase-
modulation. The amplitude of the phase-modulation should be rather small (e.g. 0.02 radians),
and the pulse should be rather long (e.g. 1 µs.) in order to avoid significant broadening. The
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frequency of the phase-modulation is then stepped, and the echo intensity recorded. This is
shown in black in Fig. S4. As a comparison, we also show the Fourier transform of a simple
nutation experiment in red. The frequency of the phase-modulation for all successive steps was
then set to the maximum of the dressed spin resonance spectrum.

0 50 100
ωpm or ω1/2π / MHz

PM
ωpm

t p

+FTA
m
pl
it
ud

e
/
a.
u.

Fig. S4: Frequency-stepped dressed-spin resonance spectrum (black, apm = 0.02, phase pulse length 1 µs).
And Fourier transform of a nutation experiment at full power (red). Insets show the pulse sequences. PM

denotes the phase modulation during the spin-lock, not an additional channel. Based on this spectrum, a PM
frequency of ωPM/(2π) =108 MHz was chosen.

5. Set up the phase-modulation amplitude and phase-pulse length Now that the frequency of
the phase modulation (ωPM) is set, we can setup the phase-pulse amplitude and length. We
can do this by using the same sequence as in the main text, but with only one phase-pulse with
fixed modulation frequency. By changing the length of the phase-modulation pulse one obtains
a nutation curve in the nutating frame. Fig. S5 shows such nutation curves for aPM = 0.2 (grey
and black) and aPM = 0.3 (red and light red). Interestingly, one can see an overlaid oscillation,
which depends on the phase of the phase modulation (φ2). This additional oscillation is due
to the breakdown of the rotating wave approximation in the nutating frame and becomes more
pronounced with larger phase-modulation intensity. In this case we used the minimum of the
phase-pulse nutation curve as a dressed π-pulse length (around 43 ns for aPM = 0.3).

6. Set up the timings for the dressed echo and check the phase-phase cycling. The sequence
from the main text is repeated here in Fig. S6 (a). The dressed echo cannot be acquired
continuously. Therefore, we need to check whether the timings of the sequence are correct.
In order to do this, we use a fixed spin-lock length TSL, a fixed τ0 and τ1 and changed τ2 step-
by-step. A trace with a two-step phase-cycle of φ1 = [(+)0, (−)180] and φ2 = φ3 = φ4 = 0 is
shown in red in Fig. S6 (b). The highest intensity indicates the dressed echo where τ2 = τ1

(plus the length of the first phase pulse, tp). In addition, one can clearly see additional, crossing
echoes, and a “dressed FID” around τ2 = 0. We realized that the position of these crossing
echoes depend on the choice of τ0. This indicates that there is some dressed coherence present
during τ0. This is not very surprising, because the first π/2 pulse will never be perfect, and
some magnetization will be orthogonal to the effective field of the spin-lock. In order to get
rid of these crossing echoes, one can cycle the phase of the phase-pulses φ2−4 in analogy to a
bare spin echo, with the complication that at the beginning of the first dressed pulse (after τ0),
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φ2 = 0
φ2 = π/2
aPM = 0.3

φ2 = 0
φ2 = π/2
aPM = 0.2

Fig. S5: (a) Pulse sequence to set up the dressed pulses. “PM” denotes the phase-modulation during the
spin-lock, not and additional channel. (b) Phase-pulse nutation curves obtained with fixed ωPM but different

intensities and phases. The minima of the curves indicate the length of the dressed π pulses for a given
intensity aPM.

there is already dressed coherence present. The black trace in Fig. S6 (b) shows the result of
the measurement with the 16-step nested phase cycle φ1 = [(+)0, (−)180], φ2 = [(+)0, (−)180],
φ3 = [(+)0, (−)90, (+)180, (−)270], which essentially gets rid of all crossing echoes observed in
our case. Note that this cycle relies on the fact that dressed coherence decays relatively quickly
after the last phase-pulse due to inhomogeneities, and that it does not get refocused after that
point. The exact implementation of the phase-modulation and thus the meaning of the phases
are given in the next section.
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Fig. S6: (a) Pulse sequence of the dressed spin echo. (b) Dressed echo with fixed τ0=1µs and τ1=1.5µs and
variable τ2. Red: φ1 = [(+)0, (−)180]. Clear crossing echoes are visible. Black: Nested cycle

φ1 = [(+)0, (−)180], φ2 = [(+)0, (−)180], φ3 = [(+)0, (−)90, (+)180, (−)270]. No crossing echoes visible
anymore.
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S.3 Implementation details

On our homebuilt AWG based spectrometer, the actual pulse waveform that reaches the sample is
generated by IQ-mixing the AWG waveform (IF) with a local oscillator (LO). As an example, we use
a Q-band phase-modulated pulse. The LO in this case is around 33.3 GHz. The center frequency of
the pulse generated by the AWG is always around 1.5 GHz in our setup. This leads to a final pulse
frequency of 33.3+1.5 = 34.8 GHz that reaches the resonator and the spins, as seen in Fig. 3(a),
4(a) and 5(a) in the main text. Apart from the constant value of around 1.5 GHz, we do not use any
frequency modulation (FM) in this work (FM(t) = 1.5 GHz). The amplitude is also constant during
the spin-lock. So let us look now at the phase modulation (PM), which is illustrated in Fig. S7 in red.
At most times during the spin-lock, there is no phase modulation. But during the “phase pulses”, we
turn on the sinusoidal PM. It is best to think about these phase pulses in relation to a hypothetical
“carrier”. The frequency of this carrier is the dressed spin resonance frequency ωPM ≈ ω1 that we
determined before in Fig. S4. The phase of this carrier is arbitrarily set to 0 at the beginning of the
spin-lock pulse. In our experiment, all three phase pulses have the same frequency as the carrier, but
each phase pulse might be phase shifted. This is seen in the example below. The first pulse has a phase
φ2 = 0, which means that the phase is the same for the hypothetical carrier and the phase pulse. The
second phase pulse is phase shifted by φ3 = π, and the third one by φ4 = π/2. By cycling the phases
of the phase pulses, we can select certain dressed coherence order pathways, in analogy to the bare
spin case. Of course the amplitude of the phase modulation (0.3 rad in the example shown here) as
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Fig. S7: Illustration of the

well as the length of each phase pulse can be chosen at will. Mathematically, the PM is given by

PM(t) =


aPM,1 cos (ωPMt + φ2) for τ0 < t < τ0 + tPM,1

aPM,2 cos (ωPMt + φ3) for (τ0 + τ1) < t < (τ0 + τ1 + tPM,2)

aPM,3 cos (ωPMt + φ4) for (τ0 + τ1 + τ2) < t < (τ0 + τ1 + τ2 + tPM,3)

0 otherwise

(45)
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The total final spin-lock waveform generated by the two channels of the AWG (real and imaginary) is
then given by

f (t) =AM(t) ·
[

cos

2π ·
t∫

0

FM(τ)dτ + PM(t) + φSL



+ i sin

2π ·
t∫

0

FM(τ)dτ + PM(t) + φSL

] , (46)

where φSL is the overall phase of the spin-lock pulse. We omitted the possible corrections for phase
and amplitude for the real and imaginary part.
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S.4 Additional experimental data

S.4.1 Dipolar echo envelope modulation: Influence of pulse length

As mentioned in the main text, the dipolar coupling is already visible in the normal Hahn echo decay.
Fig. S8 shows these echo decays for the two different bis-trityl compounds, and with different pulse
lengths. For both bis-trityls, we see and additional oscillation when very short pulses (4/8 ns) are
used. With 100/200 ns pulses, the modulation intensity is reduced. In the case of bis-trityl 2 (5.3
nm) and 4/8 ns pulses, the echo modulation even crosses zero. The presence of these oscillations
complicates the analysis of the relaxation data.
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Fig. S8: Hahn echo decay for bis-trityl 1 (4.1 nm) and bis-trityl 2 (5.3 nm) acquired with different pulse
lengths. The oscillations are due to the dipolar coupling.

S.4.2 Solvent deuteration: dOTP vs OTP

We measured the Hahn echo decay of bis-trityl 1 in ortho-terphenyl (OTP) and its deuterated variant
(dOTP). Surprisingly, we observed no difference between the two, see Fig. S9. Most likely, the
protons in the trityl itself are responsible for the relaxation. Unfortunately, we do not (yet) have the
fully deuterated variants of the used trityl moieties in order to test this hypothesis.
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Fig. S9: Hahn echo decay of bis-trityl 1 acuqired with 100/200 ns pulses with OTP and dOTP as solvents. No
significant difference can be observed between the two.
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S.4.3 SIFTER data for bis-trityls 1 and 2
The SIFTER traces for bis-trityls 1 and 2 and corresponding distance distributions including a sen-
sitvity analysis regarding the background and additional noise are shown in Fig. S10. The fitted
background was included in the kernel function1. The distance distributions show the expected dis-
tances of around 4.1 and 5.3 nm. The oscillations in the case of bis-trityl 1 are quite damped compared
to other model systems, and also compared to the dressed echo traces shown in the main text. It is
possible that the compound shows strong or intermediate coupling effects for some orientations.
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Fig. S10: SIFTER data for bis-trityls 1 and 2. (a) Experimental SIFTER trace (black), symmetrized around the
zero-time. Best fit including background in red. (b) Corresponding distance distributions obtained with the

DeerLab API (https://github.com/luisfabib/deerlab). Black curve shows the median values for the
probability densities. Red areas span from the 0.25 to 0.75 quantile.
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S.5 Additional data for figures in the main article

Here we give detailed information on each figure. This includes information about raw data and
processing scripts which are deposited online with a permanent DOI: 10.5281/zenodo.3703053.
Since our home-built spectrometer is run via MATLAB© (The MathWorks, Inc), even the raw data
are stored in .mat files. Some scripts use functions from EasySpin4. Since EasySpin, written in
MATLAB, is the most widely used simulation library in the EPR community, we believe that a ma-
jority of readers will be able to read and run the scripts we provide. Note that the .mat files
can also be read into the free software R, with the help of the library ’R.matlab’ (https://cran.r-
project.org/web/packages/R.matlab/).

Fig. 3 (a)
Q-Band chirp echo Fourier transform EPR spectrum of mono-trityl 7. 200 µM in dOTP. 6 µl of the
solution in a 1.6 mm outer diameter tube. Temperature: 50 K. Pulse sequence: 200/100ns two-pulse
chirp echo. Linear chirp pulses with total sweep width of 300 MHz, centered at the center of the
resonator (34.8 GHz) and 20 ns rise time were used. The FM function was adjusted to compensate
the resonator profile. Interpulse delay 2 µs (start-to-start of pulses). A symmetric 3.6 µs Chebyshev
window with 100 dB relative sidelobe attenuation was applied to the digitally down-converted echo.
A Fourier transform then yielded the spectrum. Magnetic field: 1241.4 mT (calibrated with DPPH).
Shot repetition time 10 ms. 100 shots. 10 averages. [(+)0, (−)180] phase cycle for the first pulse.
Raw data and processing scripts: Matlab processing and simulation: spectrum_monomer.m
raw file: 20191106_1239_chirp_echo_dummy.mat

Fig. 3 (b)
Relaxation measurements for mono-trityl 7. 200 µM in dOTP. 6 µl of the solution in a 1.6 mm outer
diameter tube. Temperature: 50 K. Magnetic field: 1241.4 mT.
Tm measurement: Two-pulse echo (π/2− τ − π − τ− echo) with 100/200 ns pulses. [(+)0, (−)180]
phase cycle for the first pulse. Inter-pulse delay varied from 200 ns to 16552 ns in steps of 32 ns (512
points in total). Note that the trace was to long and was thus cut for processing and plotting. Shot
repetition time 30 ms. 10 shots per point. 1 average.
T1ρ measurement: π/2 − lock − τ − π − τ−echo. (π/2)/π =4/8 ns. τ=200 ns. Spin-lock Rabi
frequency around 100 MHz. [(+)0, (−)180] phase cycle for the π/2 pulse, [(+)0, (+)180] phase cycle
for the π pulse. Fixed phase for the spin-lock, but always orthogonal to the first pulse. Spin-lock
length varied from 0 ns to 100 ns in steps of 0.5 ns, and from 200 ns to 40 µs in steps of 100 ns (600
points in total). Shot repetition time 30 ms. 5 shots per point. 1 average.
T2ρ measurement: Dressed spin echo, see previous sections for detailed definitions. Dressed (π/2)/π

pulse lengths 21/42 ns, with an amplitude of 0.3 rad. Total spin-lock length 35 µs. Modulation
frequency of 99 MHz. τ0 =2 µs, τ1 varied from 22 ns to 14390 ns in steps of 32 ns (450 points
in total). Phase cycle and phase-phase cycle as introduced above. Shot repetition time 30 ms. 1
shot per point. 300 averages (overkill, was simply overnight). All other parameters as for the T1ρ

measurement.
Raw data and processing scripts:

ESI part A page 19 / 22



Matlab processing and simulation: relaxation_monomers.m
raw file Tm measurement: 20200203_1538_2pecho_ESEEM.mat
raw file T1ρ measurement: 20200203_1549_spin_locked_echo_t1rho.mat
raw file T2ρ measurement: 20200203_1700_spin_locked_phase_echo_mod

Fig. 4 (a)

Q-Band chirp echo Fourier transform EPR spectrum of bis-trityl 1. 100 µM in dOTP. 6 µl of the
solution in a 1.6 mm outer diameter tube. Temperature: 50 K. Pulse sequence: 200/100ns two-pulse
chirp echo. Linear chirp pulses with total sweep width of 300 MHz, centered at the center of the
resonator (34.8 GHz) and 20 ns rise time were used. The FM function was adjusted to compensate
the resonator profile. Interpulse delay 950 ns (start-to-start of pulses). A symmetric 3.6 µs Chebyshev
window with 100 dB relative sidelobe attenuation was applied to the digitally down-converted echo.
A Fourier transform then yielded the spectrum. Magnetic field: 1241.4 mT (calibrated with DPPH).
Shot repetition time 10 ms. 100 shots. 1 average. [(+)0, (−)180] phase cycle for the first pulse.
Raw data and processing scripts: Matlab processing and simulation: spectrum_4p1nm.m
raw file: 20190729_1134_chirp_echo_dummy.mat

Fig. 4 (b)

Relaxation measurements for bis-trityl 1. 100 µM in dOTP. 6 µl of the solution in a 1.6 mm outer
diameter tube. Temperature: 50 K. Magnetic field: 1241.4 mT.
Tm measurement: Two-pulse echo (π/2− τ − π − τ− echo) with 100/200 ns pulses. [(+)0, (−)180]
phase cycle for the first pulse. Inter-pulse delay varied from 200 ns to 8376 ns in steps of 16 ns (512
points in total). Shot repetition time 30 ms. 10 shots per point. 1 average.
T1ρ measurement: π/2 − lock − τ − π − τ−echo. (π/2)/π =4/8 ns. τ=200 ns. Spin-lock Rabi
frequency around 100 MHz. [(+)0, (−)180] phase cycle for the π/2 pulse, [(+)0, (+)180] phase cycle
for the π pulse. Fixed phase for the spin-lock, but always orthogonal to the first pulse. Spin-lock
length varied from 0 ns to 100 ns in steps of 0.5 ns, and from 200 ns to 40 µs in steps of 100 ns (600
points in total). Shot repetition time 30 ms. 5 shots per point. 1 average.
Raw data and processing scripts:
Matlab processing and simulation: relaxation_4p1nm.m
raw file Tm measurement: 20191101_1415_2pecho_ESEEM.mat
raw file T1ρ measurement: 20190819_1706_spin_locked_echo_t1rho.mat

Fig. 4 (c) and (d)

Dressed echo decay/modulation for bis-trityl 1. See previous sections for detailed definitions. 100 µM
in dOTP. 6 µl of the solution in a 1.6 mm outer diameter tube. Temperature: 50 K. Magnetic field:
1241.4 mT. Dressed (π/2)/π pulse lengths 21/42 ns, with an amplitude of 0.34 rad. Total spin-lock
length 25 µs. Modulation frequency of 108 MHz. τ0 =1 µs, τ1 varied from 22 ns to 8997 ns in steps
of 25 ns (360 points in total). Phase cycle and phase-phase cycle as introduced above. Shot repetition
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time 30 ms. 5 shot per point. 63 average. All other parameters as for the T1ρ measurement.
Background correction with a stretched exponential and a Fourier transform gives the spectrum.
Raw data and processing scripts:
Matlab processing and simulation: dressed_echo_modulation_4p1nm.m
raw file: 20190820_1736_spin_locked_phase_echo_mod.mat

Fig. 5 (a)
Q-Band chirp echo Fourier transform EPR spectrum of bis-trityl 2. 100 µM in dOTP. 6 µl of the
solution in a 1.6 mm outer diameter tube. Temperature: 50 K. Pulse sequence: 200/100ns two-pulse
chirp echo. Linear chirp pulses with total sweep width of 300 MHz, centered at the center of the
resonator (34.8 GHz) and 20 ns rise time were used. The FM function was adjusted to compensate
the resonator profile. Interpulse delay 950 ns (start-to-start of pulses). A symmetric 3.6 µs Chebyshev
window with 100 dB relative sidelobe attenuation was applied to the digitally down-converted echo.
A Fourier transform then yielded the spectrum. Magnetic field: 1241.4 mT (calibrated with DPPH).
Shot repetition time 10 ms. 100 shots. 1 average. [(+)0, (−)180] phase cycle for the first pulse.
Raw data and processing scripts: Matlab processing and simulation: spectrum_5p3.m
raw file: 20191101_1155_chirp_echo_dummy.mat

Fig. 5 (b)
Relaxation measurements for bis-trityl 2. 100 µM in dOTP. 6 µl of the solution in a 1.6 mm outer
diameter tube. Temperature: 50 K. Magnetic field: 1241.4 mT.
Tm measurement: Two-pulse echo (π/2− τ − π − τ− echo) with 100/200 ns pulses. [(+)0, (−)180]
phase cycle for the first pulse. Inter-pulse delay varied from 200 ns to 8376 ns in steps of 16 ns (512
points in total). Shot repetition time 30 ms. 10 shots per point. 1 average.
T1ρ measurement: π/2 − lock − τ − π − τ−echo. (π/2)/π =4/8 ns. τ=200 ns. Spin-lock Rabi
frequency around 100 MHz. [(+)0, (−)180] phase cycle for the π/2 pulse, [(+)0, (+)180] phase cycle
for the π pulse. Fixed phase for the spin-lock, but always orthogonal to the first pulse. Spin-lock
length varied from 0 ns to 100 ns in steps of 0.5 ns, and from 200 ns to 40 µs in steps of 100 ns (600
points in total). Shot repetition time 30 ms. 5 shots per point. 1 average.
Raw data and processing scripts:
Matlab processing and simulation: relaxation_5p3nm.m
raw file Tm measurement: 20191101_1336_2pecho_ESEEM.mat
raw file T1ρ measurement: 20191101_1058_spin_locked_echo_t1rho.mat

Fig. 5 (c) and (d)
Dressed echo decay/modulation for bis-trityl 2. See previous sections for detailed definitions. 100 µM
in dOTP. 6 µl of the solution in a 1.6 mm outer diameter tube. Temperature: 50 K. Magnetic field:
1241.4 mT. Dressed (π/2)/π pulse lengths 22/44 ns, with an amplitude of 0.3 rad. Total spin-lock
length 35 µs. Modulation frequency of 108 MHz. τ0 =1 µs, τ1 varied from 22 ns to 14390 ns in steps
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of 32 ns (450 points in total). Phase cycle and phase-phase cycle as introduced above. Shot repetition
time 30 ms. 5 shot per point. 56 average. All other parameters as for the T1ρ measurement.
Background correction with a stretched exponential and a Fourier transform gives the spectrum.
Raw data and processing scripts:
Matlab processing and simulation: dressed_echo_modulation_5p3nm.m
raw file: 20190821_1636_spin_locked_phase_echo_mod.mat

Fig. 6 (a) to (d): Simulations
The simulation scripts are named runsim_*.m. Where the asterisk describes the distance, offset dis-
tributions and Rabi frequencies. The actual simulation is done by the function spinlock.m . The
corresponding plotting scripts are named plot_*.m. (But you have to run the simulations first such
that the results are saved).
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