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Abstract. The evolution of nuclear spin magnetization during a radiofrequency pulse in the absence of relax-
ation or coupling interactions can be described by three Euler angles. The Euler angles, in turn, can be obtained
from the solution of a Riccati differential equation; however, analytic solutions exist only for rectangular and
hyperbolic-secant pulses. The homotopy analysis method is used to obtain new approximate solutions to the
Riccati equation for shaped radiofrequency pulses in nuclear magnetic resonance (NMR) spectroscopy. The re-
sults of even relatively low orders of approximation are highly accurate and can be calculated very efficiently.
The results are extended in a second application of the homotopy analysis method to represent relaxation as
a perturbation of the magnetization trajectory calculated in the absence of relaxation. The homotopy analysis
method is powerful and flexible and is likely to have other applications in magnetic resonance.

1 Introduction

Numerous aspects of nuclear magnetic resonance (NMR)
spectroscopy are formulated in terms of differential equa-
tions, few of which have closed-form analytical solutions.
In an era characterized by ever-increasing computational ca-
pabilities, numerical solutions to such differential equations
are always possible and are frequently the preferred approach
for applications such as data analysis. However, approximate
solutions can provide useful formulas and insights that are
difficult to discern from purely numerical results.

As one example, the net evolution of the magnetization
of an isolated spin during a radiofrequency pulse, i.e. in the
absence of relaxation and scalar or other coupling interac-
tions, can be described by three rotations with Euler an-
gles α(τp), β(τp), and γ (τp), in which τp is the pulse length
(Zhou et al., 1994; Siminovitch, 1997a, b). Shaped pulses,
in which the amplitude (Rabi frequency), phase, or radiofre-
quency are time dependent, are widely applied in modern
NMR spectroscopy and other magnetic resonance techniques
(Geen and Freeman, 1991; Emsley and Bodenhausen, 1992;
Kupc̆e et al., 1995; Cavanagh et al., 2007). The Euler angles
for an arbitrary shaped pulse can be extracted from a numer-

ical calculation in which the shaped pulse is represented by
a series of K short rectangular pulses with appropriate am-
plitudes and phases. Thus, the propagator for a shaped pulse
expressed in the Cartesian basis is given by the following
(Siminovitch, 1995):

U= e−iγ (τp)Ize−iβ(τp)Ix e−iα(τp)Iz

=

[
e−iχ

+(τp) cos(β(τp)
2 ) −ieiχ

−(τp) sin(β(τp)
2 )

−ie−iχ
−(τp) sin(β(τp)

2 ) eiχ
+(τp) cos(β(τp)

2 )

]

=

K∏
k=1

Uk, (1)

in which χ±(τp) is given as follows:

χ±(τp)= [α(τp)± γ (τp)]/2, (2)

Ik are the Cartesian spin operators, and the product is time-
ordered from right to left. The propagator for the kth rectan-
gular pulse segment is given as follows:

Uk =
[

κ∗(τp) −iη∗(τp)
−iη(τp) κ(τp)

]
, (3)
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in which κ(τp) and η(τp) are given by the following:

κ(τp)= cos(ωek1tk/2)+ i cosθk sin(ωek1tk/2)

η(τp)= eiφk sinθk sin(ωek1tk/2). (4)

In Eq. (4), ω1k , φk , and 1tk are the radiofrequency field
strength, phase angle, and duration of the kth pulse segment;
�k is the resonance offset in the rotating frame of refer-
ence during the kth pulse segment (and is constant if the off-
set is fixed); ωek = (ω2

1k +�
2
k)

1/2 is the effective field; and
θk = tan−1(ω1k/�k) is the tilt angle. Values of α(τp), β(τp),
and γ (τp) are then obtained from the matrix elements of U.

Alternatively, the Euler angles can be determined from the
solution of the following Riccati equation (Zhou et al., 1994):

df (t)
dt
=

1
2
ω+(t)f 2(t)+ i�(t)f (t)+

1
2
ω−(t), (5)

in which the following applies:

f (t)= tan
(
β(t)

2

)
eiγ (t), (6)

where ω±(t)= ωx(t)± iωy(t) and ωx(t) and ωy(t) are the
Cartesian amplitude components of the radiofrequency field
in the rotating frame of reference. After solution of the Ric-
cati equation, β(τp) and γ (τp) are obtained from the mag-
nitude and argument of f (τp), and the value of α(τp) is ob-
tained by integration as follows:

α(τp)=

τp∫
0

dt{ωx(t) sin[γ (t)] −ωy(t)cos[γ (t)]}/sin[β(t)]. (7)

The Riccati equation can be transformed into a second-order
differential equation as follows:

d2y(t)
dt2

−

[
dln

[
ω−(t)

]
dt

+ i�(t)

]
dy(t)

dt
+

1
4
|ω(t)|2y(t)= 0, (8)

by using the following definition:

d ln
[
y(t)

]
dt

=−
1
2
ω−(t)f (t). (9)

A more compact form is obtained by defining the following:

ω̂−(t)= exp

i t∫
0

�(t ′)dt ′

ω−(t), (10)

to yield the following:

d2y(t)
dt2
−

dln
[
ω̂−(t)

]
dt

dy(t)
dt
+

1
4
|ω̂(t)|2y(t)= 0. (11)

The Riccati differential equation only can be solved ana-
lytically for a single rectangular or hyperbolic-secant pulse

(Silver et al., 1985; Zhou et al., 1994; Rourke, 2002). Ap-
proximate solutions for arbitrary shaped pulses have been de-
rived by the perturbation theory for the limits of small, using
Eq. (11), and large, using Eq. (5), resonance offsets (Li et al.,
2014); however, perturbation theory is unwieldy to apply to
a high order and, obviously, depends on the perturbation pa-
rameters being small in some respects.

The homotopy analysis method (HAM) is a fairly recent
development, first reported in 1992 (Liao, 1992), for ap-
proximating solutions to differential equations, particularly
nonlinear ones. HAM does not depend on small parame-
ters, unlike perturbation theory, and has proven powerful in a
number of applications outside of NMR spectroscopy (Liao,
2012). The present paper illustrates HAM by application to
the solutions of Eqs. (5) and (11) and, subsequently, by ex-
tension to the Bloch equations, including relaxation.

2 Theory

In topology, a pair of functions defining different topologi-
cal spaces are said to be homotopic if the shape defined by
one function can be continuously transformed (deformed in
the lexicon of topology) into the shape defined by the other.
Analogously, the essence of HAM is to map a function of in-
terest, here y(t), to a second function, 8(t;q), which has a
known solution and is a function of both t and an embedding
parameter q ∈ [0,1].

This relationship is established by constructing the homo-
topy as follows (Liao, 2012):

H
[
8(t;q) : q

]
= (1− q)L

[
8(t;q)− y0(t)

]
− qc0H (t)N

[
8(t;q)

]
, (12)

in which L[ ] is a linear (differential) operator, and N [ ] is
an (nonlinear differential) operator satisfying the following:

L [0]= 0 (13)
N
[
y(t)

]
= 0, (14)

where y0(t) is an initial approximation for the desired so-
lution y(t), c0 6= 0 is a convergence control parameter, and
H (t) 6= 0 is an auxiliary function (vide infra). When q = 0,
the homotopy becomes as follows:

H [8(t;0) : 0]= L
[
8(t;0)− y0(t)

]
. (15)

Therefore, when H [8(t;0) : 0]= 0, Eq. (13) requires
8(t,0)= y0(t). Similarly, when q = 1, the homotopy be-
comes as follows:

H [8(t;1) : 1]=−c0H (t)N [8(t;1)] . (16)

Therefore, when H [8(t;1) : 1]= 0, Eq. (14) requires
8(t,1)= y(t). Stated more succinctly, as q increases from
0→ 1, 8(t;q) deforms from the initial approximation y0(t)
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to the exact solution y(t). To proceed, the Maclaurin series
for 8(t;q) is assumed to exist as follows:

8(t;q)=
∞∑
n=0

yn(t)qn, (17)

in which yn(t) is given by the following:

yn(t)=
1
n!

dn8(t;q)
dqn

∣∣∣∣
q=0

. (18)

Conditions concerning convergence of the series are dis-
cussed by Liao (2012). Equation (17) has the desired prop-
erty 8(t;0)= y0(t) and yields the following:

8(t;1)= y(t)=
∞∑
n=0

yn(t). (19)

HAM then consists of successively determining yn(t), begin-
ning with the initial approximation y0(t), until y(t) is approx-
imated to the desired accuracy. The choices of L[ ], y0(t), c0,
and H (t) provide considerable flexibility in finding approxi-
mate solutions to differential equations. For simplicity in the
following, the auxiliary function is H (t)= 1.

The iterative algorithm in HAM is illustrated by applica-
tion to the second-order differential form of the Riccati equa-
tion. In the first example, the nonlinear operator is obtained
from Eq. (11) as follows:

N
[
g(t)

]
=

d2g(t)
dt2
−

dln
[
ω̂−(t)

]
dt

dg(t)
dt
+

1
4
|ω̂(t)|2, (20)

in which g(t) is an arbitrary function. The linear operator is
chosen to be the following:

L
[
g(t)

]
=

d2g(t)
dt2
−

dln
[
ω̂−(t)

]
dt

dg(t)
dt

, (21)

and the initial approximation is y0(t)= 1.
From the relationships of Eqs. (13) and (14) embedded in

the initial homotopy, Eq. (12), the zeroth-order deformation
equation is defined as follows (Liao, 2012):

(1− q)L
[
8(t;q)− y0(t)

]
= qc0N

[
8(t;q)

]
. (22)

The derivative of Eq. (22), with respect to q, yields the
first-order deformation equation as follows:

−L
[
8(t;q)− y0(t)

]
+ (1− q)L

[
d8(t;q)

dq

]
= c0N

[
8(t;q)

]
+ qc0

d
dq

N
[
8(t;q)

]
. (23)

The limit q→ 0 gives the following:

−L
[
8(t;0)− y0(t)

]
+L

[
d8(t;q)

dq

∣∣∣
q=0

]
= c0N [8(t;0)]

L
[
y1(t)

]
= c0N

[
y0(t)

]
, (24)

in which the second line is obtained using 8(t;0)= y0(t)
and Eq. (18). Substituting for N [ ], L[ ], and y0(t) yields

the following:

d2y1(t)
dt2

−
dln

[
ω̂−(t)

]
dt

dy1(t)
dt

= c0

(
d2y0(t)

dt2
−

dln
[
ω̂−(t)

]
dt

dy0(t)
dt
+

1
4
|ω̂(t)|2y0(t)

)

=
c0

4
|ω̂(t)|2, (25)

in which the final line is obtained using dy0(t)/dt = 0. This
differential equation does not contain a term proportional to
y1(t). Hence, the homogenous equation (setting the right-
hand side to 0) can be solved by two successive integrations,
and the inhomogeneous solution is obtained by the technique
of variation of parameters (Arfken et al., 2013). The solution
is as follows:

y1(t)=
c0

4

t∫
0

ω̂−(t ′)

t ′∫
0

ω̂+(t ′′)dt ′′dt ′. (26)

The higher-order approximations yn(t) are obtained in a
similar fashion. The nth derivative, with respect to q of
Eq. (22), yields the following (for n > 1):

− nL
[

dn−18(t;q)
dqn−1

]
+ (1− q)L

[
dn8(t;q)

dqn

]
= nc0

dn−1

dqn−1N
[
8(t;q)

]
+ qc0

dn

dqn
N
[
8(t;q)

]
. (27)

Executing the derivatives, taking the limit q→ 0, and divid-
ing both sides of the equation by n! gives the following:

d2yn(t)
dt2

−
dln

[
ω̂−(t)

]
dt

dyn(t)
dt

= (c0+ 1)
{d2yn−1(t)

dt2
−

dln
[
ω̂−(t)

]
dt

dyn−1(t)
dt

}
+

1
4
c0|ω̂(t)|2yn−1(t), (28)

with the solution obtained by the same approach as for
Eq. (26), as follows:

yn(t)= (c0+1)yn−1(t)

+
c0

4

t∫
0

ω̂−(t ′)

t ′∫
0

ω̂+(t ′′)yn−1(t ′′)dt ′′dt ′. (29)

Successive use of Eqs. (26) and (29) allows y(t) and, hence,
f (t) to be determined to arbitrary accuracy, as follows:

f (t)=
(
−2
ω−(t)

)
dln

[
y(t)

]
dt

=

(
−2
ω−(t)

)∑N
m=0

dym(t)
dt∑N

n=0yn(t)
, (30)

in which N is the order of approximation. For complete-
ness, the derivatives of Eqs. (26) and (29) are, respectively,
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as follows:

dy1(t)
dt
=
c0

4
ω̂−(t)

t∫
0

ω̂+(t ′)dt ′ (31)

dyn(t)
dt
= (c0 + 1)

dyn−1(t)
dt

+
c0

4
ω̂−(t)

t∫
0

ω̂+(t ′)yn−1(t ′)dt ′. (32)

Results obtained using y0(t)= 1, together with Eqs. (26),
(29), and (30), will be called method 1 in the following dis-
cussion. The iterated form of the above expressions for yn(t)
have similarities to the Fourier integrals obtained from aver-
age Hamiltonian theory by Warren (1984).

The above choices of L[ ] and y0(t) are not unique. Dif-
ferent choices lead to different series approximations and,
hence, to different qualitative and quantitative results. As a
second example, �(t)=� is assumed to be fixed and only
amplitude-modulated pulses ω(t) with x phase are consid-
ered (these assumptions can be relaxed as needed). Returning
to Eq. (8), the homotopy is defined as follows:

N
[
g(t)

]
=

d2g(t)
dt2
−

[
dln[ω(t)]

dt
+ i�

]
dg(t)

dt

+
1
4
ω2(t)g(t) (33)

L
[
g(t)

]
=

d2g(t)
dt2
−

dln[ω(t)]
dt

dg(t)
dt
+

1
4
ω2(t)g(t) (34)

y0(t)= cos
[

1
2
δ(t)

]
, (35)

δ(t)=

t∫
0

ω(t ′)dt ′. (36)

This choice of y0(t) satisfies the following:

d2y0(t)
dt2

−
dln[ω(t)]

dt
dy0(t)

dt
+

1
4
ω2(t)y0(t)= 0, (37)

and is the exact on-resonance solution for y(t). Con-
sequently, the first-order deformation equation leads to
the following:

d2y1(t)
dt2

−
dln[ω(t)]

dt
dy1(t)

dt
+

1
4
ω2(t)y1(t)

=−ic0�
dy0(t)

dt
. (38)

The solutions to the homogeneous equation (setting the right-
hand side to 0) are y±(t)= e±iδ(t)/2. The method of variation
of parameters then gives the inhomogeneous solution as fol-
lows:

y1(t)=−ic0�

t∫
0

sin
[
δ(t)

2
−
δ(t ′)

2

]
sin
[
δ(t ′)

2

]
dt ′. (39)

The nth-order deformation equation for n > 1 is as fol-
lows:

d2yn(t)
dt2

−

[
dln[ω(t)]

dt
+ i�

]
dyn(t)

dt
+

1
4
ω2(t)yn(t)

= (1+ c0){
d2yn−1(t)

dt2
−

dln[ω(t)]
dt

dyn−1(t)
dt

+
1
4
ω2(t)yn−1(t)}− ic0�

dyn−1(t)
dt

, (40)

with the following solution:

yn(t)=(1+ c0)yn−1(t)

−ic0�

t∫
0

2
ω(t ′)

sin
[
δ(t)

2
−
δ(t ′)

2

]
dyn−1(t ′)

dt ′
dt ′. (41)

Each yn(t) is proportional to �n, and these results yield the
following power series in � for y(t):

y(t)= y0(t)+
N∑
n=1

(2+ c0)yn(t), (42)

which is substituted into Eq. (30) to obtain f (t). Results us-
ing Eqs. (39), (41), and (42) will be called method 2 in the
following discussion. For completeness, the derivatives of
Eqs. (39) and (41) are as follows:

dy1(t)
dt
=−ic0�

ω(t)
2

t∫
0

cos
[
δ(t)

2
−
δ(t ′)

2

]
sin
[
δ(t ′)

2

]
dt ′ (43)

dyn(t)
dt
= (1+c0)

dyn−1(t)
dt

− ic0�
ω(t)

2

t∫
0

2
ω(t ′)

× cos
[
δ(t)

2
−
δ(t ′)

2

]
dyn−1(t ′)

dt ′
dt ′. (44)

2.1 Methods

Numerical integration was performed using the trapezoid
method implemented in Python 3.6. Pulse shapes were dis-
cretized in 1000 increments. Rectangular pulses were simu-
lated using ω1/(2π )= 25000 Hz and an on-resonance 90◦

pulse length of 10.0 µs or ω1/(2π )= 250 Hz and an on-
resonance 90◦ pulse length of 1 ms. EBURP-2 (Geen and
Freeman, 1991) and Q5 (Emsley and Bodenhausen, 1992)
pulses were simulated using a maximum ω1/(2π )= 9000 Hz
and 90◦ pulse lengths of 455.2 and 504.9 µs, respectively.
REBURP (Geen and Freeman, 1991) pulses were simu-
lated using a maximum ω1/(2π )= 10000 Hz and a 180◦

pulse length of 626.5 µs. WURST-20 (Kupc̆e and Freeman,
1995) pulses were simulated using a maximum ω1/(2π )=
9512 Hz, a frequency sweep of 50 000 Hz, and a pulse length
of 440.0 µs.
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Equation (7) can be recast as follows:

α(τp)=
i

4

τp∫
0

dt
{
ω+(t)f ∗(t)−ω−(t)f (t)

}
×{1+ |f (t)|2}/|f (t)|2, (45)

for numerical calculations. Alternatively, α(τp) can be ob-
tained from the argument of f (τp) calculated for the time-
reversed pulse (Li et al., 2014). The latter is more compu-
tationally demanding, but more numerically stable, and was
used for the results presented herein.

2.2 Results and discussion

In the present applications, HAM converts the second-order
Riccati differential equation, Eq. (8), which cannot be solved
directly, into a series of second-order differential equations
that have convenient solutions. The choice of y0(t)= 1 in
method 1 leads to obtaining simple iterative solutions that
can be calculated very efficiently. The form of y0(t) given in
Eq. (36) could also be used in Eq. (24) to obtain an alternative
expression for y1(t) to be substituted into Eqs. (29) and (30).
The resulting first-order expressions for y(t) are usually more
accurate than the first-order results obtained using y0(t)= 1,
but this advantage becomes less pronounced at higher orders
of approximation and comes at increased computational cost.
Thus, Eqs. (26), (29), and (30) are most suitable in practice.

A first example of the results of the above analysis is
given for a rectangular 90◦ pulse in Fig. 1. The integrals in
Eqs. (26) and (29) can be performed analytically for a rectan-
gular pulse with amplitude ω1. For example, using Eq. (26)
yields the following:

y1(t)=
c0ω

2
1

4�2

(
1− ei�t

)
+ i

c0ω
2
1t

4�
; (46)

however, analytic calculations of higher order yn(t) do not
have advantages over numerical integration. As shown in
Fig. 1a, b, the second- and third-order results obtained with
method 1 and c0 =−1 are nearly indistinguishable from the
exact result of Eq. (3) (using τp =1τk) over the range of
resonance offsets from 0 to �/ω1 = 151/2. The first-order
result provides a highly accurate estimate of γ (τp) but over-
estimates β(τp). The role of the convergence control parame-
ter c0 is illustrated in Fig. 1c, d. A value of c0 =−0.925 was
chosen, using Eqs. (46) and (30), to scale the first-order result
for β(τp) to be equal to π/2 at �= 0. As shown, the result-
ing first-order result, using method 1, is now nearly exact at
all resonance offsets. In the present application, adjusting the
convergence control parameter provides accuracy equivalent
to 1 or 2 additional higher orders of approximation. Remark-
ably, this same value of c0 works well for a rectangular 180◦

pulse (not shown) and 90◦ EBURP-2, 90◦ Q5, and 180◦ RE-
BURP and WURST inversion pulses (vide infra).

In contrast to the results of method 1, the power series
for y(t) obtained, using method 2 with c0 =−1, even to the
third order in �, is accurate for β(τp) only to slightly more
than �/ω1 = 1. When c0 =−0.925, the third-order power
series has improved accuracy for resonance offsets up to
nearly �/ω1 = 2. However, further increases in accuracy at
larger resonance offsets require very large orders of approx-
imation N in Eq. (42). For example, extending the accuracy
of the power series for β(τp) to offsets �/ω1 = 3.5 requires
N = 50. The differences between the results of method 1 and
method 2 reflect the inevitable shortcomings of power series
and perturbation approaches when the expansion parameter
is not small.

A more challenging example is given by the 90◦ EBURP-
2 pulse (Geen and Freeman, 1991). In principle, the integrals
in Eqs. (26) and (29) can be performed analytically because
the pulse shape is expressed as a Fourier series (as are other
pulses in the BURP (Geen and Freeman, 1991) and SNOB
(Kupc̆e et al., 1995) families). In practice, the number of
terms that must be calculated becomes very large, and nu-
merical integration is much more efficient. Calculations us-
ing method 1 are shown in Fig. 2. With c0 =−1, the fifth-
order approximation is extremely accurate compared with
numerical calculations using Eqs. (1)–(3) (Fig. 2a–c). With
c0 =−0.925 (Fig. 2d–f), even the small deviations observed
for the fifth-order HAM approximation are eliminated, and
the third-order result is accurate, except at the edge of the
excitation band. In contrast, perturbation theory or power-
series expansions (method 2) are extremely poor at repro-
ducing β(τp), essentially failing as soon as� is non-zero (not
shown). The accuracy of the method 1 approximations over
the full range of resonance offsets shows that HAM, with an
appropriate choice of linear operator and starting functions,
can provide approximate solutions valid far beyond the range
of perturbation theory.

The Gaussian Q5 90◦ pulse (Emsley and Bodenhausen,
1992) has a more complicated amplitude modulation pro-
file than the EBURP-2 pulse and requires higher orders of
approximation to obtain accurate results. Results obtained
for method 1 with fifth- and seventh-order approximations
are shown in Fig. 3. The seventh-order results are highly
accurate for both c0 =−1 and c0 =−0.925. The choice of
c0 =−0.925 has a remarkable effect in terms of increasing
the accuracy the fifth-order approximation to nearly that of
the seventh-order result.

The application of HAM is not limited to 90◦ pulses or
to amplitude-modulated pulses. Figure 4 shows the perfor-
mance of method 1 for the 180◦ REBURP (Geen and Free-
man, 1991) and WURST-20 inversion (Kupc̆e and Freeman,
1995) pulses. As for the EBURP-2 pulse, the fifth-order ap-
proximation for the REBURP pulse is highly accurate for
both c0 =−1 and c0 =−0.925. The third-order approxima-
tion also is highly accurate when c0 =−0.925. The WURST-
20 pulse uses a linear frequency shift, generated by apply-
ing a quadratic phase shift during the pulse, and is an exam-
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180 T. Crawley and A. G. Palmer III: HAM for shaped pulses

Figure 1. HAM approximations for on-resonance 90◦ rectangular pulse with ω1/(2π )= 25000 Hz. Exact calculation of Euler angles β(τp)
and γ (τp) (black line). For a rectangular pulse, α(τp)= γ (τp). First-order (blue dotted line), second-order (reddish-purple dashed line), and
third-order (orange dash–dot–dotted line) HAM results using method 1. The third-order result is found using the power series of method 2
(green dash-dotted line). Results are shown for (a, b) c0 =−1 and (c, d) c0 =−0.925. The exact, second-order HAM and third-order HAM
curves for method 1 are virtually indistinguishable.

ple of a phase-modulated or complex waveform. Again, the
more complicated waveform requires higher order approx-
imation, but 11th-order, with c0 =−1, or ninth-order, with
c0 =−0.925, results are highly accurate.

Method 2 yields a power series for y(t). If c0 =−1,
the resulting series is identical to the power series expan-
sion obtained from perturbation theory (Li et al., 2014),
while c0 =−0.925 provides additional accuracy. However,
as noted above, the power series requires very high or-
ders N to obtain accuracy comparable to results from mod-
est orders using method 1. Thus, method 1 is much more
powerful for general calculations; however, the power se-
ries leads to a convenient expression for the near-resonance
phase shift γ (τp). The first-order power series for y(t),
assuming c0 =−1, yields the following:

f (t)=

sin
[
δ(t)

2

]
+ i�

t∫
0

cos
[
δ(t)

2 −
δ(t ′)

2

]
sin
[
δ(t ′)

2

]
dt ′

cos
[
δ(t)

2

]
− i�

t∫
0

sin
[
δ(t ′)

2 −
δ(t ′)

2

]
sin
[
δ(t ′)

2

]
dt ′

≈ tan
[
δ(t)

2

]1+ i
�

sin[δ(t)]

t∫
0

sin
[
δ(t ′)

]
dt ′

 , (47)

in which the second equality is the expansion to first order in
�, and the resulting trigonometric functions have been sim-
plified. This result is identical to the previously reported re-
sult from the first-order perturbation theory (Li et al., 2014).

The argument of the first-order approximation of f (t) is a
good estimate of the phase γ (τp) of the transverse magneti-
zation following the pulse. As noted above, the phase α(t) is
obtained by repeating the calculation with the time-reversed
pulse. Therefore, as concluded from the perturbation theory,
an amplitude-modulated shaped pulse acts as an ideal rota-
tion of the angle β(τp) preceded and followed by time delays
τα and τγ over the frequency range for which the first-order
approximation holds (Lescop et al., 2010; Li et al., 2014), as
in the following:

τα =
1

sin
[
δ(τp)

] τp∫
0

sin
[
δ(τp− t

′)
]

dt ′ (48)

τγ =
1

sin
[
δ(τp)

] τp∫
0

sin
[
δ(t ′)

]
dt ′. (49)

For a 90◦ pulse, the above equations can be written com-
pactly as follows:

τα + iτγ =

τp∫
0

eiδ(t
′)dt ′. (50)

The ratios τα/τp and τγ /τp are the average projections of a
unit vector onto the z axis and−y axis, respectively, over the
duration of the pulse (for a vector is oriented along the z axis
at time 0).

The above explications have focused on solutions to the
transformed Riccati equation in Eq. (8). However, HAM also
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Figure 2. HAM approximations for 90◦ EBURP-2 pulse. Numerical calculation of Euler angles α(τp), β(τp), and γ (τp) using Eqs. (1)–
(3) (black line). First-order (blue dotted line), second-order (reddish-purple dashed line), third-order (green dash-dotted line), and fifth-order
(orange dash–dot–dotted line) HAM results, using method 1. Results are shown for (a, b, c) c0 =−1 and (d, e, f) c0 =−0.925. The numerical
calculation and fifth-order HAM curves are nearly indistinguishable.

could be applied directly to the original Riccati equation of
Eq. (5). For example, by analogy to method 2, choosing the
following:

N [g(t)] =
dg(t)

dt
−

1
2
ω(t)g2(t)− i�g(t)−

1
2
ω(t) (51)

L[g(t)] =
dg(t)

dt
− i�g(t) (52)

f0(t)= tan
[
δ(t)

2

]
, (53)

in which f0(t) is the exact solution for �= 0, yields the fol-
lowing series solution:

f (t)= tan
[
δ(t)

2

]
+

N∑
n=1

fn(t). (54)

The result obtained from the first-order deformation equation
is as follows:

df1(t)
dt
− i�f1(t)=−ic0�f0(t)

f1(t)=−ic0�e
i�t

t∫
0

e−i�t tan
[
δ(t ′)

2

]
dt ′. (55)

However, additional terms in the series lack the simple iter-
ative structure shown in Eqs. (29) and (41) because of the
increasing complexity of the higher derivatives of 82(t;q)
that must be calculated for the nth order deformation equa-
tion. For example, the differential equations for the next two
terms in the series for f (t) become the following:

df2(t)
dt
− i�f2(t)

= c0

{
df1(t)

dt
− i�f1(t)−ω(t)f0(t)f1(t)

}
. (56)
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Figure 3. HAM approximations for 90◦ Q5 pulse. Numerical calculation of Euler angles α(τp), β(τp), and γ (τp) using Eqs. (1)–(3) (black
line). Fifth-order (blue dotted line) and seventh-order (orange dash–dot–dotted line) HAM results, using method 1. Results are shown for
(a, b, c) c0 =−1 and (d, e, f) c0 =−0.925. The numerical calculation and seventh-order HAM curves are nearly indistinguishable.

df3(t)
dt
− i�f3(t)

= c0

{
df2(t)

dt
− i�f2(t)− 2ω(t)f0(t)f2(t)−ω(t)f 2

1 (t)
}
. (57)

In addition, results obtained using Eq. (30) to obtain f (t)
from y(t) generally are more accurate than results obtained
by direct calculation of f (t) at the same order of approxima-
tion. Thus, in this particular application, use of HAM with
the transformed Riccati equation, Eq. (8), yields more con-
venient expressions. Nonetheless, this example demonstrates
the particular power of HAM in directly converting the solu-
tion of a nonlinear differential equation into a series of linear
first-order differential equations, which always can be solved
by integration (Liao, 2012).

For many applications, the Euler angles for a shaped pulse
are easily obtained from Eqs. (1)–(3). However, calculations
for method 1 using Eqs. (26), (29), and (30) are extremely ef-
ficient. In Python 3.6, the seventh-order HAM approximation
for the Q5 pulse is approximately 20 times faster than direct
calculations using Eqs. (1)–(3). Thus, these approximations
may be particularly useful for the computational design of ra-

diofrequency pulses in which many iterations of a search or
optimization routine are necessary (Gershenzon et al., 2008;
Li et al., 2011; Nimbalkar et al., 2013; Asami et al., 2018).

The Euler angle representation is particularly convenient
because, once calculated, the Euler angles can be used to
determine the outcome of a shaped pulse applied to arbi-
trary initial magnetization. The Riccati equation can be ex-
tended to incorporate radiation damping, but not relaxation,
as discussed by Rourke (2002). However, the Euler angles
can serve to generate the initial approximations for a second
application of HAM to obtain approximate solutions to the
Bloch equations for particular initial conditions, including
relaxation. In the following,�(t)=� is assumed to be fixed,
and only amplitude-modulated pulses ω(t) with x phase are
considered (these assumptions can be relaxed as needed).
The Bloch equations for a pulse applied with x phase can
be written in the following form:

d
dt

M̂(t)=−0(t)M̂(t)+

 0
0

eR2tR1M0

 , (58)
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Figure 4. HAM approximations for (a, b) REBURP and (c, d) WURST-20 inversion pulses. Numerical calculation of Euler angle β(τp)
using Eqs. (1)–(3) (black line). (a, b) First-order (blue dotted line), second-order (reddish-purple dashed line), third-order (green dash-dotted
line), and fifth-order (orange dash–dot–dotted line) HAM results, using method 1. (c, d) Fifth-order (blue dotted line), seventh-order (reddish-
purple dashed line), ninth-order (green dash-dotted line), and 11th-order (orange dash–dot–dotted line) HAM results, using method 1. Results
are shown for (a, c) c0 =−1 and (b, d) c0 =−0.925. The numerical calculation and (a, b) fifth-order and (c, d) 11th-order HAM curves are
nearly indistinguishable.

M̂(t)=

M̂x(t)
M̂y(t)
M̂z(t)

 , (59)

0(t)=

 0 � 0
−� 0 ωx(t)

0 −ωx(t) −(R2−R1)

 , (60)

in which Mk(t)= e−R2tM̂k(t) are the Cartesian components
of the magnetization, and M0 is the equilibrium magneti-
zation. The use of transformed variables M̂(t) rather than
M(t) simplifies the following discussion. The linear op-
erator is chosen as L[g(t)] = dg(t)/dt , in which g(t)=
[gx(t),gy(t),gz(t)]T is an arbitrary vector function. The non-
linear operator is as follows:

N [g(t)] =
dg(t)

dt
+0(t)g(t)−

 0
0

eR2tR1M0

 . (61)

The initial zeroth-order approximations for HAM are
M̂0(t)=M0(t) and are given by the solutions to the Bloch
equations in the absence of exchange for initial equilibrium

magnetization [0,0,M0]
T . The initial approximations are

calculated by using the Euler angles determined from method
1 described above. Thus, in the following:

d
dt

M̂0(t)+0(t)M̂0 = 0, (62)

and the system of first-order deformation equations yield the
following:

d
dt

M̂1(t)=−c0

 0
0

(R2−R1)M̂z0(t)+ eR2tR1M0

 . (63)

The solution to this equation yields M̂x1(t)= M̂y1(t)= 0,
and M̂z1(t) is given by the following:

M̂z1(t)

=−c0

(R2−R1)

t∫
0

M̂z0(t ′)dt ′+
R1

R2
(eR2t − 1)M0


=−c0

[
(R2−R1)t < M̂z0(t)>+

R1

R2
(eR2t − 1)M0

]
. (64)

https://doi.org/10.5194/mr-2-175-2021 Magn. Reson., 2, 175–186, 2021



184 T. Crawley and A. G. Palmer III: HAM for shaped pulses

The first-order approximation of magnetization during the
pulse is given by the following:

M(t)= e−R2t

 Mx0(t)
My0(t)

Mz0(t)+ M̂z1(t)

 . (65)

At this level of approximation, relaxation of transverse mag-
netization depends simply on R2, while relaxation of Mz(t)
depends on the average zmagnetization during the pulse (cal-
culated in the absence of relaxation). For macromolecules,
R2� R1 typically, and the term proportional to R1/R2 is
small.

The nth-order deformation equation leads to the following
expression for n > 1:

M̂n(t)= (1+ c0)M̂ (n−1)(t)− c0

t∫
0

0(t ′)M̂ (n−1)(t ′)dt ′. (66)

If c0 =−1, the above recursive expressions can be written
compactly as follows:

M̂n(t)= (−1)n−1

t∫
0

0(tn−1)dtn−1

tn−1∫
0

0(tn−2)dtn−2. . .

×

t2∫
0

0(t1)M̂1(t1)dt1. (67)

For a rectangular pulse applied to equilibrium magnetiza-
tion (with magnitude set to unity for convenience), the initial
approximations are as follows:

M0(t)=

[1− cos(ωet)]cosθ sinθ
−sin(ωet) sinθ

cos(ωet)sin2θ + cos2θ

 , (68)

M̂z1(t)=−c0(R2−R1)
[

1
ωe

sin(ωet)sin2θ + tcos2θ

]
− c0

R1

R2
(eR2t − 1). (69)

In this case, 0(t)= 0 and the series of approximations given
in Eq. (67) can be summed to give the following:

M(t)= e−R2t

{
M0(t)+

t∫
0

e0(t−t ′)

×

[ 0
0

(R2−R1)Mz0(t ′)+ eR2t
′

R1M0

]
dt ′
}
, (70)

and this yields identical results as a direct integration of the
Bloch equations. Equations (65), (67), and (70) explicitly

show the effect of relaxation as a perturbation of the evo-
lution of magnetization in the absence of relaxation.

Figure 5 shows the magnetization components for rectan-
gular 90◦, 180◦, 270◦, and 360◦ nominal on-resonance pulses
in the absence and presence of relaxation. Calculations were
performed in the absence of relaxation using Eq. (68) and
in the presence of relaxation using the HAM approxima-
tions, i.e., Eqs. (69) and (70). The first-order HAM approx-
imation is surprisingly accurate for moderate values of R2,
except for cases in which < M̂z0(t)>= 0, such as the on-
resonance 360◦ pulse. The above expressions display the fun-
damental dependence of relaxation during a pulse applied to
equilibrium magnetization on the time-average z magnetiza-
tion.

3 Conclusion

Fast, accurate methods for solving differential equations have
widespread application in NMR spectroscopy. The present
work has illustrated the homotopy analysis method (Liao,
2012) for approximating solutions for differential equations
by application to the Riccati differential equation for the Eu-
ler angle representation of radiofrequency pulse shapes and
to solutions of the Bloch equations incorporating relaxation.
The freedom to select the linear operator, lowest-order ap-
proximate solution, convergence control parameter, and aux-
iliary function is powerful in obtaining series solutions that
are highly accurate for low orders of approximation and ef-
ficient to calculate or that provide qualitatively convenient
series allowing physical insight. It can be expected that ho-
motopy analysis method will find other applications in NMR
spectroscopy.
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Figure 5. HAM approximations for rectangular (a, b, c) 90◦, (d, e, f) 180◦, (g, h, i) 270◦, and (j, k, l) 360◦ pulses applied to initial
z magnetization. Values of (a, d, g, j) Mx (�), (b, e, h, k) My (�), and (c, f, i, l) Mz(�) are shown as functions of resonance offset �.
Magnetization components in the absence of exchange, using Eq. (68) (black dotted line), first-order HAM approximation of the Bloch
equations using Eq. (69) (reddish-purple dashed line), and exact HAM solution of the Bloch equations using Eq. (70) (blue solid line).
Calculations used ω1/(2π )= 250 Hz, R1 = 2 s−1, R2 = 100 s−1, and c0 =−1.
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