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Abstract. The ability to make robust inferences about the dynamics of biological macromolecules using NMR
spectroscopy depends heavily on the application of appropriate theoretical models for nuclear spin relaxation.
Data analysis for NMR laboratory-frame relaxation experiments typically involves selecting one of several
model-free spectral density functions using a bias-corrected fitness test. Here, advances in statistical model se-
lection theory, termed bootstrap aggregation or bagging, are applied to >N spin relaxation data, developing a
multimodel inference solution to the model-free selection problem. The approach is illustrated using data sets
recorded at four static magnetic fields for the bZip domain of the S. cerevisiae transcription factor GCN4.

1 Introduction

Since the original publications in the early 1980s, the model-
free formalism of Lipari and Szabo (1982a, b) and the re-
lated two-step approach of Halle and Wennerstrom (1981)
have served as starting points for extracting dynamical in-
formation about macromolecules from NMR spin relaxation
data. The original approaches represented intramolecular dy-
namics using a single generalized order parameter and ef-
fective correlation time. In the ensuing decades, increas-
ingly complex models have offered a more refined under-
standing of internal and overall molecular motions. Extended
model-free formalisms characterize intramolecular dynamics
using generalized order parameters and effective correlation
times for more than one timescale (usually two) (Clore et al.,
1990; Gill et al., 2016). Related approaches employ discrete
or continuous distributions to more fully capture the range
of intramolecular correlation times (Lemaster, 1995; Calan-
drini et al., 2010; Khan et al., 2015; Hsu et al., 2018, 2020;
Smith et al., 2019). Other strategies employ physical mod-
els or atomistic molecular dynamics simulations for over-
all rotational diffusion and internal conformational fluctua-
tions, to more directly link the NMR phenomena to under-
lying physical processes (Tugarinov et al., 2001; Zerbetto
et al., 2013; Ollila et al., 2018; Polimeno et al., 2019a, b;

Mendelman et al., 2020; Mendelman and Meirovitch, 2021).
The availability of extended model-free formalisms, or other
approaches with variable numbers of parameters, has created
a further dilemma: should a data analysis protocol extract the
most exacting information justified by the data or employ the
model most robust to experimental variation?

Several authors have addressed model selection by em-
ploying the principle of parsimony or Occam’s razor (Palmer
et al., 1991; Stone et al., 1992; Mandel et al., 1995;
d’ Auvergne and Gooley, 2003; Chen et al., 2004). These ap-
proaches seek to identify the simplest model that explains
the data within experimental uncertainties by applying var-
ious bias-correcting penalties to the fitness statistic, e.g., F
statistic, Akaike information criterion (AIC), or Bayesian in-
formation criterion (BIC). These corrections alone often fall
short of producing robust inferences and may yield parameter
values susceptible to instability in both simulated and real-
world replicates. In these situations, the model selection pro-
cess has failed the principle of “worrying selectively”. This
criterion suggests, “Since all models are wrong, the scientist
must be alert to what is importantly wrong.” (Box, 1976).

To illustrate the issue more concretely, a typical data anal-
ysis protocol uses a nonlinear weighted least-squares algo-
rithm to fit experimental spin relaxation data with a set of
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model-free spectral density functions (Mandel et al., 1995;
Gill et al., 2016). The resulting x 2 residual sum-of-squares
variables are penalized for the number of adjustable param-
eters in each model function, the model with the lowest pe-
nalized residual sum-of-squares is selected as optimal, and
the best-fit parameters of the model are reported. However,
this procedure is subject to model selection error: random
statistical variation in the experimental data may lead to one
model chosen as optimal for a given data set, but another
model, with different set of parameters, may be selected if
the experimental data were replicated, with consequent dif-
ferent random variation. The problem of joint model selec-
tion and parameter estimation has been explored elegantly
by d’Auvergne and Gooley (2007, 2008a, b) and by Abergel
etal. (2014).

The present paper addresses model selection error by us-
ing the approach of bootstrap aggregation or bagging. This
concept originated from a desire to improve the performance
of machine learning algorithms. Thus, Breiman showed that
predictor accuracy and stability improved when averaging
predictor values obtained from bootstrap replicates of the
original training set (Breiman, 1996). Buja and Stuetzle sub-
sequently extended the use of bagging to generalized sta-
tistical analysis and showed sampling with and without re-
placement yield equivalent improvements (Buja and Stuet-
zle, 2006). The approach and notation of Efron are used in
the following (Efron, 2014).

Bootstrap aggregation improves parameter stability; con-
sequently, the resulting variations in model-free parameter
values, for example between atomic sites or functional states
in a given macromolecule, are more likely to be biologi-
cally or chemically meaningful. Although applicable to most
model selection situations, bootstrap aggregation exhibits the
most pronounced benefits when the data justify two distinct
models with similar degrees of certainty.

Bootstrap aggregation for model-free analysis of NMR
spin relaxation rate constants is illustrated by application
to backbone amide PN spin relaxation data that have been
recorded at 'H magnetic fields of 600, 700, 800, and
900 MHz for the bZip domain of the S. cerevisiae transcrip-
tion factor GCN4 by Gill and coworkers (Gill et al., 2016).

2 Theory

In the following, the notation used by Efron is rephrased
in terms appropriate for NMR spin relaxation data (Efron,
2014). Laboratory-frame nuclear spin relaxation rate con-
stants for backbone N spins can be transformed into sets
of spectral density function values, J(w), in which w is an
eigenfrequency of the spin system (Farrow et al., 1995; Gill
etal., 2016). Laboratory-frame I5N relaxation rate constants,
typically Ry, R», and the steady-state nuclear Overhauser en-
hancement (NOE), recorded at a single static magnetic field
yield estimates of J(0), J(wN), and J(0.87wgy), in which wn
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and wy are the I5N and 'H Larmor frequencies. Thus, the
number of spectral density values N = 3G, in which G is the
number of static magnetic fields utilized. In the present ap-
plication, G = 4. The set of experimental spectral densities
is described using the following notation:

S YN} ey

in which the y; = J(w;) are ordered in increasing values of
w. The values of J(0) are ordered additionally by increas-
ing values of the static magnetic field. The experimental data
sets utilized in the present work are not affected by chemical
exchange contributions to spin relaxation, but such contribu-
tions can be taken into account from the field dependence of
transverse relaxation rate constants prior to the model-free
analysis (Kroenke et al., 1998).

The extended model-free spectral density function used to
fit 1SN spin relaxation data is given by the following:

y=1{j}=1y,..

S2(1 - 8H7

2¢2
J(w)zz[ S252t,

SLA+e?2) T (1 +w?td)
(1-8)82m  (1-SH(1—-SH13
= — ] 2)
(1+w?13) (14 w?15)

1 1

=r,;1 +tf_1,r3_ =r,;] +
rs_l +1 ! and 7t < 7. The set of possible model parameters
in this function are given by the following:

i= (i} = {tm, S?, 82, 1, 7}, 3)

in which t,, is the (effective) overall rotational correlation
time, sz is the square of the generalized order parameter
for internal motions on a fast (zy < 150 ps) timescale, and SS2
is the square of the generalized order parameter for internal
motions on a slow (73 > 150 ps) timescale (vide infra). The
square of the generalized order parameter S> = sz SSZ. Over-
all rotational diffusion has been assumed to be isotropic for
simplicity; this assumption can be relaxed as needed (Lee
et al., 1997). The spectral density data are fit with a set of
nested models. The full model, Model 5, contains all five pa-
rameters, while simpler models, Models 1-4, are generated
by fixing the value of one or more parameters, effectively
removing such parameters from the model. Thus,

. ch )l — =1 -1 =
inwhicht " =7, +1, ', 1,

Model 1: p = {7, 7, 1,0,0}
Model 2: = {t, S7, 1, 7, 0}
Model 3: p = {t, 1, 52,0, 5}
Model 4: p = {Tyn, S2, 52,0, 7}
Model 5: pt = {Tyn, SZ, 52, 1, T}

The optimal model #; and associated parameter values u are
obtained as follows:

= {i}=1(y), “4)
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using the lowest penalized residual sum-of-squares as de-
scribed above. In the present work, the small-sample AICc
criterion was used for model selection (Hurvich and Tsai,
1989).

In general, a non-parametric bootstrap sample is generated
by draws with replacement from the original data y and de-
fined as follows:

Y= =0 v it ®)

in which i = 1,...B and B is the total number of bootstrap
samples. The nature of spectral density data requires care in
generating bootstrap samples, and the particular procedure
employed in the present work is described in Sect. 3.

A conventional non-parametric bootstrap determination of
the standard deviations of the parameters ji begins by de-
termining fitted parameters for the ith bootstrap sample as
follows:

i ={ag}=n0p), (6)

in which the fitting model is fixed to the optimal model se-
lected in fitting the original spectral density values, and only
model parameter values are optimized. The bootstrap esti-
mate of the standard deviation for the kth parameter is de-
rived from the following expressions:

1 B
N
Me=5 ;:l:ll“ik’ @)
| B 1/2
6p = | —— > (-t - (8)
B_lizl

In the conventional approach, the reported results of the data
analysis are {/ix} and {6;"}. Model selection error is not as-
sessed. This form of bootstrap simulation is an alternative to
Monte Carlo simulations to determine parameter uncertain-
ties, which could be regarded as parametric bootstrap simu-
lations (vide infra).

In contrast to the conventional procedure, bootstrap aggre-
gation determines both the optimal fitted model and associ-
ated model parameters for each bootstrap sample. Thus, the
optimal model #; is determined for the ith bootstrap sample
using the same model selection strategy as for the original
data as follows:

i = {5} =407). &)

Unlike the conventional bootstrap procedure, the different
members of the set jt; obtained by bootstrap aggregation rep-
resent different models as well as different sets of optimized
parameters. The aggregated, or smoothed, estimator of the
kth model parameter is given by the following:

R
k=5 )iy (10)
i=1
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To make the above formalism concrete, suppose that for
a given set of spectral density values, model selection and
parameter optimization for B bootstrap samples yields B,
samples in which Model 2 is optimal and B3 samples in
which Model 3 is optimal, with B = B, + B3. The bootstrap-
aggregated estimates of S’fz and tr are given by the following:

S%:é[ZS%*—%Zl], (1

i€By ieB3

- 1 -

Tf:E[Z ;;+Zo] (12)
ieBy ieB3

because Model 3 fixes sz =1 and 7y = 0. As another exam-
ple, suppose that for a given set of spectral density values,
model selection and parameter optimization for B bootstrap
samples yields B4 samples in which Model 4 is optimal and
Bs samples in which model 5 is optimal, with B = B4 + Bs.
The bootstrap-aggregated estimates of 5}2 and 7r are given by
the following:

_ 1 &
St=—> 8. (13)
B i=1
- 1 -
112:5[2% foﬂ (14)
i€By i€B;s

because both Models 4 and 5 fit Sf2 as a parameter, but Model
4 fixes v = 0.

A smoothed standard deviation for ji can be obtained us-
ing the plug-in principle (Efron, 2014). Here, the cumulative
distribution functions for the parameters of interest are esti-
mated using the empirical distribution function of the boot-
strap replicates. Using the above notation, the number of
times that the ith bootstrap replicate, y;, contains the spectral
density value y; is given by the following:

Y =#y5 = ;). (15)

With this definition, Y7 is a vector enumerating the represen-
tation of each original data point in the ith bootstrap replicate

as follows:
Y= (V2. Vi V). (16)

Further, the average representation of the original spectral
density value y; across the B bootstrap replicates is given by
the following:

e I &
Y= EZYU. (17)
1=

The covariance between the representation of the jth spectral
density value and the kth model-free parameter value across
B bootstrap replicates is given by the following:

B

n 1 —#) [~ .
COVjk = 5 Z (Y;]‘» - Yj) (ufk - /Lk) . (18)
i=1

i=
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Finally, the smoothed estimate of the standard deviation for
the kth model-free parameter is calculated from the following
expression:

L . 172
Ox = ﬁ;covjk . (19)

In bootstrap aggregation, the reported results consist of the
smoothed estimators {ix} and {0} } incorporating the effects
of model selection uncertainty. As noted by Efron, 6; < &,?,
in which 6} is obtained using Eq. (8) naively applied to the
bootstrap-aggregated data (rather than to data analyzed with
a fixed model as above) (Efron, 2014).

3 Methods

Backbone amide >N spin relaxation data have been reported
at G =4 'H static magnetic fields of 600, 700, 800, and
900 MHz for the bZip domain of the S. cerevisiae transcrip-
tion factor GCN4 by Gill and coworkers (Gill et al., 2016).
Experimental values of Rj, Ry, and the steady-state NOE
measured at each magnetic field for each residue were con-
verted to spectral density values using the following expres-
sions (Farrow et al., 1995; Gill et al., 2016):

4
J(0.87wp) = 52 ONH (20)

NH
_ 4(R1 — 1.2490NH)

J(Cl)N) - 2 2
3diy +4ceny
6(Ry —0.5R; —0.4540NRH)
3d%, +4cky

@

J(0) =

, (22)

in which ong = (NOE — DRiynyg 'y exu =372 Acwx,
dxu = (10/47)hyrynrais 'Na = 0.102 nm is the N-H bond
length, and Ao =—172ppm is the SN chemical shift
anisotropy. A single value of J(0) was obtained for each
residue as the weighted mean (using propagated experimen-
tal uncertainties) of the values obtained from the G static
magnetic fields. The uncertainty in the mean J(0) was ob-
tained by jackknife simulations. For each residue, the spec-
tral density values used for model fitting consist of the mean
J(0), G values of J(wN), and G values of J(0.87wy), for a
total of nine data points.

As noted above, the N spectral density values for each
backbone amide consist of G =4 values of each of J(0),
J(wN), and J(0.87wp). Random sampling with replacement
from the N = 12 values to generate bootstrap samples, as
normally applied, could result in samples in which the rela-
tive numbers of spectral density values from each class are
highly skewed. For example, a bootstrap sample could be
generated without any J(0) values, leading to very anoma-
lous fitted parameters. At the other extreme, random sam-
pling with replacement could result in samples in which
a single value was highly overrepresented. For example, a
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Table 1. Bootstrap selections.

i p,'j Y;;. i pij Y;}

1 [1,2,34] [1,1,1,1] 11 [4,2,34] [0,1,1,2]
2 [1,1,3,4] [2,0,1,1] 12 [1,43.4] [1,0,1,2]
3 [1,2,1,4] [2,1,0,1] 13 [1,24.4] [1,1,0,2]
4 [1,2,3,1] [2,1,1,0] 14 [1,1,2,2] [2,2,0,0]
5 [2,2,3,4] [0,2,1,1] 15 [1,1,3,3] [2,0,2,0]
6 [1,2,2,4] [1,2,0,1] 16 [1,1.44] [2,0,0,2]
7 [1,2,3,2] [1,2,1,0] 17 [2,2,3,3] [0,2,2,0]
8 [3,2,3,4] [0,1,2,1] 18 [2,24,4] [0,2,0,2]
9 [1,3,3,4] [1,0,2,1] 19 [3,34.4] [0,0,2,2]
10 [1,2,3,3] [1,1,2,0]

bootstrap sample could be generated in which one particular
J(0) value is represented exclusively.

To avoid such highly unrepresentative possibilities, boot-
strap samples were generated by enumerating the 19° =
6859 possible arrangements in which at most two spectral
density values from each set of J(0), J(wN), and J(0.87wyy)
are duplicated. The 19 possible arrangements of the G =4
indices {1, 2, 3,4} and corresponding Y;; for selecting boot-
strap samples of J(0), J(wN), and J(0.87wy) are shown in
Table 1. In this table, p;; is a pointer vector selecting data
from a particular set of spectral density values. For exam-
ple p4j =[1,2,3, 1]; applying this pointer to the set of J(0)
values would select the J(0) values obtained at 600 (x2),
700, and 800 MHz. The corresponding counter vector Y ;=
[2,1,1,0]is the numbers of times J(0) values recorded at the
different fields were sampled. The process would be repeated
for the other sets of spectral density values. For example, the
i = 1260th bootstrap sample uses p4; to select J(0), pio; to
select J(wn), and pg; to select J(0.87wy). The full vector
Y of length N = 12 is obtained by concatenating the indi-
vidual Y, jfj, Y i and Y(;"j vectors from the table. With this
procedure, the first bootstrap sample is identical to the origi-
nal data. The mean and uncertainty were determined for J(0)
for each bootstrap sample as described above for the original
data so that fitting of bootstrap samples was performed in the
same fashion as for the original data.

The data were analyzed using three procedures. First, a
conventional analysis, Eq. (4), was performed in which opti-
mal models #; and model parameters {{i;} were determined
for each amino acid residue (for which data were available)
using AICc. The uncertainties in model parameters, denoted
{o%}, were determined by 500 Monte Carlo simulations us-
ing the measured experimental uncertainties in the spectral
density values (Gill et al., 2016). Second, the optimal model
was determined as in the first procedure, but the uncertainties
in model parameters, {G,’}, were determined by the conven-
tional bootstrap, using Eq. (8). In both of these approaches,
error estimates were obtained while fixing the model for each
Monte Carlo or bootstrap sample as the optimal model #; se-
lected against the original data. Third, the smoothed model
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Calculate boot-
strap statistics
from [ and Y;

) /192
(i~1) % 192 // 19
(i1)% 197 % 19

Select bootstrap samples:
{J(O}, : p|j
(o Py
{J(U)H}i : p,—,j
)

Form counter vector:
Yo=Yy Yo Yo
i
Calculate <{J(0)}>
v
Fit bootstrap samples:
<J(0)}> {J(oy)}, {J(o)}

with model-free J(w)’s

Determine optimal model
and parameters by AIC,:
i
v

[=iet |—

Figure 1. Flow chart for bootstrap aggregation for the model-free
formalism. Indices [/, m, and n are determined for each bootstrap
sample from the index i using modulo arithmetic, in which // rep-
resents floor division, and % is the modulo (remainder) operation.
The three indices /, m, and n select pointer and counter vectors from
Table 1. The three pointer vectors are used to generate bootstrap
samples for J(0), J(wN), and J(wp). The three counter vectors are
concatenated to form Y;‘.

parameters {fix} and uncertainties {6y} were determined by
bootstrap aggregation using Eqgs. (10) and (19), respectively.
In this approach, the optimal model and parameters were de-
termined individually for each bootstrap sample as in Eq. (9).
A flowchart outlining the process of performing bootstrap
aggregation is shown in Fig. 1. Both Models 2 and 3 con-
tain a single generalized order parameter and a single inter-
nal effective correlation time. The model selection strategy
employed herein assigns Model 2 if the internal correlation
is < 0.15ns and Model 3 if the internal correlation time is
> 0.15 ns (vide infra).

Values of a local t,,, were optimized for each residue in the
well-ordered coiled-coil domain of the protein (residues 26—
55). Values of 1, for residues in the basic region (residues 3—
25) and disordered C-terminus (residues 56-58) were fixed
at 17.5ns, the average value obtained for ordered residues.
A similar approach was used by Gill and coworkers in the

https://doi.org/10.5194/mr-2-251-2021

original analysis of the relaxation data (Gill et al., 2016). Lo-
cal values of 7, can be used to determine the overall rota-
tional correlation time or diffusion tensor using established
methods (Lee et al., 1997). Alternatively, the fitting process
could be modified to globally optimize the overall rotational
correlation time or diffusion tensor while independently op-
timizing generalized order parameters and correlation times
for individual residues (Mandel et al., 1995). In this scenario,
bootstrap aggregation for the internal dynamical parameters
would be performed by the same approach as used herein.

4 Results

The results of the conventional analysis using AICc for
model selection and Monte Carlo error estimation are shown
in Fig. 2. Each of the Monte Carlo simulations was analyzed
using the optimal model determined from the original data.
The optimal parameters differ slightly from those reported by
Gill and coworkers because the present approach used a dif-
ferent spectral density function and model selection method
compared to the earlier work (Gill et al., 2016). The results
of the conventional analysis using AICc¢ for model selection
and bootstrap resampling for error estimation are shown in
Fig. 3. Each of the bootstrap data sets was analyzed using the
optimal model determined from the original data. The results
for bootstrap aggregation using AICc to determine the op-
timal model for each bootstrap sample are shown in Fig. 4.
The bootstrap-aggregated smoothed model-free parameters
were calculated using Eq. (10), and the smoothed parameter
uncertainties were calculated using Eq. (19).

Bootstrap simulations in which a single optimal model is
utilized provide an alternative to Monte Carlo simulations for
estimation of (unsmoothed) parameter uncertainties. The un-
certainties in 6 (S2) obtained from Monte Carlo simulations
and 6*(S?) obtained from conventional bootstrap simula-
tions are compared in Fig. 5a. The uncertainties have approx-
imately the same range but are uncorrelated with each other.
These results suggest the non-parametric bootstrap samples
simulate the actual data distribution in comparable manner
as the parametric Monte Carlo simulations but without as-
suming a normal distribution of spectral density values. The
smoothed parameter uncertainty obtained from Eq. (19) is
compared to the uncertainties from Monte Carlo simulations
in Fig. 5b. The increase in 5(S?%) compared to &(Sz) re-
flects the effect of model selection uncertainty. As noted by
Efron, the estimate of smoothed parameter uncertainty ob-
tained from Eq. (19) is smaller than the naive estimate ob-
tained by applying Eq. (8) to the aggregated bootstrap sam-
ples (Efron, 2014). To illustrate the advantage of Eq. (19),
Fig. 5¢ compares 6%(S?) obtained from Eq. (8) and &(S5?)
obtained from Eq. (19). Similar trends are observed for other
model-free parameters (not shown).

The performance of the conventional analysis, in which a
single optimal model is chosen, and bootstrap aggregation,

Magn. Reson., 2, 251-264, 2021
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Figure 2. Model-free parameters from conventional model selection using AICc and 500 Monte Carlo simulations to determine parameter
uncertainties. Values of S, Tm, S]g, ¥, SSZ, and 7 are plotted vs. residue number. Overall correlation times (z,;,) were determined individually
for residues in the coiled-coil region (black), while t;;, was fixed at 17.5 ns for residues in the basic region and C-terminus. Regions of the
protein are colored as basic region 1 (residues 3—12) (reddish-purple), basic region 2 (residues 13-25) (green), coiled-coil (residues 26-55)
(black), and disordered C-terminus (residues 56—-58) (orange) (Gill et al., 2016).

Table 2. Model selection for selected residues.

Residue  Fit Model 1 Model2 Model3 Model4 Model 5
Arg 11 AlICc 67.9 NA 57.2 333 34.2
Boot 0.000 0.000 0.000 0.243 0.757
Arg 26 AlICc 39.2 234 NA 33.5 56.6
Boot 0.000 0.566 0.316 0.096 0.022
Asp 32 AlICc 18.4 10.3 NA 22.3 46.2
Boot 0.000 0.970 0.000 0.019 0.011

For each residue, the top line lists the AIC¢ values determined by fitting the original data to Models
1-5. The second line enumerates the percentage of bootstrap samples for which the indicated model
exhibited the lowest AICc. Both Models 2 and 3 contain a single internal effective correlation time.
Model 2 is assigned if this correlation time is < 0.15 ns (and Model 3 is not assigned, NA). Model 3 is
assigned if this correlation time is > 0.15ns (and Model 2 is not assigned, NA).

in which parameter values are smoothed over all models, are
illustrated for particular residues Arg 11, Arg 26, and Asp 32.
Table 2 shows the values of AICc for each model fit to the
original spectral density and the percentage that each model
was chosen in the bootstrap aggregation. Table 3 shows the
optimized model-free parameters for each model fit to the

Magn. Reson., 2, 251-264, 2021

original spectral density data and the smoothed model-free
parameters obtained by bootstrap aggregation. The optimal
single model selected by AICc is highlighted with an aster-

isk.

To further illustrate bootstrap aggregation for Arg 11,
Arg 26, and Asp 32, Figs. 6, 7, and 8 show the distributions

https://doi.org/10.5194/mr-2-251-2021
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Figure 3. Model-free parameters from conventional model selection using AICc and bootstrap resampling to determine parameter uncer-
tainties. Values of S 2, T, S%, 5, 552 , and tg are plotted vs. residue number. Parameter values are identical as in Fig. 2, but the uncertainty
estimates differ. Regions of the protein are colored as basic region 1 (residues 3—12) (reddish-purple), basic region 2 (residues 13-25) (green),
coiled-coil (residues 26-55) (black), and disordered C-terminus (residues 56-58) (orange) (Gill et al., 2016).

Table 3. Model-free parameters for selected residues.

s2

S2

Residue  Model Tm sz s Tt Ts
Arg 11 1 17.5(fixed) 0.886+=0.015 0.886+0.015 1 0 0
3 17.5(fixed)  0.480 % 0.006 1 0.480+£0.006 0 0.761£0.011
4* 17.5(fixed) 0.220+£0.017 0.7544£0.015 0.2924+0.018 0 0.838+£0.014
5 17.5(fixed) 0.211+£0.017 0.646+0.022 0.3264+0.020 0.036+0.004 1.13£0.09
Smooth 17.5(fixed) 0.208 £0.005 0.662+0.029 0.3164+0.013  0.033 +0.006 1.31+0.21
Arg26 1 14.55+£0.48 0.954+£0.031 0.954£0.031 1 0 0
2% 16.01£0.55 0.914£0.024 0.914+0.024 1 0.105£0.054 0
4 16.00£0.73  0.878£0.038  0.935£0.037 0.939£0.013 0 0.274+£0.165
5 17.284+£2.69 0.812+£0.103 0.871£0.070 0.932+£0.057 0.03040.020 093+1.15
Smooth  16.33+£0.68 0.891£0.027 0.925+£0.037 0.972£0.015 0.050 £ 0.024 0.19£0.14
Asp32 1 16.28+0.39 0.944£0.022 0.944£0.022 1 0 0
2% 16.92+£0.46  0.908£0.025 0.908 +0.025 1 0.017+£0.016 0
4 16.92+£1.31 0.908£0.053 1.0004+0.060 0.908 £0.040 0 0.02£0.48
5 19.58£3.45 0.756£0.138  0.853£0.074 0.887£0.091 0.010£0.009 8.33+£3.18
Smooth  17.06£0.34 0.909+£0.017 0.911£0.015 0.998+£0.005 0.018+£0.004 0.035+0.074

For each residue, parameter values for Models 1-5 are calculated from the fit of the original data to the relevant spectral density function, with errors determined

by Monte Carlo simulation. The model selected by AICc is indicated by *. Smooth values are obtained by averaging the best fit parameter values across bootstrap

samples as in Eq. (10), with errors determined as indicated in Eqgs. (15)-(19).
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Figure 4. Smoothed model-free parameters from bootstrap aggregation to determined smoothed parameter estimates and uncertainties.

Values of S2,

Tm, sz, 5, Ssz, and 75 are plotted vs. residue number. Regions of the protein are colored as basic region 1 (residues 3—12)

(reddish-purple), basic region 2 (residues 13-25) (green), coiled-coil (residues 26-55) (black), and disordered C-terminus (residues 56-58)

(orange) (Gill et al., 2016).
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Figure 5. Comparison of model-free parameter uncertainties. (a) Uncertainties for S 2 calculated from Monte Carlo, O, and bootstrap
simulations, 6;, for a single optimal model. (b) Uncertainties for $2 calculated from Monte Carlo simulations for a single optimal model and
smoothed G calculated from bootstrap aggregation. () Uncertainties 6;' and & for $2 calculated from bootstrap aggregation, illustrating the
smaller variability obtained using Eq. (19) for calculation of parameter sample deviations.

of model-free parameters determined from the optimal model
for each bootstrap sample. The calculated spectral density
function for bootstrap aggregation is compared to the fit-
ted spectral density functions for each model in Figs. 9, 10,
and 11.

Magn. Reson., 2, 251-264, 2021

5 Discussion

The difficulties posed by conventional model selection strate-
gies, in which a single optimal model is chosen using AICc
or other fitness statistic, are illustrated for the bZip domain
of GCN4 in Fig. 2. In particular, some residues in the ba-
sic region (residues 3-25) are analyzed using Model 4, in
which 7y = 0 and other residues are analyzed with Model 5,

https://doi.org/10.5194/mr-2-251-2021



T. Crawley and A. G. Palmer IlI: Bootstrap aggregation in model selection 259

1500
(@)
1250
1000
-
C
3 4
3 750
o
500 4
250 1
0 , . ,
0.0 0.2 0.4 0.6 0.8 1.0
SZ
1500
(d)
1250
1000
-
C
3 4
3 750
o
500 4
250 1
0 ;
0.0 0.2 0.4 0.6 0.8 1.0
2
Sf,s
1200
(c)
1000
800 1
-
C
>3 4
3 600
o
400
200 1
0

~25 -20 -15 -10 -05 00 05
log10(Tr s/1ns)

Figure 6. Distribution of model-free parameters from bootstrap ag-
gregation for residue Arg 11. Color coding is sz or 77 (reddish-
purple) and 552 or 75 (blue). The orange line in (c) indicates the value
of 75 obtained for the optimal single (unsmoothed) model, Model 4.
For clarity, null values of 1 for generalized order parameters and 0
for internal effective correlation times are not shown in the graphs;
75 = 0 is observed 1664 times.

in which t¢ > 0. The resulting values of the other model-free
parameters are systematically affected depending on whether
or not 7y =0. These systematic effects are evident most
clearly in the scatter in sz and 7 for residues in the basic
region. The advantages of bootstrap aggregation in smooth-
ing over variability in model selection is evident in Fig. 4,
in which the residue-to-residue variability of the model-free
parameters is reduced. Thus, the distributions of 7y and 7
are much more uniform within the four regions of the pro-
tein, suggesting rather uniform timescale processes in each
subdomain. The similarity in the distributions for 6(52) and
6*(52), shown in Fig. 5a, indicates that the bootstrap proce-
dure adequately samples the distribution of parameter values.
That is, the reduction in parameter variability from bootstrap
aggregation does not result from restricted sampling.

The results shown for residue Arg 11 in Tables 2 and 3
and Figs. 6 and 9 illustrate the mechanics behind bootstrap

https://doi.org/10.5194/mr-2-251-2021

aggregation. The original optimization against the measured
data yielded AICc values of 33.3 for Model 4 and 34.1 for
Model 5. The conventional analysis then selects Model 4
(with r = 0) as optimal, even though AICc for Model 5 is
only slightly larger. In contrast the bootstrap analysis sug-
gests that Model 4 would be optimal for 24 % and Model
5 would be optimal for 76 % of randomly chosen data, un-
der the assumption that the bootstrap samples represent the
underlying distribution of spectral density values. Bootstrap
smoothing then averages each model-free parameter over the
empirical distributions shown in Fig. 6, with resulting opti-
mized spectral density curves compared to the original exper-
imental data in Fig. 9. The results for Model 4 in Table 3 and
the corresponding vertical orange line in Fig. 9 show that the
selection of Model 4 in the conventional analysis results in
an estimate for ty that is skewed toward the lower boundary
of the t bootstrap distribution.

The results shown for residue Arg 26 in Tables 2 and 3 and
Figs. 7 and 10 illustrate another advantage of bootstrap ag-
gregation. In this case, the original optimization against the
measured data yielded an AICc value of 23.4 for Model 2,
substantially smaller than for any other model, implying
a single model might be an adequate description for this
residue. However, the bootstrap distribution for the inter-
nal correlation times is bimodal. The conventional choice
of Model 2 results in an estimate of tr roughly centered in
the distribution, but the smoothed bootstrap estimates iden-
tify the presence of two separable timescales for internal mo-
tions, one with a mean of 0.052 £0.019 and the other with a
mean of 0.13 +0.08. Residue 26 is at the juncture between
the basic region and coiled-coil motif of the GCN4 bZip do-
main; consequently, the latter effective internal correlation
time might represent a vestige of the more pronounced mo-
tions evident in the basic region. The critical value of 0.15 ns
used to separate fast from slow motions in the present work
was chosen empirically to distinguish the two distributions
observed for residue 26 (and used for all other residues).
More sophisticated clustering algorithms could be used to
make this distinction between Models 2 and 3.

The results shown for residue Asp 32 in Tables 2 and 3
and Figs. 8 and 11 illustrate a case of strong agreement be-
tween the conventional analysis and bootstrap aggregation
when a single motional model is strongly favored by the ex-
perimental data. The distributions shown in Fig. 8 then repre-
sent the variability in model-free parameters across the boot-
strap samples. These results would be comparable to results
obtained in Fig. 3, in which the bootstrap samples were used
to estimate model-free parameter uncertainties 6;* for a sin-
gle fixed optimal model.

The present application of bootstrap aggregation used spin
relaxation data recorded at four static magnetic fields. A total
of 6859 bootstrap samples were used to calculate smoothed
parameter estimates. Data recorded at three static magnetic
fields provide nine spectral density values but allow only
73 = 343 bootstrap samples. To test the effect of such a dras-
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tic reduction in the size of the bootstrap sample, the relax-
ation rate constants recorded at 600, 800, and 900 MHz were
analyzed for the disordered basic region (residues 3-25).
This preserves the same range of sampled frequencies as for
the original analysis, but only seven spectral density values

Magn. Reson., 2, 251-264, 2021

are obtained for each residue, after averaging the three values
of J(0). The smaller number of spectral density values results
in smaller numbers of degrees of freedom when fitting the
model-free spectral density models. As a consequence, only
Models 3 and 4 were selected for the basic region in the con-

https://doi.org/10.5194/mr-2-251-2021



T. Crawley and A. G. Palmer IlI: Bootstrap aggregation in model selection 261

(a)
0_1

log1ol)(w)/(1ns)]

log1o[)(w)/(1ns)]

-3 T T T

0 1 2 3 4
w (1/ns)

-3 T T T
0 1 2 3 4 5

w (1/ns)

Figure 9. Comparison of individual fits for Arg 11 of (a) Model 1, (b) Model 3, (c) Model 4, and (d) Model 5 (black lines) or the bootstrap
aggregation smoothed fit (reddish-purple line) to (circles) experimental spectral density values.
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Figure 10. Comparison of individual fits for Arg 26 of (a) Model 1, (b) Model 3, (¢c) Model 4, and (d) Model 5 (black lines) or the bootstrap
aggregation smoothed fit (reddish-purple line) to (circles) experimental spectral density values.

ventional analysis; essentially, the data were not sufficient to
determine 7r and g simultaneously (Model 5). Nonetheless,
bootstrap aggregation was effective in smoothing the effects
of model selection error between Models 3 and 4, even with
only 343 bootstrap samples (not shown). A number of stud-
ies have investigated the number of model parameters that
can be determined from backbone amide >N relaxation data
recorded at high static magnetic fields (Khan et al., 2015; Gill
etal., 2016; Abyzov et al., 2016). The present results suggest
that measurements at four static magnetic fields are required

https://doi.org/10.5194/mr-2-251-2021

to fully statistically characterize the information content of
such measurements within the extended model-free formal-
ism.

6 Conclusions

Model selection error is a classical problem in statistics and
has been recognized as a concern in the model-free analysis
of NMR spin relaxation data since the work of d’ Auvergne
and Gooley (2007, 2008a, b). Bootstrap aggregation has
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Figure 11. Comparison of individual fits for Asp 32 of (a) Model 1, (b) Model 3, (¢) Model 4, and (d) Model 5 (black lines) or the bootstrap
aggregation smoothed fit (reddish-purple line) to (circles) experimental spectral density values.

emerged as a powerful approach for incorporating selection
error into statistical model-building (Buja and Stuetzle, 2006;
Efron, 2014). However, bootstrap aggregation requires suf-
ficient numbers of data points to allow faithful resampling
of the distribution of the data. This issue is made more se-
rious by the nature of nuclear spin relaxation data: spec-
tral density values for J(0), J(wN), and J(0.87wp) are very
different and should not be interchanged by resampling. As
shown in the present work, resampling within blocks of spec-
tral density values clustered as J(0), J(wn), and J(0.87wy)
recorded at three or four static magnetic fields is sufficient
to enable bootstrap aggregation. However, the larger data set
available from four static magnetic fields allows more reli-
able resolution of two internal correlation times, ¢ < 0.15ns
and 75 > 0.15ns.

Aggregation improves parameter stability by averaging
over all models represented in the bootstrap sample. As
applied to N spin relaxation data for the bZip domain
of GCN4, bootstrap aggregation reduces residue-to-residue
variations in optimal model-free parameters, particularly in
the partially disordered basic region. Consequently, trends
in the conformational dynamics along the polypeptide back-
bone that reflect actual physical properties of the protein be-
come more evident. Notably, local maxima in generalized
order parameters within the basic region (residues 3-25),
most evident for residues 8 and 9 and for residues 14 and
15 in Fig. 4, reflect transient populations of helical confor-
mations observed in molecular dynamics simulations (Ro-
bustelli et al., 2013). NMR spin relaxation spectroscopy is
a powerful approach for interrogating conformational dy-
namics of biological macromolecules. Bootstrap aggrega-
tion, coupled with experimental NMR spin relaxation mea-

Magn. Reson., 2, 251-264, 2021

surements at multiple static magnetic fields, promises to ad-
vance efforts to understand the interplay between conforma-
tion and function in biology.

Code and data availability. A Jupyter notebook (Python 3.6) is
provided for performing all data analyses reported in the publica-
tion. The NMR data analyzed in the publication are available at
Mendeley Data (https://doi.org/10.17632/vpwz6bmrynr.1; Gill et al.,
2021).
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