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Abstract. The quantum state of a spin ensemble is described by a density operator, which corresponds to a point
in the Liouville space of orthogonal spin operators. Valid density operators are confined to a particular region
of Liouville space, which we call the physical region and which is bounded by multidimensional figures called
simplexes. Each vertex of a simplex corresponds to a pure-state density operator. We provide examples for spins
I =1/2,1=1,1=23/2 and for coupled pairs of spins-1/2. We use the von Neumann entropy as a criterion for
hyperpolarization. It is shown that the inhomogeneous master equation for spin dynamics leads to non-physical
results in some cases, a problem that may be avoided by using the Lindbladian master equation.

1 Introduction

The central object of interest in nuclear magnetic resonance
(NMR) theory is the density operator, which describes the
quantum state of the ensemble of spin systems. It is defined
as follows:

o =¥l M

Here |Y) specifies the quantum state of each individual spin
system, and the overbar indicates an ensemble average (Ernst
et al., 1987). When expressed as a matrix in the eigenbasis of
the coherent spin Hamiltonian, the diagonal elements are the
spin state populations, and the off-diagonal elements are the
coherences between the spin states.

It is often useful to express the density operator as a su-
perposition of orthogonal spin operators. For example, the
highly influential papers by Sgrensen, Bodenhausen, Ernst
and co-workers advocate an expansion in terms of Cartesian
product operators (Sgrensen et al., 1984; Ernst et al., 1987),
while some other groups favour spherical tensor operators
(Sanctuary, 1976, 1980; Sanctuary and Temme, 1985a, b;
Bowden and Hutchison, 1986b; Bowden et al., 1986; Bow-
den and Hutchison, 1986a, 1987; Bowden et al., 1990; Bain,
1978, 1980a, b; Philp and Kuchel, 2005; Garon et al., 2015).

In all cases, the density operator is written in the form

Np
p=Y 40 2
g=1

where the coefficients p, are complex numbers in general,
and the basis operators Q, are orthogonal:

(Q41Q4) =Tr{Q] 0y} =844/ 1Q411*. 3)

The Kronecker delta symbol §,;, takes the value 1 fora = b
and 0 otherwise. The norm of the operator Q, is defined as
1041l = Tr{ Q] 0, '/},

The coefficients p, are often given evocative names which
suggest their physical interpretation, for example “antiphase
order”, “zz order”, “spin alignment”, ‘“Zeeman polarization”,
’singlet order”, and so on.

Since such expansions are nearly universal in modern
NMR theory, it seems natural to pose questions of the forms
“what values may the coefficients p, take?”, “are the values
of p, unlimited, or bounded in some way?”, “does the value
of one coefficient influence the possible values of a second
coefficient?”, etc. Surprisingly, these natural questions are
rarely posed in the NMR world, although they have not es-
caped the attention of mathematical physicists and applied
mathematicians (Byrd and Khaneja, 2003; Kimura and Kos-
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sakowski, 2005; Bengtsson and Zyczkowski, 2006; Goyal
et al., 2016; Szymanski et al., 2018).

The expansion in Eq. (2) identifies the density operator
with a point in a multidimensional space with coordinates
{p1, p2...}. This space has been called Liouville space (Ban-
well and Primas, 1963; Suzuki and Kubo, 1964; Ernst et al.,
1987). In this article, we show that valid density operators
may only be identified with points in a defined region of Li-
ouville space which we call the physical region. The physical
region is enclosed by a convex boundary, which we call the
physical boundary of Liouville space. We ask: what is the
shape of the physical boundary? Does it have straight edges,
or is it spherical in all dimensions? (Spoiler: at least some
edges are straight.)

In addition, we express some views on the nature and def-
inition of hyperpolarization. For example, is pure parahydro-
gen hyperpolarized, even though it generates no NMR sig-
nal? (Spoiler: our answer is yes.)

2 Orthonormal operators

To facilitate the discussion, the basis operators Q, in Eq. (2)
are henceforth considered to be normalized as well as orthog-
onal, so that Eq. (3) is replaced by the simpler form

(041Q4) =Tr{Q] 0y} =844 )

Note, however, that the Cartesian product operators advo-
cated by Sgrensen et al. (1984) are not normalized.

In general, N operators are required in the expansion of
Eq. (2), where N = N12{ and Npg is the dimension of the
Hilbert space of the individual spin systems. The orthonor-
mal operators {Q1, Q>...Q, } define a Ny -dimensional Li-
ouville space (Jeener, 1982; Ernst et al., 1987). The den-
sity operator may be represented as a point with coordinates
{q1.92...gn, } in this space. All spin dynamics may be rep-
resented as a trajectory traced by the spin density operator as
it moves through this abstract space.

Brief consideration shows that there must be limits to the
physical region of Liouville space. Consider for example an
ensemble of isolated spins-1/2. In this case, the dimension
of Hilbert space is Ny =2, and the dimension of Liouville
space is Ny = 4. The following four normalized operators
may be chosen as the basis of Liouville space:

0, =221,
04 =221, Q)

01=2""1
03 =221,

Since Tr{p} = 1 by definition, the first coefficient is fixed at
g1 =271/2 the density operator is only free to move in the
subspace formed by the other three operators, {Q2, O3, Q4},
which are proportional to the angular momentum operators
in the three Cartesian directions.
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The populations of the two Zeeman states are given by

(alpla) =2712(q1 +qu)

(BlolB) =2""%(q1 — q4) (6)

Both state populations are, by definition, bounded by 0 and
1:

0 < (alpla) <1
0= (BlplB) =1 )
Hence the coefficient g4 is bounded as follows:

—2712 < gy <2712 ®)

The upper bound g4 = 2~1/? corresponds to maximum spin
polarization along the positive z axis, with the |«) state com-
pletely populated and the |8) state completely depleted. The
lower bound g4 = —2~1/2 corresponds to maximum spin po-
larization along the negative z axis, with the |«) state com-
pletely depleted and the |8) state completely populated.

In the case of isolated spins-1/2, the physical bounds on
Liouville space are therefore defined by the fixing of one co-
ordinate (g, =27'/2) and the constraint of the other three
to the interior of a sphere of radius 2~!/2. Within a numer-
ical factor, this geometrical bound is of course identical to
the familiar Bloch sphere — the seminal geometrical object in
magnetic resonance theory.

What about systems other than spins-1/2? Liouville space
has more than three dimensions in such cases and is hard
to visualize. Nevertheless, it is tempting to assume that the
physical bounds are still spherical, albeit with an extension
to higher dimensions. However, this turns out to be incorrect,
in general. The physical bounds in some of the dimensions
of Liouville space turn out not to be spheres but regular sim-
plexes. A regular simplex in one dimension is a line, a regu-
lar simplex in two dimensions is an equilateral triangle, and a
regular simplex in three dimensions is a regular tetrahedron,
with the concept extending to arbitrary dimensions. In gen-
eral, a simplex is the simplest possible convex object, where
the term convex means that any two points belonging to the
object may be connected by a straight line which never leaves
the object. In general, a simplex in N dimensions is called
an N-simplex, although some simplexes also have special
names, such as the line (1-simplex), the triangle (2-simplex),
the tetrahedron (3-simplex), and the pentachoron or 5-cell
(4-simplex) (Coxeter, 1963).

The physical boundary of Liouville space is of little conse-
quence for “conventional” NMR experiments, which are per-
formed at or near thermal equilibrium. Under ordinary tem-
peratures and magnetic fields, this is a region very close to
the origin of Liouville space (except for the fixed projection
onto the unity operator) and hence very far from the bound-
ary. However, hyperpolarization techniques such as optical
pumping (Kastler, 1957; Navon et al., 1996), dynamic nu-
clear polarization (Griffin and Prisner, 2010; Ardenkjaer-
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Larsen et al., 2003; Jannin et al., 2012), quantum-rotor-
induced polarization (Icker and Berger, 2012; Meier et al.,
2013; Dumez et al., 2015) and parahydrogen-induced polar-
ization (Bowers and Weitekamp, 1987; Adams et al., 2009)
have provided ready access to regions which are “close to the
edge”. Furthermore, spin systems which are in a highly non-
equilibrium state are of great practical importance because
of the greatly enhanced NMR signals that they can produce.
The position and shape of the physical boundary have there-
fore become relevant.

Furthermore, some familiar concepts in magnetic reso-
nance which were originally developed in the context of near-
equilibrium spin dynamics do not retain validity far from
the origin. An important case is the inhomogeneous master
equation (Ernst et al., 1987), which fails close to the physical
boundary of Liouville space, where it should be replaced by
a Lindbladian master equation (Bengs and Levitt, 2020; Pell,
2021).

3 Polarization moments

3.1 Isolated spins-/

For an ensemble of isolated spins-/, a suitable expansion of
the form in Eq. (2) is as follows:

21 +1
pP= Z Z ;O)L//.T)»pv (9)

A=0 pu=-1I

Here p,, are complex numbers which are called here polar-
ization moments, following the usage in the atomic physics
community (Budker et al., 2002; Auzinsh et al., 2014). The
operators T, are normalized irreducible spherical tensor
operators (NISTOs). They are normalized over the spin-/
Hilbert space:

+
(Tl Trp) = Te{Ty , Top} = 1. (10)

The normalized spherical tensor operators T}, differ from
the operators Tj, commonly used in NMR theory (Spiess,
1978; Mehring, 1976) by a multiplicative factor.

A semantic objection may be raised over the use of the
term polarization moment for the case A = 0. The term polar-
ization is generally taken to imply an anisotropic distribution
of dipole moments (magnetic or electric). However, the rank-
0 moment represents an isotropic distribution of spin angular
momentum and hence is not a “polarization” in a conven-
tional sense. While acknowledging that this is a reasonable
objection, we contend that the extension of the term “polar-
ization” to cover rank-0 terms is too convenient to be blocked
by pedantry. A similar objection arises over the term singlet
polarization for spin pairs, as discussed below.
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For isolated spins-/, the low-rank normalized spherical
tensor operators are as follows, for the case u = 0:

Too = NJ T
Tip = N{]Z
1
Top = Ngﬁ(yf —I(I + D)
T30=N§L(51z3+(1 —3I1(I + )I,) (11)
V10

The normalization factors are as follows:
Nl = @1+ 1)71/?
1
Ni = (310 + Dl + 1)
I 1 —1/2
Ni = {%1(1 + 1)1 = DI +3)2I + 1)}
1
Nf = {%1(1 + DI - DI +2)2I —1)
x (21 +3)21 + 1)} 172 (12)

These normalization factors depend on the spin quantum
number / and the rank A but are independent of the com-
ponent index (.

It follows from Egs. (2) and (10) and the orthogonality of
the NISTOs that any polarization moment may be derived
from the density operator by a Liouville bracket operation:

;
pru = (Toplp) = Tr(T; , p}. 13)
The polarization moments have the following symmetry:
P =(=D""pi_,, (14)
which follows from the hermiticity of the density operator
and the symmetries of the spherical tensor operator compo-
nents (Varshalovich et al., 1988).

For isolated spins-/, the condition Tr{p} =1 fixes the
value of the rank-0 polarization moment:

poo = 21 +1)71/2, (15)

The rank-1 polarization moment pj is proportional to the
z polarization of the spin-/ ensemble as follows:

1 -1/2
,010={§(1+1)(21+1)} Pz (16)

Similarly, the rank-1 polarization moments pj+| are propor-
tional to complex combinations of the transverse polariza-
tions:

2
prar = {57+ D2I+ DY 2 (Fpy +ipy). (17)
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The relationship in Eq. (16) evaluates as follows for some
common spin quantum numbers /:

pro=2""2p.  (I=1/2)
pro=2""2p.  U=1
3
P10 = 55—1/2 p. (I=3/2)
5\1/2
po=(3)" P =5/ (1)

In atomic physics, finite moments with rank A = 1 are called
orientation, while finite moments with rank A = 2 are called
alignment (Auzinsh et al., 2014). Although the term orienta-
tion is not generally used for this purpose in the magnetic res-
onance community, the term alignment is used to imply rank-
2 multipole order, particularly in the context of solid-state
NMR as applied to quadrupolar nuclei (Batchelder, 2007).
For isolated spins-1, the terms spin alignment and quadrupo-
lar order may be regarded as synonymous.

Multipole expansions of the spin density operator as in
Eq. (2) have long been used in NMR. Extensive theoret-
ical development was performed by Sanctuary, Bowden,
Bain and co-workers (Sanctuary, 1976, 1980; Sanctuary and
Temme, 1985a, b; Bowden and Hutchison, 1986b; Bowden
et al., 1986; Bowden and Hutchison, 1986a; Bowden et al.,
1990; Bain, 1978, 1980a, b) and has been exploited to gen-
erate graphical representations of density operator evolution
(Philp and Kuchel, 2005; Garon et al., 2015). One of the
salient early examples of the multipole description is the
treatment of quadrupolar relaxation by Bodenhausen and co-
workers (Jaccard et al., 1986). In this elegant paper, the re-
laxation dynamics of quadrupolar nuclei outside the extreme
narrowing limit is treated in terms of propagation in the space
of spherical tensor operators, drawing fruitful parallels with
the concepts of coherence transfer pathways (Bodenhausen
et al., 1984; Bain, 1984).

There are also techniques for determining the polarization
moments of a spin ensemble experimentally at any point dur-
ing a pulse sequence by combining the signals from many
successive experiments multiplied by complex factors. This
method has been called spherical tensor analysis (van Beek
et al.,, 2005) and has been applied to the study of endo-
fullerenes (Carravetta et al., 2007).

3.2 Spin-1/2 pairs

The construction of spherical tensor operators for systems of
coupled spins is a complicated affair. Extensive expositions
of the technique have been given (Sanctuary, 1976, 1980;
Sanctuary and Temme, 1985a, b; Bowden et al., 1990; Garon
et al., 2015). In this article, the discussion of coupled spin
systems is restricted to the simplest case, namely pairs of
coupled spins-1/2. Since the dimension of Hilbert space is
Npg =4, the dimension of Liouville space is Ny = 16. This
space includes six orthogonal zero-quantum operators, four
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of which are symmetric with respect to spin exchange and
two of which are antisymmetric. The four symmetric u =0
operators are as follows:

1
0
Too = 51,

Ty =—2x3""I; - Iy,
Tio=2""2(1. + Iy).
Té(z) = (2/3)1/2(311zlzz -1 -Iz). (19)

Note that spin-1/2 pairs support two different spherical tensor
operators with rank A =0, denoted Tgo and ']T(l)%. The plus
superscript in TTO indicates that the operators I, and I, are
combined with the same sign.

The operator Tgo is proportional to the unity operator. The
corresponding polarization moment is fixed by the condition
Tr{p} =1 to the value

0= (20)
Poo = 5-
The operator T(l)?) is proportional to the scalar product of
the two spin angular momenta. The corresponding polariza-
tion moment is given by

12 V3
Poo = 75 PSs 2n
2

where pg is called the singlet polarization or singlet order
and corresponds to the population imbalance between the
singlet state and the triplet manifold, in the spin-pair en-
semble. In many cases, the singlet polarization is protected
against common relaxation mechanisms and exhibits an ex-
tended lifetime (Carravetta et al., 2004; Carravetta and Levitt,
2004; Cavadini et al., 2005; Sarkar et al., 2007b, a; Ahuja
et al., 2009; Levitt, 2019; Dumez, 2019).

Since the moments ,080 and pég have spherical rank A =0,
they both represent isotropic distributions of the spin angular
momenta. As before, we contend that the extension of the
term “polarization” to cover rank-0 spherical moments is too
convenient to ignore while accepting that opinions may differ
on the wisdom of this approach.

The operator ’JITO corresponds to a symmetric combina-
tion of the z-angular momentum operators for the two spins.
The corresponding polarization moment is proportional to
the mean z polarization of the spin ensemble:

4 1
P1o = Epz- (22)

The operator T% corresponds to the rank-2 spherical ten-
sor operator of the coupled spin pair. The corresponding po-
larization moment ,0213 is proportional to the rank-2 order
(dipolar order) of the spin-pair ensemble.
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4 Physical bounds of Liouville space

The population of each individual spin state is bounded by 0
and 1, while the sum of all populations is equal to 1. These
properties constrain the physically realizable values of the
polarization moments.

The spin density operator of the isolated spin-/ ensemble
may be expressed as a superposition of spherical tensor oper-
ators, with rank A taking values between 0 and 27. The rank-0
moment is fixed to the value pgg = (21 + D! (Eq. 15). From
Eq. (2) and the orthonormality of the NISTOs (Eq. 10), the
population of the state |/, M) may be written as follows:

21

(L, Mylpll, Mp) =) (I, M[|Tsoll, M1)pjo. (23)
A=0

Hence, for isolated spins-1, there exists a system of 2/ +1 si-
multaneous inequalities on the i = 0 polarization moments:

21

0 < Y (LM[Twoll, Mi)pro < 1, (24)
=0

for My € {+1,+1—1...—1I}. Together with Eq. (15), the sys-
tem of inequalities in Eq. (24) defines the physical bounds of
the ;1 = 0 polarization moments.

The consequences are now explored for some common
spin systems.

4.1 Spins-1/2

For isolated spins-1/2, the rank-0 polarization moment is
given from Eq. (15) by

poo=2""% forl=1/2. (25)

Equations (24) and (25) lead to the following physical
bounds for the rank-1 polarization moment:

2712 < pip < 4272 for1=1)2. (26)

From Eq. (16), this corresponds to the expected bounds on
the z polarization of the spin ensemble:

-1 < p; < +1, 27)

which should come as no surprise. No spin system may have
more than 100 % polarization.

4.2 Spins-1

The bounds on the polarization moments are more compli-
cated for an ensemble of isolated spins-1. The rank-0 polar-
ization moment is given through Eq. (15) by

po=3""%  forlI=1. (28)
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Figure 1. Physical bounds on the rank-1 and rank-2 polarization
moments for isolated spins / = 1. The shaded triangle shows the
physically accessible region. The vertices correspond to pure-state
density operators for each of the three spin-1 Zeeman states. The
radius of the dashed circle is 4/2/3. The rank-1 polarization moment
P10 is related to the z polarization p; through Eq. (18). The red
circle indicates a state with maximum Zeeman polarization.

The inequalities on the rank-1 and rank-2 polarization mo-
ments evaluate as follows:

0 S%—F%IOIO‘FT,@O <1,

0 Sl— %,020 <1,
3 3

0 Sl—iplo-kipzo <1 for I =1. (29)
32 V6

The values of {p10, 020} which satisfy the inequalities in
Eq. (29) lie within the shaded triangle in Fig. 1. The ver-
tices of the triangle have coordinates {pio, 020} given by
{£2-1/2,671/2} and {0, —(2/3)"/?}; each vertex corresponds
to a pure-state density operator, in which only one state is
populated. Similar triangular bounds have been identified in
the mathematics literature (Kimura and Kossakowski, 2005;
Goyal et al., 2016).

The equilateral triangle in Fig. 1 corresponds to a regular
simplex in two dimensions.

The maximum z polarization of p, = 1 corresponds to the
upper-right vertex. Figure 1 shows that this highly polarized
state corresponds to a mixture of rank-1 polarization (Zee-
man order) and rank-2 polarization (quadrupolar order). It
follows that the near-complete hyperpolarization of spin-1
nuclei, as performed by the Bodenhausen group (Aghelne-
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Figure 2. Physical bounds on the rank-1, rank-2, rank-3 polariza-
tion moments for isolated spins / = 3/2. The shaded tetrahedron
shows the physically accessible region. The vertices correspond to
pure-state density operators for each of the four spin-1 Zeeman
states. The red circle indicates the position of maximum Zeeman
polarization.

jad et al., 2020), generates hyperpolarized quadrupolar order
as well as Zeeman order.

4.3 Spins-3/2

In the case of isolated spins-3/2, the rank-0 polarization mo-
ment is given by
412 _ —
poo =4 =1/2 for I =3/2. (30)
For spins-3/2, there may be a finite rank-3 polarization mo-
ment p3o as well as the rank-1 and rank-2 terms. The physical

bounds on these polarization moments are set by the follow-
ing inequalities:

0 %(5+6x/_p10+10pzo+2x/_p30) <1
0 2]—0(5-1-2\/_/)10—10/)20—6\/_/)30) <1
0 %(5 2\/_/010—10/020-{-6\/_/)30) <1
0 %(5 6\/_,010+10,020—2\/_P30) <1
for 1 =3/2. 3D

The physical bounds on the three polarization moments
constrain the spin density operator to the interior of the
regular tetrahedron shown in Fig. 2. The vertices of the
tetrahedron are at coordinates {pig, 020,030} given by
{(£1/24/5, —1/2,F3/24/5} and {£3/2/5,1/2,+1/2/5).

Each vertex corresponds to a pure-state density operator, in
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Figure 3. Physical bounds on the rank-0 polarization moment pé%,
the rank-1 polarization moment ,010, and the rank-2 polarization
moment ,020 for spin-1/2 pairs. The shaded tetrahedron shows the
physically accessible region. The vertices correspond to pure-state
density operators for each of the four singlet or triplet states. The
annotation shows the vertex for exclusive population of the singlet
state (corresponding to pure parahydrogen in the case of Hy gas).

which only one state is populated. The z polarization is re-
lated to the rank-1 polarization moment pjq through Eq. (18).

The tetrahedron in Fig. 2 corresponds to a regular simplex
in three dimensions.

4.4 Higher spins

The treatment above is readily extended to higher spins. For
isolated spins-/, the bounding figure is given by a regular
simplex in 21 dimensions. For example, the four-dimensional
bounding simplex of the polarization moments for spin I =2
is called a 5-cell or pentachoron (Coxeter, 1963); the five-
dimensional bounding simplex of the polarization moments
for spin I = 5/2 is called a 5-simplex or hexateron (Coxeter,
1963), and so on. Regular high-dimensional polytopes have
been exploited before in NMR, albeit in a different context
(Pileio and Levitt, 2008; Mamone et al., 2010; Levitt, 2010).

4.5 Spin-1/2 pairs

For spin-1/2 pairs, the symmetric ;& = 0 subspace is of di-
mension 4, spanned by the four symmetric spherical ten-
sor operators given in Eq. (19). Since the polarization mo-
ment ,080 is fixed (Eq. 20), the symmetric part of the spin
density operator may be described as a point with coordi-
nates {,000 ,010, pzé} given by its projections onto the three

orthonormal spherical tensor operators {'IF(l)%, ']I‘TO, le} The
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density operator may also include components that are an-
tisymmetric with respect to exchange: these components lie
outside this three-dimensional subspace and are not consid-
ered further here.

The physical bounds on the symmetrical polarization mo-
ments { péé, p%, pzlg} are set by the following inequalities:

0 <;(1+2v30) =< 1

1
0 =5 (3- 2V3p82 + 672075 +2v/6p13) < 1
1
0 =L (3- 20— aveol) = 1
1
0 =75 (3-2v3p —6v2pf, +2v603)) < 1
for spin-1/2 pairs. 32)

These inequalities constrain the polarization moments to the
interior of the regular tetrahedron shown in Fig. 3. The ver-
tices of the tetrahedron are at coordinates { ,oég, ,01+0, pzlg}
given by

{$3172,0,0}
{—13_1/2,2_1/2,6_1/2}
{__3—1/2’ —2_1/2,6_1/2}

{=33712,0,-(2/3)'?)

{63 iy P33} = (33)

Each vertex corresponds to a pure-state density operator, in
which the singlet state or one of the three triplet states is ex-
clusively populated.

The highlighted point in Fig. 3 has coordinates
{%31/ 2 0,0}. From Eq. (21), this point corresponds to unit
singlet polarization (ps = 1) and hence a pure singlet den-
sity operator:

p =150)(Sol, (34)
where the singlet state is given by (Levitt, 2019)
1

1So0) = 7

(laB) — 1Ba)) (35)

A projection of the tetrahedral bound in Fig. 3 onto the
{ pég, pfb} plane is shown in Fig. 4. The corresponding values
of the singlet polarization ps and z polarization p, are shown
on the axes, with the conversion factors given in Egs. (21)
and (22). The red point in Fig. 4 shows that maximal singlet
polarization is necessarily accompanied by zero z polariza-
tion. In the case that the spin-1/2 pair is composed of the two
proton nuclei of H», the red point corresponds to the spin
density operator of pure parahydrogen (Farkas, 1935).

The blue point in Fig. 4 shows that maximal z polariza-
tion is necessarily accompanied by singlet polarization of
ps = —1/3. This reflects the fact that maximal z polarization
can only be achieved by depleting the singlet state at the ex-
pense of one of the triplet states. This fact may be exploited
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Figure 4. Physical bounds on the rank-0 polarization moment ,oé(%
and the rank-1 polarization moment ,oi% for spin-1/2 pairs. The cor-
responding values of the z polarization p, and singlet polarization
ps are also shown. The singlet polarization pg (top horizontal axis)
and rank-0 polarization moment Pop (ower horizontal axis) are re-
lated through Eq. (21). The shaded triangle shows the physically
accessible region. The annotations show the vertices for exclusive
population of the singlet state (red) and for maximal z polarization
(blue). Note that complete z polarization is accompanied by singlet
polarization of pg = —1/3.

experimentally to generate hyperpolarized (negative) long-
lived singlet order by the application of low-temperature dy-
namic nuclear polarization to spin-pair systems (Tayler et al.,
2012; Bornet et al., 2014; Mammoli et al., 2015). Analogous
phenomena are observed in more complex spin systems, such
as methyl groups (Dumez et al., 2017) and deuterated moi-
eties (Kress et al., 2019).

The physical bounds depicted in Figs. 3 and 4 are an in-
trinsic property of the spin-pair density operator and are com-
pletely independent of the spin Hamiltonian and its symme-
try properties. Hence, these bounds apply to both magneti-
cally equivalent and magnetically inequivalent spin-1/2 pairs.
Nevertheless, since the spin Hamiltonian of magnetically in-
equivalent spin-1/2 pairs lacks exchange symmetry, it is also
true that the density operator of magnetically inequivalent
pairs readily accesses dimensions of Liouville space which
are not exchange-symmetric and which are not included in
these pictures. Hence, although Figs. 3 and 4 are equally
valid for magnetically equivalent and inequivalent systems,
there are additional dimensions which are not represented
in these pictures and which are particularly relevant for the
magnetically inequivalent case.
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Figure 5. von Neumann entropy SyN plotted against the rank-1 po-
larization moment p1q and the z polarization p; for isolated spins-
1/2, for the case of zero transverse polarizations py = py = 0. The
maximum value of Syy is In2 ~ 0.693.

The geometry of the physical bounds is independent of the
operator basis. Although a spherical tensor operator basis has
been used in the discussion above, bounds of the same form
are generated in any orthonormal operator basis, albeit with
an overall rotation that depends on the relationship of the two
bases. For example, if the ket—bra operator products |i)(j| are
used as the basis of Liouville space, where i, j € {1...Ng},
then the Ny vertices of the bounding simplex are located
at coordinates {1,0,0...}, {0,1,0,0...}, {0,0,1,0,...}, etc.,
representing the pure-state density operators with exclusive
population of a single Hilbert-space state.

5 von Neumann entropy

Quantum statistical mechanics uses the von Neumann en-
tropy (VNE) to describe the disorder in, or absence of infor-
mation about, a quantum system (Breuer and Petruccione,
2010; Rodin et al., 2020). It is derived from the spin density
operator as follows:

Sy~ = —Tr{oInp}. (36)

The vNE for a system in a pure quantum state is zero, while
the vINE for a system with equal populations of Ny quantum
states, and no coherences, is given by Syxy = In Ng.

5.1 Spins-1/2

The von Neumann entropy Syn is plotted against the rank-
1 polarization moment pj¢ in Fig. 5, assuming that o1, =0
for 4 = £1. The corresponding value of the z polarization
P2 = ~/2p10 is shown on the top margin of the plot. The en-
tropy goes to zero for complete z polarization in the positive
or negative sense (p, = £1) and attains the maximum value
of Syn = In2 for zero polarization. The maximum entropy of
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Figure 6. The von Neumann entropy SyN is shown as a contour
plot against the rank-1 and rank-2 polarization moments for isolated
spins-1, for the case of py;, = 0 for u # 0. Only the physical region
is shown (see Fig. 1). The corresponding value of the z polarization
Pz = 21/2 P10 is shown along the top edge. The maximum value of
the von Neumann entropy, reached at the origin, is In3 >~ 1.10.

In2 reflects the equal populations of the two Zeeman eigen-
states and absence of coherences, for a completely saturated
system.

5.2 Spins-1

For isolated spins-1, the von Neumann entropy is a function
of the rank-1 and rank-2 polarization moments, assuming
that all polarization moments p;,, vanish for ; # 0. Figure 6
shows a contour plot of the von Neumann entropy against pg
and py0, assuming that all polarization moments with p # 0
vanish. Only the physically allowed region is shown, delin-
eated by the triangle, as in Fig. 1. The entropy goes to zero at
the three vertices, which correspond to the pure-state density
operators with 100 % population of a single state. The von
Neumann entropy reaches the maximum value of In3 at the
centre of the plot, corresponding to p1g = p20 = 0. The value
of In3 reflects the equal distribution of population over the
three spin states.

5.3 Higher spins

The behaviour of the von Neumann entropy is readily antic-
ipated for higher spin quantum numbers. The entropy van-
ishes at the (27 4 1) vertices of the 27-simplex which bounds
the physical region. The entropy maximum of In(2/ + 1) is
reached at the origin of the space, which corresponds to equal
populations for all of the 27 + 1 spin states.
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Figure 7. The coloured arc shows the set of thermal equilibrium
density operators for spins-1 subjected to a dominant magnetic field.
The spin temperature is indicated by colour, progressing from high
(red) to low (blue). The black dot indicates the thermal equilibrium
density operator at a particular temperature 7. All points within the
dark grey region represent hyperpolarized states of the spin-1 en-
semble (density operators) at temperature 7'.

6 Hyperpolarization

6.1 Thermal equilibrium

Thermal equilibrium with the environment at temperature T
is reached when the density operator adopts the following
form:

exp{_thoh/kBT}

e T)= s
P = L exp{— T Heon k5 T})

(37

where Hcop is the coherent part of the spin Hamiltonian (ex-
cluding all fluctuating terms which drive dissipation). Equa-
tion (37) describes a Boltzmann distribution of spin-state
populations under the coherent Hamiltonian Hcop.

In many cases, the coherent Hamiltonian is dominated
by the Zeeman interaction with the main magnetic field,
Heon ~ @I, where the Larmor frequency is ” = —y BO,
and BY is the magnetic field. In this case the thermal equilib-
rium density operator is given by

exp{B1.}
P4 = Tr(exp(BL}}

where the normalized inverse temperature is
B =—hw®/kpT. Since Eq. (38) is non-linear in I, the
thermal equilibrium density operator contains high-rank
polarization moments in thermal equilibrium.

(38)

https://doi.org/10.5194/mr-2-395-2021

The coloured arc in Fig. 7 shows the set of thermal equi-
librium density operators for a dominant Zeeman interaction
(Eq. 38), over a range of spin temperatures. Blue denotes
a low spin temperature (8 — 00), while red denotes a high
spin temperature (8 — 0). Note the increase in the rank-2
polarization moment p;o at low spin temperatures.

6.2 A criterion of hyperpolarization

The von Neumann entropy in thermal equilibrium at temper-
ature 7 is given by

Son(T) = —=Tr{peq(T)In peq(T)}, (39)

where the thermal equilibrium density operator is given by
Eq. (37). We propose the following criterion of hyperpolar-
ization:

SYN < S:&(T) (criterion of hyperpolarization), (40)

where T is the temperature of the environment. Note that this
definition of hyperpolarization makes no explicit mention of
population differences or the existence of a net magnetic mo-
ment in a certain direction.

The criterion in Eq. (40) identifies a region of Liouville
space which is occupied by hyperpolarized states. For exam-
ple, since the black dot in Fig. 7 indicates the thermal equi-
librium density operator for spins / = 1 at temperature T, the
contour line Syn = S:%(T) delineates the region of hyperpo-
larization at temperature 7. All density operators which are
inside the dark grey region represent physically realizable
hyperpolarized states of the spin ensemble.

Being inside the dark grey region is a sufficient but not
necessary criterion of hyperpolarization. Points outside the
dark grey region but within the pale blue region might also
represent hyperpolarized states, in the case that polarization
moments which are not represented in the diagram, i.e. p;,
with {A, u} # {1, 0} and {2, 0}, are sufficiently large.

The criterion in Eq. (40) is readily applied to higher spin
systems, including coupled spin systems. Under this defini-
tion, parahydrogen is hyperpolarized, since the correspond-
ing density operator has a von Neumann entropy of zero,
which is lower than that of any thermal equilibrium state at
finite temperature, even though pure parahydrogen possesses
no magnetic moment or net angular momentum in a given
direction.

7 Non-equilibrium spin dynamics

The dynamics of the spin density operator is governed by a
differential equation called the master equation which takes
into account coherent influences on the spin system (such as
external magnetic fields and non-fluctuating components of
the spin interactions) as well as relaxation effects. Various
forms of the master equation have been proposed. The most
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Figure 8. Non-equilibrium spin dynamics for an ensemble of spin-
1/2 pairs, with Tg >> T1, where Ty is the rate constant for the decay
of singlet order, and 77 is the rate constant for the equilibration of z
polarization. The plot shows an expanded view of Fig. 4 in the vicin-
ity of the red dot, which represents an initial state of 100 % singlet
polarization. Dashed red line: trajectory predicted by the inhomo-
geneous master equation. Solid blue line: trajectory predicted by
the Lindbladian master equation. Both trajectories eventually lead
to the same thermal equilibrium state, represented by a point with
coordinates {0, p;®4}, which is well beyond the left-hand edge of
the plotted region and is not shown.

widely used form is called the inhomogeneous master equa-
tion, which has the following form:

%p = —i Heohp(t) + T (p(1) — peq) (4D
where ﬁcoh is the commutation superoperator of the coherent
Hamiltonian, and I is the relaxation superoperator (Redfield,
1965; Abragam, 1961; Ernst et al., 1987). The equilibrium
spin density operator peq is given by Eq. (37).

The inhomogeneous master Eq. (41) is valid for high-
entropy states which are close to equilibrium and is a stan-
dard component of NMR theory (Redfield, 1965; Abragam,
1961; Ernst et al., 1987). However, in a previous paper
(Bengs and Levitt, 2020), we showed that Eq. (41) loses va-
lidity for low-entropy states and may, in some cases, lead to
non-physical predictions. We proposed a Lindbladian master
equation, which has a wider range of validity.

This point is reinforced by Fig. 8, which compares the pre-
dictions of the inhomogeneous and Lindbladian master equa-
tions when applied to spin-1/2 pairs in a low-entropy state of
pure singlet polarization. The initial state of pure singlet or-
der is shown by the red dot. The plot shows an expanded view

Magn. Reson., 2, 395-407, 2021

of Liouville space, in the vicinity of the initial condition. The
physical bounds of Liouville space are indicated by the blue
triangle, as in Fig. 4.

The red dashed line shows the trajectory predicted by the
IME, in the case that Ts >> T}, where Ty is the relaxation time
constant for singlet order (Levitt, 2019) and T is the relax-
ation time constant for z polarization. Since 77 is relatively
short, the z polarization rapidly assumes its thermal equilib-
rium value psd, which is finite in the presence of a strong
magnetic field. However, as shown in Fig. 8, this leads the
density operator into a forbidden region outside the physical
boundary of Liouville space. This proves that the inhomoge-
neous master equation must be invalid in this regime.

The predicted trajectory of the Lindbladian master equa-
tion, as described in Bengs and Levitt (2020), is shown by
the blue line. This uneventful trajectory always stays well
within the physical boundary of Liouville space.

8 Conclusions

This article has been an exploration of the geometry and
physical boundary of Liouville space, the home territory of
all spin density operators. In the past, most NMR experi-
ments have only explored a tiny region of this space, very
close to the origin (except for the fixed projection onto the
unity operator). However, NMR experiments are increasingly
performed on highly non-equilibrium spin states, which are
sometimes located on or near the physical Liouville space
boundary. We hope that this article is useful as a partial guide
for wanderers in this region.

The word “partial” is used deliberately. So far, we have
concentrated on the aspects of Liouville space which concern
populations, and in the case of spin-1/2 pairs, on operators
that are exchange-symmetric. The map still needs to be com-
pleted by delineating the physical bounds on coherences and
on operators for multiple-spin systems, including those that
are not exchange-symmetric. There has already been signifi-
cant progress in that direction (Goyal et al., 2016; Szymariski
et al., 2018).

The physical bounds discussed in this article should not be
confused with the bounds on the unitary transformations of
density operators (Sgrensen, 1990; Levitt, 1992a, b; Nielsen
and Sgrensen, 1995; Levitt, 2016), which may also be repre-
sented by convex polytopes (Levitt, 1992a, b; Rodin et al.,
2020). The relationship between these different geometric
bounds is another topic for future research.
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