Supplement of Magn. Reson., 2, 409-420, 2021
https://doi.org/10.5194/mr-2-409-2021-supplement

© Author(s) 2021. CC BY 4.0 License. MAGNETIC
A\ RESONANCE
Supplement of

129X e ultra-fast Z spectroscopy enables micromolar detection of
biosensors on a 1 T benchtop spectrometer

Kévin Chighine et al.

Correspondence to: Patrick Berthault (patrick.berthault@cea.fr)

The copyright of individual parts of the supplement might differ from the article licence.

Pulse program of the 129Xe Ultrafast Z-spectroscopy on the Magritek Spinsolve 43 C spectrometer:

FHEH S H AR R

#

A pulse sequence suitable for performing an UFZ on X nuclei
with the Spinsolve Spectrometer (P. Berthault - Jan 2021).

#

FHEH S H AR R R

procedure (pulse program,dir,mode)

Interface description (name, label, ctrl, vartype)

interface = ["nucleus", "Nucleus", "tb", "readonly string";

"blFregX", "X frequency (MHz)", "tb", "freq";
"90AmplitudeXx", "Pulse amplitude (dB)", "tb", "pulseamp";
"pulseLengthX", "Pulse length (us)", "tb", "pulselength";
"ampPs", "Presat amplitude (dB)", "tb", "float,[-85,-16]";
"pulseLengthPs", "Presat length (ms)", "tb", "float, [0,1ed4]";
"blFregPs", "Presat frequency (MHz)", "tb", "freq";

For introducing an homospoil gradient in the sequence

"spoilAmp", "Homospoil amplitude", "tb", "float,[0,led]";

"spoilDur", "Homospoil duration (ms)", "tb", "sdelay";
"shiftPoints", "Number of points to shift", "tb", "float, [-100,1001";
"repTime", "Repetition time (ms)", "tb", "reptime";
"acquDbiv", "Acquisition", "dv", ",
"rxGain", "Receiver gain", "tm", "integer, [-20:3:70]";
"rxChannel", "Receiver channel", "tm",

"String, [\"1H\",\"13C\",\"15N\",\"19F\",\"29$i\",\"31P\",\"X\"]";
"rxPhase", "Receiver phase", "tb",
"nrPnts", "Number of points", "tm",

"integer, [4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768]";

"dwellTime", "Dwell time (us)", "tm",
"float,[0.5,1,2,5,10,20,50,100,200,500,1000,2000]1";
"nrScans", "Number of scans", "tb",
"gradTime", "Gradient on time (us)", "tbhw",
"gradRamp", "Gradient ramp time (us)", "tbhw",
"gradAmp", "Read gradient amplitude", "tbhw",
"kcat", "Ratio G sat/G_acq", "tbhw",
"adjust", "Adjustment delay (us)", "tbhw",
"flatFilter", "Flat filter", "cb",
"accumulate", "Accumulate data", "cb",
"usePhaseCycle", "Phase cycle", "cb",
"bandwidth", "Bandwidth (kHz)", "tb2",
"acqgTime", "Acquisition time (ms)", "tb",
"procDhiv", "Processing", "dv",
"zf", "Zero fill factor?", "tm",
"filter", "Apodisation filter?", "cb",
"filterType", "Filter type", "tm",
"string, [\"none\", \"exponential\",\"sinebellsquared\"]";
"tdPhaseCorr", "Time. domain phasing", "tm",
"string, [\"autophase\",\"mag\", \"none\"1";
"fdPhaseCorr", "Freq. domain phasing", "tm",
"string, [\"autophase\",\"mag\", \"none\"1";
"dispDiv", "Display", "dv",
"usePPMScale", "Use ppm scale?", "cb",
"dispRangeMinPPM", "Minimum ppm value", "tb",
"dispRangeMaxPPM", "Maximum ppm value", "tb",
"dispRange", "Display range (Hz)", "tb",
"filesDiv", "Files", "dv",
"saveData", "Save data?", "cb",

Relationships to determine remaining variable values

relationships = ["nDataPnts = nrPnts",

"blFreg = blFregX",
"a90Amp = 90AmplitudeX",
"d90Dur = pulselengthX",

Homospoil gradient

"nzSpoil = zshim-sign(zshim*spoilAmp)",

"nzShim = zshim",

"dSpoil = spoilDur*1000",
"dRecov = 1500",
"aSat = ampPs",
"wSat = 1000*pulselengthPs",

"float, [-360,360]";

"float, [1,1e8]";
"sdelay";
"sdelay";

"float, [-165000,165000]";

"float, [-1,1]";
"sdelay"; #PB
"no,yes";
"no,yes";
"no,yes";
"float";
"float";

wow o,
7

"integer, [1,2,4,8,16]1";

"no,yes";

"no,yes";

"float, [-2000,20001";
"float, [-2000,20001";
"float, [0,2e6]";

wow o,
7

"false, true"]

"dAcgDelay = ucsUtilities:getacgDelay(d90Dur,shiftPoints,dwellTime)",

"offFreqg = blFreq",

"0l = offFreq",
"wvPPMOffset = 0",

"totPnts = nrPnts",

"totTime = acqTime",

"n2 =0",

"n3 = gradAmp",

"n4 = —gradAmp",

"n5 = n3*kcat",

"d300 = 2",

"n300 = round((gradRamp) /d300)",
"d3 = gradTime-gradRamp",
"d4 = adjust",

"fl = double (blFregX)",
"f2 = 10d*f1",

"f3 = double (blFregPs)",
"f4d = 10d*£3"]

These parameters will be changed between experiments
variables = [""]

Pulse sequence

initpp (dir) # Define compile directory and clear parameter list
settxfreq(£3)
delay (10000) # Wait 10 ms allowing time to finish lock scan

gradramp (n2,n5,n300,d300)
txon (2,aSat,pl)
wait (wSat)
txoff (2)
delay (200)
gradramp (n5,n2,n300,d300)
delay (50)
pulse (2,a90Amp, pl,d90Dur) # RF pulse on channel 2 with phase pl
setrxfreq(£f2)

Spoiler:Z(nzSpoil,nzShim,dSpoil, dRecov)

delay (50)
gradramp (n2,n4,n300,d300)
delay (d3)
gradramp (n4,n2,n300,d300)
delay (200)
gradramp (n2,n3,n300,d300)
delay (d4)
delay (dAcgDelay) # Pulse - acquire delay
acquire ("overwrite",nDataPnts) # Acquire FID
gradramp (n3,n2,n300,d300)
parList = endpp () # Combine commands and return parameter list

Phase cycle list

phaselist = [0,1,2,3; # pl : Pulse phase
0,1,2,3] # pA : Acquire phase

endproc (parList,1list (0),interface, relationships,variables,null, phaselist)

Experiment control:

igddsassssssaa i saaaii g aii st saiti s s tiisatti
PBUFZ1d-129Xe

A pulse sequence suitable for performing an
UFZ on X nuclei on the Spinsolve Spectrometer.

U.I. V5
idddssasdssssaa i aiii gt sanii i saniii s tis sttt

#
#
#
#
#
#
#
#
FHEH A H AR R R
#
The is the entry point for the SpinsolveExpert
interface. It will add the experiment to the parameter
list or with the control key pressed open the
relevant macros in the pulse program compiler.
#
Autogenerated
#
FHEH AR AR R
procedure (PBUFZ1d-129Xe)

macroLocation = getmacropath ()

parentPath = getbasepath (macroLocation)

ppGroup = getbasedir (parentPath)

if (iskeypressed("shift")

PulseProgramCompiler (guiwinnr () ,null, parentPath, "PBUFZ1d-129Xe")

elseif (iskeypressed("control"))
gView->showExperimentHelp ("PBUFZ1d-129Xe")
else
gExpt->addExperiment (ppGroup, "PBUFZ1d-129Xe")
endif

endproc ()
FHEHE AR A

Provide a backdoor interface to this macro. This
adds [""] to the user interface list (guipar)

and also generates the pulse program lists required
by execpp. Finally is calls execpp, returning any
results in the structure '

r'

#
#
#
#
#
#
#
Autogenerated

#

FHEH A H AR R

procedure (backdoor, guipar)

segInfo = :getsegpar ()
r = gSeg->initAndRunPP (getmacropath (), getmacroname (), guipar,

endproc (r)

igddsassssssaa i isaaaii gt saiis gttt sstiiisatti

#

Returns important pulse sequence parameter lists

#

rel relationship between pulse sequence parameters
var ..., variable which change during the pulse sequence
pp_list list of pulse sequence parameters sent to DSP
pp_name name of DSP pulse program to run

phase list .. phase cycling information

#

Autogenerated

#

#

FHEHH AR A
procedure (getseqgpar)

rel = ["nDataPnts
"blFreg

nrPnts",
blFregx",

seqInfo)

"a90Amp = 90AmplitudeX",

"d90Dur = pulselengthX",
"dRecov = 1500",
"aSat = ampPs",
"wSat = 1000*pulselengthPs",
"dAcgDelay = ucsUtilities:getacgDelay(d90Dur,shiftPoints,dwellTime)",
"offFreq = blFreq",
"0l = offFreq",
"wvPPMOffset = 0",
"totPnts = nrPnts",
"totTime = acqTime",
"n2 =0",
"n3 = gradAmp",
"n4 = —-gradAmp",
"n5 = n3*kcat",
"d300 =2",
"n300 = round((gradRamp) /d300)",
"d3 = gradTime-gradRamp",
"d4 = adjust",
"fl = double (blFregX)",
"f2 = 10d*f1",
"f3 = double (blFregPs)",
"f4d = 10d*£3"]

var = [""]

pp_list =

['lf3ll, lln2", "n5", "n300", "d3oo", "asat", "pll', "wsat", "agoAmp", llngDurll, llf2ll, lln4ll, "d3ll, lln3ll, lld4ll, lldAquelayll, lln
DataPnts"]

pp_name = "PBUFZ1d-129Xe.p"
phase list = [0,1,2,3;0,1,2,3]
seqInfo = struct(rel,var,pp list,pp name,phase list)

endproc (segInfo)

igddsssssssasaa s a i saatii st satti s s titssasti

13-0ct-2019 CDE
iddssasdssssasisissaiii gt isaaii iRt sttt sttt

Execute the pulse program, collecting nrScans of

data and displaying the result in the 1D plot.

#

This procedure can be modified to perform more

complex functions using the passed parameters:

#

guipar all parameters from the user interface
ppList the pulse program parameter list

pcList phase-cycle list

pcIndex indices of phase parameters in ppList
varIndex ... indices of variable parameters in ppList
#

#

#

procedure (execpp, guipar, pplist,pclist, pcIndex, varIndex)

Make all gul parameters available
assignlist (guipar)

Allocate space for output data
sumData = cmatrix (totPnts)

Calculate suitable time and frequency axes
tAxis = ([0:1:totPnts-1]/totPnts)*totTime*1000 # ms
fAxis = [-totPnts*zf/2:totPnts*zf/2-1]/ (totTime*zf)*1000 # Hz

Time domain filter

if (filter == "yes")

flt = filters:get filter(filterType, "FTFid", totPnts)
else

flt = matrix(totPnts)+1
endif

Get plot regions
(prt,prf) = ucsPlot:getPlotRegions (guipar, 2)
prt->showimag ("true")
prf->showimag ("false")

Work out frequency axis scale, label and range
(fAxisDisp, fAxisLabel, fRange) = ucsPlot:generatelDFrequencyAxis (prf, fAxis, blFreqgX, wvPPMOffset,
offFreq, guipar)

Initialise progress bar
:updateProgress (-1, guipar)

Accumulate scans
for(scan = 0 to nrScans-1)

tl = time ()

Set phases for this scan
(ppList,pAcqg) = ucsRun:setPPPhase (ppList, scan,pcList,pcIndex)

Send all parameter values to DSP
ucsRun:updatePPParameters (pplist, guipar,wvPort)

Run the pulse program and collect the data
ucsUtilities:suspendLock() # turn lock control loop off
(status,data) = ucsRun:getData (totPnts,guipar)
ucsUtilities:resumeLock() # turn lock control loop on

See if stop button/escape key pressed
if (status != "ok")
return (0)
endif

Shift the data to minimise pl
data = shift (data,round(shiftPoints))

Correct the distortions in start of FID due to digital filter
data = ucsUtilities:correctFilterl (data,dwellTime)

Accumlate the data
sumData = ucsRun:accumulate (accumulate,pAcq, sumData,data)

Correct the first data point

datacorr = sumbData

if (shiftPoints == 1)
datacorr = ucsUtilities:correctFirstPointAmpPhase (sumData)
datacorr[0] = datacorr[0]/2

endif

FID autophase
phCor = phase (datacorr[0]
datacorr = datacorr*exp (-i*phCor)

Process data
(phasedTimeData, spectrum, ph0) =
ucsRun:transformData (zerofill (datacorr.*flt,zf*totPnts, "end"), fAxis,guipar,"fid")

Simple offset baseline correction
spectrum = ucsRun:baselineCorrection (spectrum,"offset",size (spectrum)/32)

Plot the data
ucsPlot:graphTimeAndFreq(prt,prf, tAxis,datacorr, fAxisDisp, spectrum, scan,guipar,
"Time data (scan : $scan+l$)","Spectral data",
"Time (ms)","Amplitude (\G(m)V)",
fAxisLabel, "Amplitude")

Update progress bar
:updateProgress (scan, guipar)

Check timing
check = ucsRun:checkTimeAndAbort (guipar,tl,scan,pclist,"ignoreLastScan")
if (check == "abort")
return (0)
elseif (check == "finish")
scan = scant+l
exitfor ()
endif

next (scan)

Save the data
ucsFiles:savePlot (prt, :getPlotInfo ("ptl"),guipar, "noReport")
ucsFiles:savePlot (prf, :getPlotInfo ("pt2"),guipar, "simpleReport")
ucsFiles:saveMNovaData (prt,"",guipar, "simpleReport")

Save the processing parameters
:saveProcPar (guipar, ph0, fRange)

Pack the data into a structure
result = struct()
result->tAxis = tAxis

result->tData = sumData/scan
result->fAxis = fAxisDisp
result->fData = spectrum/scan
result->par = struct (guipar)

Return result
return (result)

endproc ("execpp") # Don't remove argument

FHAH A H A R
Assign those parameters which should take their

values from the factory defaults when making a

new experiment

FHEHH AR
procedure (getFactoryBasedParameters, par)

specPar = SpinsolveParameterUpdater:readDSPPar (null)
if (specPar == null)
return (null)
endif
assignlist (specPar)

modelPar = ucsUtilities:getModelBasedParameters ("X", specPar)

par = ["rxGain = S$modelPar->rxGains$",
"pulseLengthX = $Pulse length X$",
"90AmplitudeX = $Power_ level X$",
"blFregX = $Frequency X$"]

endproc (par)

FHEH AR AR A R
Get the name of a plot file given the region name

or return the whole list

idddssasdssssas i aiii s aa i isaaii iRt st is sttt

procedure (getPlotInfo,plotRegion)

info = ["ptl","fid.ptl","pt2", "spectrum.ptl"]
if (plotRegion == "all")

return (info)
endif

idx = getlistindex (info,plotRegion)

if (idx != -1)
return (info[idx+1])
endif

endproc (null)

FHEHH AR A
Update the progress bar and experiment times
FHEHH AR A

procedure (updateProgress, scans, guipar)
Define progress/timing expressions
if (isvar ("progressCtrl")
if (isvar ("wvUpdateProgressCtrl"))
if (wvUpdateProgressCtrl == 0)
return
endif

endif

assignlist (guipar)

Define progress/timing expressions

totTime = nrScans*repTime/1000
expTime = (scans+1l) *repTime/1000
remTime = totTime - expTime
progress = 100*expTime/totTime

Update controls
ucsCtrl:updateProgress (scans+l,progress, totTime, expTime, remTime)

endif
endproc ()
FHEH A H A
Save the processing parameters
FHEH A H A

procedure (saveProcPar, guipar,p0, xrange)

assignlist (guipar)

if (saveData == "false")
return
endif
if (usePPMScale == "yes")
xrange = xrange*single (blFregX)
endif
procpar = ["apodizationFunction = \"$filterType$\"",
"baselLineCorrectionMethod = \"None\"",

"displayInPPM = \"$SusePPMScale$\"",
"ftOrigin = \"Start\"",

"ftType = \"Complex\"",

"pOPhase = $p0$",

"plPhase = 0",

"plPivot = 0",

"plFixedPhase = 0",

"phaseMethod = \"p0, pl fixed phase\"",
"ppmOffset = $centerFregPPMS$",
"zeroFill = zf",

"plotWidth = $xrange[l]-xrange[0]$",
"plotStart = $xrange[0]S$",
"shiftPoints = 1"]

cd("$dataDirectory$\\SexpNames$")

if (isfile ("proc.par")

par = load("proc.par")
procpar = mergelists (procpar,par)
endif

save ("proc.par",procpar)
if (isfile("proc_temp.par")
rmfile ("proc_temp.par")

endif

endproc ()

Default parameters:

90AmplitudeX = 0

accumulate = "yes"

acqTime = 102.4

adjust = 50

ampPs = -50

blFregPs = 12.0908299999999990d
blFregX = 12.0925469999999960d
bandwidth = 10

centerFregPPM = 0
dataDirectory = ""

dispRange = 500
dispRangeMaxPPM = 400

dispRangeMinPPM = -400
duration = 17.4336
duration = 3.86377

duration = 34.3631
duration = 8.43994
dwellTime = 100

experiment = "PBUFZ1d-129Xe"
expName = ""

fdPhaseCorr = "mag"

filter = "yes"

filterType = "exponential"
flatFilter = "yes"

gradAmp = -20000

gradRamp = 200
gradTime = 2000

" "

incExpNr = "no
kcat = -0.5
nrPnts = 1024
nrScans = 1
nucleus = "X"

offFreq = 0
offFregbPs = 0

percentageCompleted = 100
percentageCompleted = 100
percentageCompleted = 100

percentageCompleted = 100
pulselengthPs = 2500
pulseLengthX = 150
repTime = 2800

rxChannel = "X"

rxGain = 61

rxPhase = 0
saveData = "true
shiftPoints = 1
softwareVersion = "1.40.9"
specID = ""

specType =
spoilAmp = 7000
spoilbur = 5

"

nn

tdPhaseCorr = "none"
usePhaseCycle = "yes"
usePPMScale = "yes"

zf =1

