
Supplement of Magn. Reson., 2, 409–420, 2021
https://doi.org/10.5194/mr-2-409-2021-supplement
© Author(s) 2021. CC BY 4.0 License.

Open Access

Supplement of

129Xe ultra-fast Z spectroscopy enables micromolar detection of
biosensors on a 1 T benchtop spectrometer
Kévin Chighine et al.

Correspondence to: Patrick Berthault (patrick.berthault@cea.fr)

The copyright of individual parts of the supplement might differ from the article licence.

Pulse program of the 129Xe Ultrafast Z-spectroscopy on the Magritek Spinsolve 43 C spectrometer:

A pulse sequence suitable for performing an UFZ on X nuclei
with the Spinsolve Spectrometer (P. Berthault - Jan 2021).

procedure(pulse_program,dir,mode)

Interface description (name, label, ctrl, vartype)
 interface = ["nucleus", "Nucleus", "tb", "readonly_string";
 "b1FreqX", "X frequency (MHz)", "tb", "freq";
 "90AmplitudeX", "Pulse amplitude (dB)", "tb", "pulseamp";
 "pulseLengthX", "Pulse length (us)", "tb", "pulselength";
 "ampPs", "Presat amplitude (dB)", "tb", "float,[-85,-16]";
 "pulseLengthPs", "Presat length (ms)", "tb", "float,[0,1e4]";
 "b1FreqPs", "Presat frequency (MHz)", "tb", "freq";
For introducing an homospoil gradient in the sequence
"spoilAmp", "Homospoil amplitude", "tb", "float,[0,1e4]";
"spoilDur", "Homospoil duration (ms)", "tb", "sdelay";
 "shiftPoints", "Number of points to shift", "tb", "float,[-100,100]";
 "repTime", "Repetition time (ms)", "tb", "reptime";
 "acquDiv", "Acquisition", "dv", "";
 "rxGain", "Receiver gain", "tm", "integer,[-20:3:70]";
 "rxChannel", "Receiver channel", "tm",
"string,[\"1H\",\"13C\",\"15N\",\"19F\",\"29Si\",\"31P\",\"X\"]";
 "rxPhase", "Receiver phase", "tb", "float,[-360,360]";
 "nrPnts", "Number of points", "tm",
"integer,[4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768]";
 "dwellTime", "Dwell time (us)", "tm",
"float,[0.5,1,2,5,10,20,50,100,200,500,1000,2000]";
 "nrScans", "Number of scans", "tb", "float,[1,1e8]";
 "gradTime", "Gradient on time (us)", "tbw", "sdelay";
 "gradRamp", "Gradient ramp time (us)", "tbw", "sdelay";
 "gradAmp", "Read gradient amplitude", "tbw", "float,[-165000,165000]";
 "kcat", "Ratio G_sat/G_acq", "tbw", "float,[-1,1]";
 "adjust", "Adjustment delay (us)", "tbw", "sdelay"; #PB
 "flatFilter", "Flat filter", "cb", "no,yes";
 "accumulate", "Accumulate data", "cb", "no,yes";
 "usePhaseCycle", "Phase cycle", "cb", "no,yes";
 "bandwidth", "Bandwidth (kHz)", "tb2", "float";
 "acqTime", "Acquisition time (ms)", "tb", "float";

 "procDiv", "Processing", "dv", "";
 "zf", "Zero fill factor?", "tm", "integer,[1,2,4,8,16]";
 "filter", "Apodisation filter?", "cb", "no,yes";
 "filterType", "Filter type", "tm",
"string,[\"none\",\"exponential\",\"sinebellsquared\"]";
 "tdPhaseCorr", "Time. domain phasing", "tm",
"string,[\"autophase\",\"mag\",\"none\"]";
 "fdPhaseCorr", "Freq. domain phasing", "tm",
"string,[\"autophase\",\"mag\",\"none\"]";
 "dispDiv", "Display", "dv", "";
 "usePPMScale", "Use ppm scale?", "cb", "no,yes";
 "dispRangeMinPPM", "Minimum ppm value", "tb", "float,[-2000,2000]";
 "dispRangeMaxPPM", "Maximum ppm value", "tb", "float,[-2000,2000]";
 "dispRange", "Display range (Hz)", "tb", "float,[0,2e6]";
 "filesDiv", "Files", "dv", "";
 "saveData", "Save data?", "cb", "false,true"]

Relationships to determine remaining variable values
 relationships = ["nDataPnts = nrPnts",
 "b1Freq = b1FreqX",
 "a90Amp = 90AmplitudeX",
 "d90Dur = pulseLengthX",
Homospoil gradient
"nzSpoil = zshim-sign(zshim*spoilAmp)",
"nzShim = zshim",
"dSpoil = spoilDur*1000",
 "dRecov = 1500",
 "aSat = ampPs",
 "wSat = 1000*pulseLengthPs",

 "dAcqDelay = ucsUtilities:getacqDelay(d90Dur,shiftPoints,dwellTime)",
 "offFreq = b1Freq",
 "O1 = offFreq",
 "wvPPMOffset = 0",
 "totPnts = nrPnts",
 "totTime = acqTime",
 "n2 = 0",
 "n3 = gradAmp",
 "n4 = -gradAmp",
 "n5 = n3*kcat",
 "d300 = 2",
 "n300 = round((gradRamp)/d300)",
 "d3 = gradTime-gradRamp",
 "d4 = adjust",
 "f1 = double(b1FreqX)",
 "f2 = 10d*f1",
 "f3 = double(b1FreqPs)",
 "f4 = 10d*f3"]

These parameters will be changed between experiments
 variables = [""]

Pulse sequence
 initpp(dir) # Define compile directory and clear parameter list
 settxfreq(f3)
 delay(10000) # Wait 10 ms allowing time to finish lock scan
 gradramp(n2,n5,n300,d300)
 txon(2,aSat,p1)
 wait(wSat)
 txoff(2)
 delay(200)
 gradramp(n5,n2,n300,d300)
 delay(50)
 pulse(2,a90Amp,p1,d90Dur) # RF pulse on channel 2 with phase p1
 setrxfreq(f2)
Spoiler:Z(nzSpoil,nzShim,dSpoil,dRecov)
delay(50)
 gradramp(n2,n4,n300,d300)
 delay(d3)
 gradramp(n4,n2,n300,d300)
 delay(200)
 gradramp(n2,n3,n300,d300)
 delay(d4)
 delay(dAcqDelay) # Pulse - acquire delay
 acquire("overwrite",nDataPnts) # Acquire FID
 gradramp(n3,n2,n300,d300)
 parList = endpp() # Combine commands and return parameter list

Phase cycle list
 phaseList = [0,1,2,3; # p1 : Pulse phase
 0,1,2,3] # pA : Acquire phase

endproc(parList,list(0),interface,relationships,variables,null,phaseList)
	

Experiment control:

PBUFZ1d-129Xe

A pulse sequence suitable for performing an
UFZ on X nuclei on the Spinsolve Spectrometer.

U.I. V5

The is the entry point for the SpinsolveExpert
interface. It will add the experiment to the parameter
list or with the control key pressed open the
relevant macros in the pulse program compiler.

Autogenerated

procedure(PBUFZ1d-129Xe)

 macroLocation = getmacropath()
 parentPath = getbasepath(macroLocation)
 ppGroup = getbasedir(parentPath)

 if(iskeypressed("shift"))
 PulseProgramCompiler(guiwinnr(),null,parentPath,"PBUFZ1d-129Xe")
 elseif(iskeypressed("control"))
 gView->showExperimentHelp("PBUFZ1d-129Xe")
 else
 gExpt->addExperiment(ppGroup,"PBUFZ1d-129Xe")
 endif

endproc()

Provide a backdoor interface to this macro. This
adds [""] to the user interface list (guipar)
and also generates the pulse program lists required
by execpp. Finally is calls execpp, returning any
results in the structure 'r'.

Autogenerated

procedure(backdoor, guipar)

 seqInfo = :getseqpar()
 r = gSeq->initAndRunPP(getmacropath(), getmacroname(), guipar, seqInfo)

endproc(r)

Returns important pulse sequence parameter lists

rel relationship between pulse sequence parameters
var variable which change during the pulse sequence
pp_list list of pulse sequence parameters sent to DSP
pp_name name of DSP pulse program to run
phase_list .. phase cycling information

Autogenerated

procedure(getseqpar)

 rel = ["nDataPnts = nrPnts",
 "b1Freq = b1FreqX",

 "a90Amp = 90AmplitudeX",
 "d90Dur = pulseLengthX",
 "dRecov = 1500",
 "aSat = ampPs",
 "wSat = 1000*pulseLengthPs",
 "dAcqDelay = ucsUtilities:getacqDelay(d90Dur,shiftPoints,dwellTime)",
 "offFreq = b1Freq",
 "O1 = offFreq",
 "wvPPMOffset = 0",
 "totPnts = nrPnts",
 "totTime = acqTime",
 "n2 = 0",
 "n3 = gradAmp",
 "n4 = -gradAmp",
 "n5 = n3*kcat",
 "d300 = 2",
 "n300 = round((gradRamp)/d300)",
 "d3 = gradTime-gradRamp",
 "d4 = adjust",
 "f1 = double(b1FreqX)",
 "f2 = 10d*f1",
 "f3 = double(b1FreqPs)",
 "f4 = 10d*f3"]
 var = [""]
 pp_list =
["f3","n2","n5","n300","d300","aSat","p1","wSat","a90Amp","d90Dur","f2","n4","d3","n3","d4","dAcqDelay","n
DataPnts"]
 pp_name = "PBUFZ1d-129Xe.p"
 phase_list = [0,1,2,3;0,1,2,3]

 seqInfo = struct(rel,var,pp_list,pp_name,phase_list)

endproc(seqInfo)

Execute the pulse program, collecting nrScans of
data and displaying the result in the 1D plot.

This procedure can be modified to perform more
complex functions using the passed parameters:

guipar all parameters from the user interface
ppList the pulse program parameter list
pcList phase-cycle list
pcIndex indices of phase parameters in ppList
varIndex ... indices of variable parameters in ppList

13-Oct-2019 CDE

procedure(execpp,guipar,ppList,pcList,pcIndex,varIndex)

Make all gui parameters available
 assignlist(guipar)

Allocate space for output data
 sumData = cmatrix(totPnts)

Calculate suitable time and frequency axes
 tAxis = ([0:1:totPnts-1]/totPnts)*totTime*1000 # ms
 fAxis = [-totPnts*zf/2:totPnts*zf/2-1]/(totTime*zf)*1000 # Hz

Time domain filter
 if(filter == "yes")
 flt = filters:get_filter(filterType,"FTFid",totPnts)
 else
 flt = matrix(totPnts)+1
 endif

Get plot regions
 (prt,prf) = ucsPlot:getPlotRegions(guipar,2)
 prt->showimag("true")
 prf->showimag("false")

Work out frequency axis scale, label and range
 (fAxisDisp,fAxisLabel,fRange) = ucsPlot:generate1DFrequencyAxis(prf, fAxis, b1FreqX, wvPPMOffset,
offFreq, guipar)

Initialise progress bar
 :updateProgress(-1,guipar)

Accumulate scans
 for(scan = 0 to nrScans-1)

 t1 = time()

 # Set phases for this scan
 (ppList,pAcq) = ucsRun:setPPPhase(ppList,scan,pcList,pcIndex)

 # Send all parameter values to DSP
 ucsRun:updatePPParameters(ppList,guipar,wvPort)

 # Run the pulse program and collect the data
 ucsUtilities:suspendLock() # turn lock control loop off
 (status,data) = ucsRun:getData(totPnts,guipar)
 ucsUtilities:resumeLock() # turn lock control loop on

 # See if stop button/escape key pressed
 if(status != "ok")
 return(0)
 endif

 # Shift the data to minimise p1
 data = shift(data,round(shiftPoints))

 # Correct the distortions in start of FID due to digital filter
 data = ucsUtilities:correctFilter1(data,dwellTime)

 # Accumlate the data
 sumData = ucsRun:accumulate(accumulate,pAcq,sumData,data)

 # Correct the first data point
 datacorr = sumData
 if (shiftPoints == 1)
 datacorr = ucsUtilities:correctFirstPointAmpPhase(sumData)
 datacorr[0] = datacorr[0]/2
 endif

 # FID autophase
 phCor = phase(datacorr[0])
 datacorr = datacorr*exp(-i*phCor)

 # Process data
 (phasedTimeData,spectrum,ph0) =
ucsRun:transformData(zerofill(datacorr.*flt,zf*totPnts,"end"),fAxis,guipar,"fid")

 # Simple offset baseline correction
 # spectrum = ucsRun:baselineCorrection(spectrum,"offset",size(spectrum)/32)

 # Plot the data
 ucsPlot:graphTimeAndFreq(prt,prf,tAxis,datacorr,fAxisDisp,spectrum,scan,guipar,
 "Time data (scan : $scan+1$)","Spectral data",
 "Time (ms)","Amplitude (\G(m)V)",
 fAxisLabel,"Amplitude")

 # Update progress bar
 :updateProgress(scan,guipar)

 # Check timing
 check = ucsRun:checkTimeAndAbort(guipar,t1,scan,pcList,"ignoreLastScan")
 if(check == "abort")
 return(0)
 elseif(check == "finish")
 scan = scan+1
 exitfor()
 endif

 next(scan)

Save the data
 ucsFiles:savePlot(prt,:getPlotInfo("pt1"),guipar,"noReport")
 ucsFiles:savePlot(prf,:getPlotInfo("pt2"),guipar,"simpleReport")
 ucsFiles:saveMNovaData(prt,"",guipar,"simpleReport")

Save the processing parameters
 :saveProcPar(guipar,ph0,fRange)

Pack the data into a structure
 result = struct()
 result->tAxis = tAxis
 result->tData = sumData/scan
 result->fAxis = fAxisDisp
 result->fData = spectrum/scan
 result->par = struct(guipar)

Return result
 return(result)

endproc("execpp") # Don't remove argument

Assign those parameters which should take their
values from the factory defaults when making a
new experiment

procedure(getFactoryBasedParameters, par)

 specPar = SpinsolveParameterUpdater:readDSPPar(null)
 if(specPar == null)
 return(null)
 endif
 assignlist(specPar)

 modelPar = ucsUtilities:getModelBasedParameters("X",specPar)

 par = ["rxGain = $modelPar->rxGain$",
 "pulseLengthX = $Pulse_length_X$",
 "90AmplitudeX = $Power_level_X$",
 "b1FreqX = $Frequency_X$"]

endproc(par)

Get the name of a plot file given the region name
or return the whole list

procedure(getPlotInfo,plotRegion)

 info = ["pt1","fid.pt1","pt2","spectrum.pt1"]

 if(plotRegion == "all")
 return(info)
 endif

 idx = getlistindex(info,plotRegion)
 if(idx != -1)
 return(info[idx+1])
 endif

endproc(null)

Update the progress bar and experiment times

procedure(updateProgress, scans, guipar)

Define progress/timing expressions

 if(isvar("progressCtrl"))

 if(isvar("wvUpdateProgressCtrl"))
 if(wvUpdateProgressCtrl == 0)
 return
 endif
 endif

 assignlist(guipar)

 # Define progress/timing expressions
 totTime = nrScans*repTime/1000
 expTime = (scans+1)*repTime/1000
 remTime = totTime - expTime
 progress = 100*expTime/totTime

 # Update controls
 ucsCtrl:updateProgress(scans+1,progress,totTime,expTime,remTime)

 endif

endproc()

#################################
Save the processing parameters
#################################

procedure(saveProcPar,guipar,p0,xrange)

 assignlist(guipar)

 if(saveData == "false")
 return
 endif

 if(usePPMScale == "yes")
 xrange = xrange*single(b1FreqX)
 endif

 procpar = ["apodizationFunction = \"$filterType$\"",
 "baseLineCorrectionMethod = \"None\"",
 "displayInPPM = \"$usePPMScale$\"",
 "ftOrigin = \"Start\"",
 "ftType = \"Complex\"",
 "p0Phase = $p0$",
 "p1Phase = 0",
 "p1Pivot = 0",
 "p1FixedPhase = 0",
 "phaseMethod = \"p0, p1 fixed phase\"",
 "ppmOffset = $centerFreqPPM$",
 "zeroFill = zf",
 "plotWidth = $xrange[1]-xrange[0]$",
 "plotStart = $xrange[0]$",
 "shiftPoints = 1"]

 cd("$dataDirectory$\\$expName$")

 if(isfile("proc.par"))
 par = load("proc.par")
 procpar = mergelists(procpar,par)
 endif

 save("proc.par",procpar)

 if(isfile("proc_temp.par"))
 rmfile("proc_temp.par")
 endif

endproc()
	

Default parameters:

90AmplitudeX = 0
accumulate = "yes"
acqTime = 102.4
adjust = 50
ampPs = -50
b1FreqPs = 12.0908299999999990d
b1FreqX = 12.0925469999999960d
bandwidth = 10
centerFreqPPM = 0
dataDirectory = ""
dispRange = 500
dispRangeMaxPPM = 400
dispRangeMinPPM = -400
duration = 17.4336
duration = 3.86377
duration = 34.3631
duration = 8.43994
dwellTime = 100
experiment = "PBUFZ1d-129Xe"
expName = ""
fdPhaseCorr = "mag"
filter = "yes"
filterType = "exponential"
flatFilter = "yes"
gradAmp = -20000
gradRamp = 200
gradTime = 2000
incExpNr = "no"
kcat = -0.5
nrPnts = 1024
nrScans = 1
nucleus = "X"
offFreq = 0
offFreqPs = 0
percentageCompleted = 100
percentageCompleted = 100
percentageCompleted = 100
percentageCompleted = 100
pulseLengthPs = 2500
pulseLengthX = 150
repTime = 2800
rxChannel = "X"
rxGain = 61
rxPhase = 0
saveData = "true"
shiftPoints = 1
softwareVersion = "1.40.9"
specID = ""
specType = ""
spoilAmp = 7000
spoilDur = 5
tdPhaseCorr = "none"
usePhaseCycle = "yes"
usePPMScale = "yes"
zf = 1

