Supplement of Magn. Reson., 2, 421-446, 2021
https://doi.org/10.5194/mr-2-421-2021-supplement

© Author(s) 2021. CC BY 4.0 License. MAGNETIC
A\ RESONANCE
Supplement of

Extended Bloch—-McConnell equations for mechanistic analysis of

hyperpolarized '>C magnetic resonance experiments on
enzyme systems

Thomas R. Eykyn et al.

Correspondence to: Thomas R. Eykyn (thomas.eykyn@kcl.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

Supplemental Information - Extended Bloch-McConnell equations for mechanistic analysis of hyperpolarized

13C magnetic resonance experiments on enzyme systems

Matlab scripts used for simulation in Figures 1-8. These are provided here in full to enable a more detailed exploration
of influence of different parameters on the simulations. Readers are invited to contact the corresponding author should
further clarification be required.

S1 Matlab program for numerically solving the Bloch McConnell equations for Figure 1

o
o

o° o

Set equilibrium magnetizations Meg

MegA = 1; MegB = 0.8;

o

o
S

% Set initial magnetization MO in basis vector [Ax Ay Az Bx By Bz]

MO = [0,0,MeqgA,0,0,MeqB];

o

o° oo

Set relaxation rate constants rl and r2, exchange rate constants k and
% peak frequencies freq

rl =1; r2 = 1;
kAB = 0; kBA = 0;
freq A = 10*2*pi; freq B = -10*2*pi;
% Set spectral acquisition parameters sw = sweep width, td = # time domain

% points, dt = dwell time

sw = 60; td = 256; dt = 1/sw;

0o
ok
o

5 Set RF pulse parameters, Bl = field strength, phi
% RF offset, t pulse = RF pulse duration

RF phase offset =

Bl = 1500*2*pi; phi = 90*pi/180; offset = 0*2*pi;
flip angle = 90; t pulse = flip angle*pi/ (180*Bl);

ok

5 Set input parameters as vector xIn

xIn = [rl,r2,freq A, freq B,Bl,offset,phi,MeqgA,MeqgB, kAB, kBA];

)
5o

o

% Calculate evolution during pulse using DEs BlochMcConnell

options = odeset ('RelTol’',le-6, 'AbsTol',le-6);
[~,Mt] = ode45(@BlochMcConnell, [0,t pulse],M0,options, xIn);
Bl = 0; xIn(5) = Bl;

% Calculate evolution during FID using DEs BlochMcConnell

options = odeset ('RelTol',le-6, 'AbsTol',le-6);
[t,Mt] = oded5(@BlochMcConnell,dt:dt:td*dt,Mt (end, :),options,xIn);

oo

% Define observable magnetization Ax - i*Ay + Bx - 1*By;

Obs = Mt(:,1) - 1i*Mt(:,2) + Mt(:,4) - 1i*Mt(:,5);

o

<
5

% Calculate fid and spectrum

noise = randn(l,td)' 4+ li*randn(l,td)"';

1b = 0; phase = 0;

fid (Obs + noise/10) .*exp (-1lb*t) *exp (1li*phase*pi/180);
sig = fft(fid);

spec = [sig(td/2+1:td);sig(1l:td/2)];

freq scale = sw/2:-sw/ (td-1) :-sw/2;

oo

% Plot results

subplot (1,3,1); plot(t,real(fid),'k');
subplot(1,3,2); plot(freq scale,real (spec),'k")
subplot(1,3,3); plot(t,Mt(:,3),"'k"',t,Mt(:,6),'r

’
1

)i

o

function dMt = BlochMcConnell (t,Mt,xIn)

dMt = zeros(6,1);

rl = xIn(1l); r2 = xIn(2);
freq A = xIn(3); freq B = xIn(4);
MegA = xIn(8); MegB = xIn(9);
kAB = xIn(10); kBA = xIn(11);
wx = REx(t,xIn(5),xIn(6),xIn(7)); % Calculate pulse wx
wy = RFy(t,xIn(5),xIn(6),xIn(7)); % Calculate pulse wy
dMt (1) = - (r2+kAB)*Mt (1) - freq A*Mt(2) + wy*Mt(3) + kBA*Mt (4); SAX
dMt (2) = freg A*Mt(l) - (r2+kAB)*Mt(2) - wx*Mt(3) + kBA*Mt(5); $Ay
dMt (3) = —wy*Mt (1) + wx*Mt(2) - (rl+kAB)*Mt(3) + kBA*Mt(6) + rl*MegA; %Az
dMt (4) = kAB*Mt (1) - (r2+kBA)*Mt(4) - freq B*Mt(5) + wy*Mt(6); $Bx
dMt (5) = kAB*Mt (2) + freq B*Mt (4) - (r2+kBA)*Mt(5) - wx*Mt(6); 3By
dMt (6) = KkAB*Mt(3) - wy*Mt(4) + wx*Mt(5) - (rl+kBA)*Mt(6) + rl*MegB; %Bz
function [a] = RFx(tH,Bl,offset,phi)

a = Bl*cos(offset*tH + phi);
end
function [a] = RFy(tH,Bl,offset,phi)

a = Bl*sin(offset*tH + phi);
end

end

S2 Matlab program for numerically solving the Bloch McConnell equations for hyperpolarized Kinetics in
Figure 2

oo
o

o° o\

Set equilibrium magnetizations Meg
MegA = 1; MegB = 0.8;

3
S

o

Set initial magnetization MO in basis vector [Ax Ay Az Bx By Bz]

o

enhancement factor = le4;
M0 = [0,0,MegA*enhancement factor,0,0,0];

oo

<
g

o°

Set relaxation rate constants rl and r2, exchange rate constants k and
peak frequencies freqg

o©

rl = 1/60; r2 = 1;
kAB = 0.005; kBA = 0.005;
freq A = 10*2*pi; freq B = -10*2*pi;

o
°

o° oo

Set spectral acquisition parameters sw = sweep width, td = # time domain
points, dt = dwell time

o°

sw = 60; td = 256; dt = 1/sw;

oo

o
S

Set RF pulse parameters, Bl = field strength, phi = RF phase, offset =
RF offset, t pulse = RF pulse duration

o°

oe

Bl = 1500*2*pi; phi = 90*pi/180; offset = 0*2*pi;
flip angle = 1;

oo

o
S

Set input parameters as vector xIn

oe

xIn = [rl,r2,freq A, freq B,Bl,offset,phi,MeqgA,MeqgB, kAB, kBA];

oe

o
g

o

Create 2D data matrix SPEC and FID and time vector T, temporal resolution
dtl

o

tdl = 64; dtl = 4.25; T = dtl:dtl:tdl*dtl;
SPEC=zeros (td, tdl); FID=zeros (td, tdl);
Mt = MO;

oe
oe

o

for m = 1:1:tdl

% Calculate evolution during pulse using DEs BlochMcConnell

Bl = 1500*2*pi; xIn(5) = Bl; t pulse = flip angle*pi/ (180*Bl);
options = odeset('RelTol',le-6, 'AbsTol',le-6);

[~,Mt] = ode45(@BlochMcConnell, [0,t pulse],Mt (end,:),options,xIn);
Bl = 0; xIn(5) = Bl;

% Calculate evolution during FID using DEs BlochMcConnell
options = odeset ('RelTol’',le-6, 'AbsTol',le-6);
[t,Mt] = ode45 (@BlochMcConnell,dt:dt:td*dt,Mt (end, :),options,xIn);

% Calculate observable magnetization Ax - i*Ay + Bx - i*By;
Obs = Mt(:,1) - 1i*Mt(:,2) + Mt(:,4) - 1i*Mt(:,5);

o

Calculate fid and spectrum

noise = randn(l,td)' + li*randn(1l,td)"';
1lb = 0; phase = 0;
fid = (Obs+noise./10).*exp (-1lb*t).*exp (li*phase*pi/180);

sig = fft(fid);
spec [sig(td/2+1:td);sig(1l:td/2)];
freq scale sw/2:-sw/ (td-1) :-sw/2;

FID(:,m)
SPEC (:,m)

fid;
spec;

Plot results as a waterfall plot

waterfall (freq scale,T,real (SPEC'));axis square;axis tight;

Plot 1st and last spectrum in time series

figure;

subplot (2,2,1);
subplot (2,2,2);
subplot(2,2,3);
subplot(2,2,4);

plot(t,real (FID(:,1)),'k");

plot (freq scale,real (SPEC(:,1)),'k");
plot(t,real (FID(:,tdl)), "k');

plot (freq scale,real (SPEC(:,tdl)), 'k");

oe

function dMt BlochMcConnell (t,Mt, xIn)

dMt = zeros(6,1);
rl = xIn(l); =2 = xIn(2);
freqg A = xIn(3); freq B = xIn(4);
MegA = xIn(8); MeqgB = xIn(9);
kAB = xIn(10); kBA = xIn(11);
wx = REx(t,xIn(5),xIn(6),xIn(7)); % Calculate pulse wx
wy = RFy(t,xIn(5),xIn(6),xIn(7)); % Calculate pulse wy
dMt (1) = -(r2+kAB)*Mt (1) - freq A*Mt(2) + wy*Mt(3) + kBA*Mt (4); SAX
dMt (2) = freq A*Mt(l) - (r2+kAB)*Mt(2) - wx*Mt(3) + kBA*Mt(5); SAy
dMt (3) = —wy*Mt (1) + wx*Mt(2) - (rl+kAB)*Mt(3) + kBA*Mt(6) + rl*MegA; %Az
dMt (4) = kAB*Mt (1) - (r2+kBA)*Mt(4) - freq B*Mt(5) + wy*Mt(6); $Bx
dMt (5) = kAB*Mt (2) + freq B*Mt (4) - (r2+kBA)*Mt(5) - wx*Mt(6); 3By
dMt (6) = KkAB*Mt(3) - wy*Mt(4) + wx*Mt(5) - (rl+kBA)*Mt(6) + rl*MegB; %Bz
function [a] = RFx(tH,Bl,offset,phi)

a = Bl*cos(offset*tH + phi);
end
function [a] = RFy(tH,Bl,offset,phi)

a = Bl*sin(offset*tH + phi);
end

end

S3 Matlab program for numerically calculating **C relaxation times based on a simple dipole-dipole plus
chemical shift anisotropy mechanism in Figure 3

©

D o
5o

o

Set gyromagnetic ratios gamma of 1H and 13C

gamma H = 26.7522e7; gamma C = 6.7283e7; % rad s-1 T-1

oo

<
>

oe

Set chemical shift anisotropies csa of 1H and 13C
csa H = 10e-6; csa C = -98e-6;

[

oe

oe

Set Planck's constant h, Boltzmann constant kB, vacuum permeability no
h = 6.626176e-34; hbar = h/(2*pi); kB = 1.380658e-23; mu = 4*pi*le-7;

o

oe

Set vectors for magnetic field BO and rotational correlation time tc

oe

BO = (0.5:0.5:14.1)";
x = =-12:0.1:-7;
tc = 10."x;

o
S

Set Larmor frequencies

oo

oe

wH = -gamma H*BO;
wC = -gamma C*BO;

o

Set CH bond length, dipolar coupling constant and csa constant

o o

o°

Set rch ~ 1.09e-10 one bond C-H distance

oe

rch = 1.45e-10;
d = (mu/(4*pi))* (gamma H*gamma C*hbar/rch”3);
c = gamma_ C*BO*csa_C;

oe

o
g

Calculate spectral density functions

oe

Jo 2*tc.*ones (length(B0O),1);

Jc 2*tc./ (1 + (wC."2*tc.”2));

Jh = 2*tc./ (1 + (WH."2*tc.”2));

Jmin = 2*tc./ (1 + ((wH - wC)."2*tc.”2));
Jplus = 2*tc./ (1 + ((wH + wC)."2*tc.”2));
Jhh = 2*tc./ (1 + ((wH + wH)."2*tc.”2));

o
oe

% Calculate dipole-dipole relaxation rate constants and time constants

R1DD d”2*((3/20)*Jc + (1/20)*Jmin + (3/10)*Jplus);
R2DD d”2*((1/10)*J0 + (3/40)*Jc + (1/40)*Jmin + (3/20)*Jh + (3/20)*Jplus);
T1DD = 1./R1DD; T2DD = 1./R2DD;

o
o

% Calculate CSA relaxation rate constants and time constants

RICSA = c.”2.*((1/15)*Jc);
R2CSA = c.”2.*%((2/45)*J0 + (1/30)*Jc);
TICSA = 1./RICSA; T2CSA = 1./R2CSA;

o
g

% Calculate sum of DD and CSA contributions to R1 and R2

oo

oo
o

o

R1 R1DD + RICSA;
R2 = R2DD + R2CSA;
Tl = 1./R1; T2 = 1./R2;

Surface plot of Tl and T2 as a function of BO and tauc

subplot (1,2,1);
mesh (BO,x,Tl') ;axis square;
subplot (1,2,2);
mesh (B0, x,T2") ;axis square;

S4 Matlab program for numerically calculating hyperpolarized kinetics of a first order two-site exchange

reaction A « B in Figure 4

oo

% Set initial magnetizations A*(0) = A0, A(0) = a0, B*(0) = 0; B(0)

bO0;

oo
\

o

Set relaxation rate constants rl and r2, exchange rate constants k

rlA
kAB

1/60; rlB 1/60;
0.01; kBA = 0.005;

oo

% Set initial magnetization basis vector [A* B* A B]
MO = [A0,B0,a0,b0];

o

Set input parameters as vector xIn

oe

oe

xIn = [rlA,rlB,kAB,kBA];

o

Set time vector for simulation

oe

o°

dt = 0.01; tmax = 600;
t = 0:dt:tmax;

oo

o
S

Calculate time evolution using DE function diff egs

oe

options = odeset ('RelTol',le-6, ' 'AbsTol',le-6);
[tx,y] = odelb5s(@diff egs,t,MO0,options,xIn);

o0

o2
°

Plot results

o0

subplot (1,2,1);
plot(t,y(:,1),'k", t,y(:,2), ', t,y(:,3), "k=",t,y(:,4),"'c==");
subplot(1,2,2);

plot(t,y(:, 1)+y(:,3),'k',t,y(:,2)+y(:,4),'c");

o0
o0

function dy = diff eqgs(~,y,xIn)
dy = zeros(4,1);

rlA = xIn(l); rlB = xIn(2);
kAB = xIn(3); kBA = xIn(4);

dy (1) = -kAB*y(l) + kBA*y(2) - rlA*y(l); % A*
dy(2) = kAB*y(l) - kBA*y(2) - rlB*y(2); s B*
dy (3) = -kAB*y(3) + kBA*y(4) + rlA*y(l); s A
dy(4) = KkAB*y(3) - kBA*y(4) + rlB*y(2); 5 B

end

S5 Matlab program for numerically calculating hyperpolarized kinetics of a first order three-site exchange
reaction A < B « Cin Figure 5

Set initial magnetizations A*(0) = A0, B*(0)
a(0); B(0) = b0; C(0) = cO;

I
w
o
Q
*
S
I
Q
o
>
o
I

o o° o

o° oP
o

Set relaxation rate constants rl and r2, exchange rate constants k

rlA = 1/60; rlB 1/60; rilcC 1/60;
kAB = 0.01; kBA = 0.005; kBC = 0.01; kCB = 0.005;

<

o° o

Set initial magnetization basis vector [A* B* C* A B C]

MO = [AO,B0,CO0,a0,b0,c0];

oe

o

o°

Set input parameters as vector xIn

xIn = [rlA,rlB,rl1C, kAB, kBA, kBC, kCB];

o

o
S

Set time vector for simulation

o°

dt = 0.01; tmax = 600;
t = 0:dt:tmax;

oe

o

oe

Calculate time evolution using DE function diff egs

options = odeset('RelTol',le-6, 'AbsTol',le-6);
[t,y] = odel5s(Qdiff egs,t,MO0,options,xIn);

o
°

Plot results

o0

oe

subplot(1l,2,1)

plot(t,y(:,1),'k',t,y(:,2),'b',t,y(:,3),'r"); hold on;
plot(t,y(:,4), 'k-—-",t,y(:,5),'b-—=",t,y(:,6),'vt=—=");

subplot (1,2,2)
plot(t,y(:,1)+y(:,4),'k',t,y(:,2)+y(:,5),'b',t,y(:,3)+y(:,6),'c");

oe

function dy = diff egs(~,y,xIn)
dy = zeros(6,1);

rlA = xIn(l); rlB = xIn(2); rlC = xIn(3);
kAB = xIn(4); kBA = xIn(5); kBC = xIn(6); kCB = xIn(7);

dy (1) = -kAB*y(l) + kBA*y(2) - rlA*y(l); S A*
dy(2) = kaB*y(l) - kBA*y(2) - kBC*y(2) + kCB*y(3) - rlB*y(2); % B*
dy(3) = KkBC*y(2) - kCB*y(3) - rlC*y(3); % C*
dy(4) = -kAB*y(4) + kBA*y(5) + rlA*y(l); > A
dy(5) = kAB*y(4) - kBA*y(5) - kBC*y(5) + kCB*y(6) + rlB*y(2); % B
dy(6) = KkBC*y(5) - kCB*y(6) + rlC*y(3); 5 C

end

S6 Matlab program for numerically calculating hyperpolarized kinetics of a second order two-site exchange
reaction A+ C « B + D in Figure 6

oo

Set initial magnetizations A*(0) = A0, B*(0) = 0; A(0) = a0, B(0) = bO;
C(0) = c0; D(0) = dO;

o o° o

A0 = 1; BO = 0; a0 = 0; bO = 0; cO = 0.95; d0 = 0.05;

Set relaxation rate constants rl and r2, exchange rate constants k

rlA = 1/60; rlB 1/60;
kAB = 0.01; kBA = 0.005;

<

o° o

Set initial magnetization MO in basis vector [A* B* A B C D]

MO = [AO,B0,a0,b0,c0,d0];

oe

o

o°

Set input parameters as vector xIn

xIn = [rlA,rl1B,kAB,kBA];

o

o
S

Set time vector for simulation

o°

dt = 0.01; tmax = 600;
t = 0:dt:tmax;

oe

o

oe

Calculate time evolution using DE function diff egs

options = odeset('RelTol',le-6, 'AbsTol',le-6);
[t,y] = odel5s(Qdiff egs,t,MO0,options,xIn);

o
°

Plot results

o0

oe

subplot(1,2,1);
plot(t,y(:,1),'k',t,y(:,2),'v',t,y(:,3), ' k=—=",t,y(:,4),'vt==");

subplot (1,2,2);
plot(t,y(:,1)+y(:,3),'k',t,y(:,2)+y(:,4),'v',t,y(:,5),'b',t,y(:,6),'9");

o9
5%

function dy = diff egs(~,y,xIn)
dy = zeros(6,1);

rlA xIn(l); rlB = xIn(2);
kAB = xIn(3); kBA = xIn(4);

dy (1) = -kAB*y (1) *y(5) + kBA*y(2)*y(6) - rlA*y(l); s A*
dy(2) = kAB*y(l)*y(5) - kBA*y(2)*y(6) - rlB*y(2); % B*
dy (3) = -kAB*y (3) *y(5) + kBA*y(4)*y(6) + rlA*y(l); S A
dy(4) = kAB*y(3)*y(5) - kBA*y(4)*y(6) + rlB*y(2); 5 B
dy (5) = -kAB*y (5)*(y (1) + y(3)) + kBA*y(6)*(y(2) + y(4)); 5 C
dy (6) = kAB*y(5)*(y(l) + y(3)) - kBA*y(6)*(y(2) + y(4)); % D

end

S7 Matlab program for numerically calculating Michaelis Menten kinetics of a hyperpolarized substrate in
Figure 7

Set initial magnetizations S*(0) = S0, ES*(0) = ESO; P*(0) = PO, S(0)
% = s0; ES(0) = esO; P(0) = p0; E(0) = EO;

oe oe

S0 = le-3; ESO = 0; PO = 0; sO = 0; es0O = 0; p0O = 0; EO = le-9;

<

o° o

Set relaxation rate constants rl and exchange rate constants k

rls = 1/60; rlES = 1/60; rlP = 1/60;
kplusl = le7; kminl = le2; kplus2 = 5e3; kmin2 = 0;

oo

% Set initial magnetization MO in basis vector [S* ES* P* S ES P E]

MO = [SO,ESO,PO,s0,es0,p0,EQ];

oe

o

oe

Set input parameters as vector xIn

xIn = [rlS,rlES,rlP,kplusl,kminl,kplus2,kmin2];

oe

o

o°

Set time vector for simulation

dt = 0.01; tmax = 600;
t = 0:dt:tmax;

oe

o

oe

Calculate time evolution using DE function diff egs

options = odeset ('RelTol',le-10, "AbsTol',1le-10);
[t,y] = odel5s(@diff egs,t,M0,options,xIn);

o

o
S

% Plot results

subplot(2,2,1)
plot(t,y(:,1),'k", t,y(:,4), 'k=——",t,y(:,3), "', t,y(:,6),"'v==");
subplot (2,2,2)

plot(t,y(:,1)+y(:,4),"'k", t,y(:,3)+y(:,6),'c");

subplot (2,2, 3)

plot(t,y(:,2),'9g",t,y(:,5),'g-=");

subplot (2,2,4)

plot(t,y(:,2)+y(:,5),"'g", t,y(:,7),'yv");

o9
5%

function dy = diff egs(~,y,xIn)
dy = zeros(7,1);
rlSsS = xIn(l); rlES = xIn(2); rlP = xIn(3);

kplusl = xIn(4); kminl = xIn(5);
kplus2 = xIn(6); kmin2 = xIn(7);

dy (1) = -kplusl*y(l)*y(7) + kminl*y(2) - rlS*y(l);

dy(2) = kplusl*y(l)*y(7) - kminl*y(2) - kplus2*y(2) + kmin2*y(3)*y(7) - rlES*y(3);
dy(3) = kplus2*y(2) - kmin2*y(3)*y(7) - rlP*y(3);

dy (4) = -kplusl*y(4)*y(7) + kminl*y(5) + rlS*y(1l);

dy (5) = kplusl*y(4)*y(7) - kminl*y(5) - kplus2*y(5) + kmin2*y(6)*y(7) + rlES*y(3);

dy (6) = kplus2*y(5) - kmin2*y(6)*y(7) + rlP*y(3);

dy (7) = -kplusl*y(7)*(y(1l)+y(4)) + (kminl+kplus2)*(y(2)+y(5)) - kmin2*y(7)*(y(3)+y(6));

end

S8 Matlab program for numerically calculating Lactate dehydrogenase kinetics for hyperpolarized pyruvate

in Figure 8
% Set initial magnetizations Pyr*(0) = P0O; Lac*(0) = LO; Pyr(0) = p0; Lac(0)
% = 10; NADH(0) = nadh0O; NAD(0) = nad0O; E.NADH(0) = Enadh0O; E.NAD(0) = Enad0;
% E(0) = EO;

PO = 1le-3; LO = 0; p0O = 0; 10 = 0; nadhO = 0.1le-3; nad0 = le-3;

EnadhO = 0; Enad0 = 0; EO0O = 1.2e-9;

[

S

Set relaxation rate constants rl and exchange rate constants k

oe

o

rlP = 1/60; rlL = 1/60;
kplusl = 1.03e8; kminl = 549;
kplus2 = 6.72e6; kmin2 = 3.44e4;
kplus3 = 842; kmin3 = 9.12e5;

o

o
S

Set initial magnetization MO in basis wvector
E.NAD E]

oe

[P* L* P L NADH NAD E.NADH

oe

MO [PO,L0,p0,10,nadh0,nad0,Enadh0,Enad0,EQ0];

o

o
S

Set input parameters as vector xIn

o°

xIn [r1P,rlL, kplusl, kminl, kplus2, kmin2, kplus3, kmin3];

oo

o
S

Set time vector for simulation

oe

dt
t

0.01; tmax
0:dt:tmax;

600;

o
S

o0 oo

Calculate time evolution using DEs

= odeset ('RelTol',le-10, 'AbsTol',1le-10);
odel5s (@diff egs,t,MO0,options,xIn);

options
[t,y]

oo

o2
g

Plot results

oe

subplot(1,3,1)
plot(t,y(:,1),'k", t,y(:,3), 'k==",t,y(:,2), "', t,y(:,4),'c==");
subplot (1,3,2)

plOt(try(ir7)r'G'Itry(irg)r'b',t/y(:,9)/'y');

subplot (1,3, 3)

plot(t,y(:,1)+y(:,3),'k', t,y(:,2)+y(:,4), "', t,y(:,5),"'g",t,y(:,6),'D");

function dy = diff egs(~,y,xIn)

dy = zeros(9,1);

rlpP = xIn(l); rlL xIn(2);

kplusl = xIn(3); kminl = xIn(4);

kplus2 = xIn(5); kmin2 = xIn(6);

kplus3 = xIn(7); kmin3 = xIn(8);

dy (1) = -kplus2*y(l)*y(7) + kmin2*y(2)*y(8) - rlP*y(l);
dy (2) = kplus2*y(1l)*y(7) - kmin2*y(2)*y(8) - rlL*y(2);

end

dy (3)
dy (4)

dy (5)
dy (6)

dy (7)
dy (8)

dy (9)

~kplus2*y (3) *y (7)
kplus2*y (3) *y (7)

~kplusl*y(5)*y(9)
-kmin3*y (6) *y (9)

kplusl*y (5) *y (9)

kplus2*y (7) * (y (1) +y(3))

~kplusl*y(5)*y(9)

+ kmin2*y (4)*
- kmin2*y (4) *y(8)

+ kminl*y(7);
+ kplus3*y(8);

- kminl*y(7)

+ kminl*y (7)

y(8) + rlP*y(1l);

- kplus2*y (7)* (y(1)+y(3))
- kmin2*y (8) * (y(2)+y (4)) - kplus3*y(8)

+ kplus3*y(8)

+ rlL*y(2);

- kmin3*y (6)*y(9);

+ kmin2*y (8) * (y (2)+y (4));

+ kmin3*y (6) *y (9) ;

