
Supplement of Magn. Reson., 2, 421–446, 2021
https://doi.org/10.5194/mr-2-421-2021-supplement
© Author(s) 2021. CC BY 4.0 License.

Open Access

Supplement of

Extended Bloch–McConnell equations for mechanistic analysis of
hyperpolarized 13C magnetic resonance experiments on
enzyme systems
Thomas R. Eykyn et al.

Correspondence to: Thomas R. Eykyn (thomas.eykyn@kcl.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

Supplemental Information - Extended Bloch-McConnell equations for mechanistic analysis of hyperpolarized

13C magnetic resonance experiments on enzyme systems

Matlab scripts used for simulation in Figures 1-8. These are provided here in full to enable a more detailed exploration

of influence of different parameters on the simulations. Readers are invited to contact the corresponding author should

further clarification be required.

S1 Matlab program for numerically solving the Bloch McConnell equations for Figure 1

%%
% Set equilibrium magnetizations Meq

 MeqA = 1; MeqB = 0.8;

%%
% Set initial magnetization M0 in basis vector [Ax Ay Az Bx By Bz]

 M0 = [0,0,MeqA,0,0,MeqB];

%%
% Set relaxation rate constants r1 and r2, exchange rate constants k and
% peak frequencies freq

 r1 = 1; r2 = 1;
 kAB = 0; kBA = 0;
 freq_A = 10*2*pi; freq_B = -10*2*pi;

%%
% Set spectral acquisition parameters sw = sweep width, td = # time domain
% points, dt = dwell time

 sw = 60; td = 256; dt = 1/sw;

%%
% Set RF pulse parameters, B1 = field strength, phi = RF phase offset =
% RF offset, t_pulse = RF pulse duration

 B1 = 1500*2*pi; phi = 90*pi/180; offset = 0*2*pi;
 flip_angle = 90; t_pulse = flip_angle*pi/(180*B1);

%%
% Set input parameters as vector xIn

 xIn = [r1,r2,freq_A,freq_B,B1,offset,phi,MeqA,MeqB,kAB,kBA];

%%
% Calculate evolution during pulse using DEs BlochMcConnell

 options = odeset('RelTol',1e-6,'AbsTol',1e-6);
 [~,Mt] = ode45(@BlochMcConnell,[0,t_pulse],M0,options,xIn);
 B1 = 0; xIn(5) = B1;

%%
% Calculate evolution during FID using DEs BlochMcConnell

 options = odeset('RelTol',1e-6,'AbsTol',1e-6);
 [t,Mt] = ode45(@BlochMcConnell,dt:dt:td*dt,Mt(end,:),options,xIn);

%%
% Define observable magnetization Ax - i*Ay + Bx - i*By;

 Obs = Mt(:,1) - 1i*Mt(:,2) + Mt(:,4) - 1i*Mt(:,5);

%%
% Calculate fid and spectrum

 noise = randn(1,td)' + 1i*randn(1,td)';
 lb = 0; phase = 0;
 fid = (Obs + noise/10).*exp(-lb*t)*exp(1i*phase*pi/180);
 sig = fft(fid);
 spec = [sig(td/2+1:td);sig(1:td/2)];
 freq_scale = sw/2:-sw/(td-1):-sw/2;

%%
% Plot results

 subplot(1,3,1); plot(t,real(fid),'k');
 subplot(1,3,2); plot(freq_scale,real(spec),'k');
 subplot(1,3,3); plot(t,Mt(:,3),'k',t,Mt(:,6),'r');

%%
function dMt = BlochMcConnell(t,Mt,xIn)

 dMt = zeros(6,1);

 r1 = xIn(1); r2 = xIn(2);
 freq_A = xIn(3); freq_B = xIn(4);
 MeqA = xIn(8); MeqB = xIn(9);
 kAB = xIn(10); kBA = xIn(11);

 wx = RFx(t,xIn(5),xIn(6),xIn(7)); % Calculate pulse wx
 wy = RFy(t,xIn(5),xIn(6),xIn(7)); % Calculate pulse wy

 dMt(1) = -(r2+kAB)*Mt(1) - freq_A*Mt(2) + wy*Mt(3) + kBA*Mt(4); %Ax
 dMt(2) = freq_A*Mt(1) - (r2+kAB)*Mt(2) - wx*Mt(3) + kBA*Mt(5); %Ay
 dMt(3) = -wy*Mt(1) + wx*Mt(2) - (r1+kAB)*Mt(3) + kBA*Mt(6) + r1*MeqA; %Az
 dMt(4) = kAB*Mt(1) - (r2+kBA)*Mt(4) - freq_B*Mt(5) + wy*Mt(6); %Bx
 dMt(5) = kAB*Mt(2) + freq_B*Mt(4) - (r2+kBA)*Mt(5) - wx*Mt(6); %By
 dMt(6) = kAB*Mt(3) - wy*Mt(4) + wx*Mt(5) - (r1+kBA)*Mt(6) + r1*MeqB; %Bz

 function [a] = RFx(tH,B1,offset,phi)
 a = B1*cos(offset*tH + phi);
 end

 function [a] = RFy(tH,B1,offset,phi)
 a = B1*sin(offset*tH + phi);
 end

end

S2 Matlab program for numerically solving the Bloch McConnell equations for hyperpolarized kinetics in

Figure 2

%%
% Set equilibrium magnetizations Meq

 MeqA = 1; MeqB = 0.8;

%%
% Set initial magnetization M0 in basis vector [Ax Ay Az Bx By Bz]

 enhancement_factor = 1e4;
 M0 = [0,0,MeqA*enhancement_factor,0,0,0];

%%
% Set relaxation rate constants r1 and r2, exchange rate constants k and
% peak frequencies freq

 r1 = 1/60; r2 = 1;
 kAB = 0.005; kBA = 0.005;
 freq_A = 10*2*pi; freq_B = -10*2*pi;

%%
% Set spectral acquisition parameters sw = sweep width, td = # time domain
% points, dt = dwell time

 sw = 60; td = 256; dt = 1/sw;

%%
% Set RF pulse parameters, B1 = field strength, phi = RF phase, offset =
% RF offset, t_pulse = RF pulse duration

 B1 = 1500*2*pi; phi = 90*pi/180; offset = 0*2*pi;
 flip_angle = 1;

%%
% Set input parameters as vector xIn

 xIn = [r1,r2,freq_A,freq_B,B1,offset,phi,MeqA,MeqB,kAB,kBA];

%%
% Create 2D data matrix SPEC and FID and time vector T, temporal resolution
% dt1

 td1 = 64; dt1 = 4.25; T = dt1:dt1:td1*dt1;
 SPEC=zeros(td,td1); FID=zeros(td,td1);
 Mt = M0;

%%
%

for m = 1:1:td1

 % Calculate evolution during pulse using DEs BlochMcConnell
 B1 = 1500*2*pi; xIn(5) = B1; t_pulse = flip_angle*pi/(180*B1);
 options = odeset('RelTol',1e-6,'AbsTol',1e-6);
 [~,Mt] = ode45(@BlochMcConnell,[0,t_pulse],Mt(end,:),options,xIn);
 B1 = 0; xIn(5) = B1;

 % Calculate evolution during FID using DEs BlochMcConnell
 options = odeset('RelTol',1e-6,'AbsTol',1e-6);
 [t,Mt] = ode45(@BlochMcConnell,dt:dt:td*dt,Mt(end,:),options,xIn);

 % Calculate observable magnetization Ax - i*Ay + Bx - i*By;
 Obs = Mt(:,1) - 1i*Mt(:,2) + Mt(:,4) - 1i*Mt(:,5);

 % Calculate fid and spectrum
 noise = randn(1,td)' + 1i*randn(1,td)';
 lb = 0; phase = 0;
 fid = (Obs+noise./10).*exp(-lb*t).*exp(1i*phase*pi/180);
 sig = fft(fid);
 spec = [sig(td/2+1:td);sig(1:td/2)];
 freq_scale = sw/2:-sw/(td-1):-sw/2;

 FID(:,m) = fid;
 SPEC(:,m) = spec;

end

%%
% % Plot results as a waterfall plot

 waterfall(freq_scale,T,real(SPEC'));axis square;axis tight;

%%
% % Plot 1st and last spectrum in time series

 figure;
 subplot(2,2,1); plot(t,real(FID(:,1)),'k');
 subplot(2,2,2); plot(freq_scale,real(SPEC(:,1)),'k');
 subplot(2,2,3); plot(t,real(FID(:,td1)),'k');
 subplot(2,2,4); plot(freq_scale,real(SPEC(:,td1)),'k');

%%
function dMt = BlochMcConnell(t,Mt,xIn)

 dMt = zeros(6,1);

 r1 = xIn(1); r2 = xIn(2);
 freq_A = xIn(3); freq_B = xIn(4);
 MeqA = xIn(8); MeqB = xIn(9);
 kAB = xIn(10); kBA = xIn(11);

 wx = RFx(t,xIn(5),xIn(6),xIn(7)); % Calculate pulse wx
 wy = RFy(t,xIn(5),xIn(6),xIn(7)); % Calculate pulse wy

 dMt(1) = -(r2+kAB)*Mt(1) - freq_A*Mt(2) + wy*Mt(3) + kBA*Mt(4); %Ax
 dMt(2) = freq_A*Mt(1) - (r2+kAB)*Mt(2) - wx*Mt(3) + kBA*Mt(5); %Ay
 dMt(3) = -wy*Mt(1) + wx*Mt(2) - (r1+kAB)*Mt(3) + kBA*Mt(6) + r1*MeqA; %Az
 dMt(4) = kAB*Mt(1) - (r2+kBA)*Mt(4) - freq_B*Mt(5) + wy*Mt(6); %Bx
 dMt(5) = kAB*Mt(2) + freq_B*Mt(4) - (r2+kBA)*Mt(5) - wx*Mt(6); %By
 dMt(6) = kAB*Mt(3) - wy*Mt(4) + wx*Mt(5) - (r1+kBA)*Mt(6) + r1*MeqB; %Bz

 function [a] = RFx(tH,B1,offset,phi)
 a = B1*cos(offset*tH + phi);
 end

 function [a] = RFy(tH,B1,offset,phi)
 a = B1*sin(offset*tH + phi);
 end

end

S3 Matlab program for numerically calculating 13C relaxation times based on a simple dipole-dipole plus

chemical shift anisotropy mechanism in Figure 3

%%
% Set gyromagnetic ratios gamma of 1H and 13C

 gamma_H = 26.7522e7; gamma_C = 6.7283e7; % rad s-1 T-1
%%
% Set chemical shift anisotropies csa of 1H and 13C

 csa_H = 10e-6; csa_C = -98e-6;

%%
% Set Planck's constant h, Boltzmann constant kB, vacuum permeability no

 h = 6.626176e-34; hbar = h/(2*pi); kB = 1.380658e-23; mu = 4*pi*1e-7;

%%
% Set vectors for magnetic field B0 and rotational correlation time tc

 B0 = (0.5:0.5:14.1)';
 x = -12:0.1:-7;
 tc = 10.^x;

%%
% Set Larmor frequencies

 wH = -gamma_H*B0;
 wC = -gamma_C*B0;

%%
% Set CH bond length, dipolar coupling constant and csa constant
%
% Set rch ~ 1.09e-10 one bond C-H distance

 rch = 1.45e-10;
 d = (mu/(4*pi))*(gamma_H*gamma_C*hbar/rch^3);
 c = gamma_C*B0*csa_C;

%%
% Calculate spectral density functions

 J0 = 2*tc.*ones(length(B0),1);
 Jc = 2*tc./(1 + (wC.^2*tc.^2));
 Jh = 2*tc./(1 + (wH.^2*tc.^2));
 Jmin = 2*tc./(1 + ((wH - wC).^2*tc.^2));
 Jplus = 2*tc./(1 + ((wH + wC).^2*tc.^2));
 Jhh = 2*tc./(1 + ((wH + wH).^2*tc.^2));

%%
% Calculate dipole-dipole relaxation rate constants and time constants

 R1DD = d^2*((3/20)*Jc + (1/20)*Jmin + (3/10)*Jplus);
 R2DD = d^2*((1/10)*J0 + (3/40)*Jc + (1/40)*Jmin + (3/20)*Jh + (3/20)*Jplus);
 T1DD = 1./R1DD; T2DD = 1./R2DD;

%%
% Calculate CSA relaxation rate constants and time constants

 R1CSA = c.^2.*((1/15)*Jc);
 R2CSA = c.^2.*((2/45)*J0 + (1/30)*Jc);
 T1CSA = 1./R1CSA; T2CSA = 1./R2CSA;

%%
% Calculate sum of DD and CSA contributions to R1 and R2

 R1 = R1DD + R1CSA;
 R2 = R2DD + R2CSA;
 T1 = 1./R1; T2 = 1./R2;

%%
% Surface plot of T1 and T2 as a function of B0 and tauc

 subplot(1,2,1);
 mesh(B0,x,T1');axis square;
 subplot(1,2,2);
 mesh(B0,x,T2');axis square;

S4 Matlab program for numerically calculating hyperpolarized kinetics of a first order two-site exchange

reaction A ↔ B in Figure 4

%%
% Set initial magnetizations A*(0) = A0, A(0) = a0, B*(0) = 0; B(0) = b0;

 A0 = 1; B0 = 0; a0 = 0; b0 = 0;

%%
% Set relaxation rate constants r1 and r2, exchange rate constants k

 r1A = 1/60; r1B = 1/60;
 kAB = 0.01; kBA = 0.005;

%%
% Set initial magnetization basis vector [A* B* A B]

 M0 = [A0,B0,a0,b0];

%%
% Set input parameters as vector xIn

 xIn = [r1A,r1B,kAB,kBA];

%%
% Set time vector for simulation

 dt = 0.01; tmax = 600;
 t = 0:dt:tmax;

%%
% Calculate time evolution using DE function diff_eqs

 options = odeset('RelTol',1e-6,'AbsTol',1e-6);
 [tx,y] = ode15s(@diff_eqs,t,M0,options,xIn);

%%
% Plot results

 subplot(1,2,1);
 plot(t,y(:,1),'k',t,y(:,2),'r',t,y(:,3),'k--',t,y(:,4),'r--');
 subplot(1,2,2);
 plot(t,y(:,1)+y(:,3),'k',t,y(:,2)+y(:,4),'r');

%%
function dy = diff_eqs(~,y,xIn)

 dy = zeros(4,1);

 r1A = xIn(1); r1B = xIn(2);
 kAB = xIn(3); kBA = xIn(4);

 dy(1) = -kAB*y(1) + kBA*y(2) - r1A*y(1); % A*
 dy(2) = kAB*y(1) - kBA*y(2) - r1B*y(2); % B*

 dy(3) = -kAB*y(3) + kBA*y(4) + r1A*y(1); % A
 dy(4) = kAB*y(3) - kBA*y(4) + r1B*y(2); % B

end

S5 Matlab program for numerically calculating hyperpolarized kinetics of a first order three-site exchange

reaction A ↔ B ↔ C in Figure 5

%%
% Set initial magnetizations A*(0) = A0, B*(0) = B0; C*(0) = C0; A(0) =
% a(0); B(0) = b0; C(0) = c0;

 A0 = 1; B0 = 0; C0 = 0; a0 = 0; b0 = 0; c0 = 0;

%%
% Set relaxation rate constants r1 and r2, exchange rate constants k

 r1A = 1/60; r1B = 1/60; r1C = 1/60;
 kAB = 0.01; kBA = 0.005; kBC = 0.01; kCB = 0.005;

%%
% Set initial magnetization basis vector [A* B* C* A B C]

 M0 = [A0,B0,C0,a0,b0,c0];

%%
% Set input parameters as vector xIn

 xIn = [r1A,r1B,r1C,kAB,kBA,kBC,kCB];

%%
% Set time vector for simulation

 dt = 0.01; tmax = 600;
 t = 0:dt:tmax;

%%
% Calculate time evolution using DE function diff_eqs

 options = odeset('RelTol',1e-6,'AbsTol',1e-6);
 [t,y] = ode15s(@diff_eqs,t,M0,options,xIn);

%%
% Plot results

 subplot(1,2,1)
 plot(t,y(:,1),'k',t,y(:,2),'b',t,y(:,3),'r'); hold on;
 plot(t,y(:,4),'k--',t,y(:,5),'b--',t,y(:,6),'r--');
 subplot(1,2,2)
 plot(t,y(:,1)+y(:,4),'k',t,y(:,2)+y(:,5),'b',t,y(:,3)+y(:,6),'r');

%%
function dy = diff_eqs(~,y,xIn)

 dy = zeros(6,1);

 r1A = xIn(1); r1B = xIn(2); r1C = xIn(3);
 kAB = xIn(4); kBA = xIn(5); kBC = xIn(6); kCB = xIn(7);

 dy(1) = -kAB*y(1) + kBA*y(2) - r1A*y(1); % A*
 dy(2) = kAB*y(1) - kBA*y(2) - kBC*y(2) + kCB*y(3) - r1B*y(2); % B*
 dy(3) = kBC*y(2) - kCB*y(3) - r1C*y(3); % C*

 dy(4) = -kAB*y(4) + kBA*y(5) + r1A*y(1); % A
 dy(5) = kAB*y(4) - kBA*y(5) - kBC*y(5) + kCB*y(6) + r1B*y(2); % B
 dy(6) = kBC*y(5) - kCB*y(6) + r1C*y(3); % C

end

S6 Matlab program for numerically calculating hyperpolarized kinetics of a second order two-site exchange

reaction A + C ↔ B + D in Figure 6

%%
% Set initial magnetizations A*(0) = A0, B*(0) = 0; A(0) = a0, B(0) = b0;
% C(0) = c0; D(0) = d0;

 A0 = 1; B0 = 0; a0 = 0; b0 = 0; c0 = 0.95; d0 = 0.05;

%%
% Set relaxation rate constants r1 and r2, exchange rate constants k

 r1A = 1/60; r1B = 1/60;
 kAB = 0.01; kBA = 0.005;

%%
% Set initial magnetization M0 in basis vector [A* B* A B C D]

 M0 = [A0,B0,a0,b0,c0,d0];

%%
% Set input parameters as vector xIn

 xIn = [r1A,r1B,kAB,kBA];

%%
% Set time vector for simulation

 dt = 0.01; tmax = 600;
 t = 0:dt:tmax;

%%
% Calculate time evolution using DE function diff_eqs

 options = odeset('RelTol',1e-6,'AbsTol',1e-6);
 [t,y] = ode15s(@diff_eqs,t,M0,options,xIn);

%%
% Plot results

 subplot(1,2,1);
 plot(t,y(:,1),'k',t,y(:,2),'r',t,y(:,3),'k--',t,y(:,4),'r--');
 subplot(1,2,2);
 plot(t,y(:,1)+y(:,3),'k',t,y(:,2)+y(:,4),'r',t,y(:,5),'b',t,y(:,6),'g');

%%
function dy = diff_eqs(~,y,xIn)

 dy = zeros(6,1);

 r1A = xIn(1); r1B = xIn(2);
 kAB = xIn(3); kBA = xIn(4);

 dy(1) = -kAB*y(1)*y(5) + kBA*y(2)*y(6) - r1A*y(1); % A*
 dy(2) = kAB*y(1)*y(5) - kBA*y(2)*y(6) - r1B*y(2); % B*

 dy(3) = -kAB*y(3)*y(5) + kBA*y(4)*y(6) + r1A*y(1); % A
 dy(4) = kAB*y(3)*y(5) - kBA*y(4)*y(6) + r1B*y(2); % B

 dy(5) = -kAB*y(5)*(y(1) + y(3)) + kBA*y(6)*(y(2) + y(4)); % C
 dy(6) = kAB*y(5)*(y(1) + y(3)) - kBA*y(6)*(y(2) + y(4)); % D
end

S7 Matlab program for numerically calculating Michaelis Menten kinetics of a hyperpolarized substrate in

Figure 7

%%
% Set initial magnetizations S*(0) = S0, ES*(0) = ES0; P*(0) = P0, S(0)
% = s0; ES(0) = es0; P(0) = p0; E(0) = E0;

 S0 = 1e-3; ES0 = 0; P0 = 0; s0 = 0; es0 = 0; p0 = 0; E0 = 1e-9;
%%
% Set relaxation rate constants r1 and exchange rate constants k

 r1S = 1/60; r1ES = 1/60; r1P = 1/60;
 kplus1 = 1e7; kmin1 = 1e2; kplus2 = 5e3; kmin2 = 0;

%%
% Set initial magnetization M0 in basis vector [S* ES* P* S ES P E]

 M0 = [S0,ES0,P0,s0,es0,p0,E0];

%%
% Set input parameters as vector xIn

 xIn = [r1S,r1ES,r1P,kplus1,kmin1,kplus2,kmin2];

%%
% Set time vector for simulation

 dt = 0.01; tmax = 600;
 t = 0:dt:tmax;
%%
% Calculate time evolution using DE function diff_eqs

 options = odeset('RelTol',1e-10,'AbsTol',1e-10);
 [t,y] = ode15s(@diff_eqs,t,M0,options,xIn);
%%
% Plot results

 subplot(2,2,1)
 plot(t,y(:,1),'k',t,y(:,4),'k--',t,y(:,3),'r',t,y(:,6),'r--');
 subplot(2,2,2)
 plot(t,y(:,1)+y(:,4),'k',t,y(:,3)+y(:,6),'r');
 subplot(2,2,3)
 plot(t,y(:,2),'g',t,y(:,5),'g--');
 subplot(2,2,4)
 plot(t,y(:,2)+y(:,5),'g',t,y(:,7),'y');

%%
function dy = diff_eqs(~,y,xIn)

 dy = zeros(7,1);

 r1S = xIn(1); r1ES = xIn(2); r1P = xIn(3);
 kplus1 = xIn(4); kmin1 = xIn(5);
 kplus2 = xIn(6); kmin2 = xIn(7);

 dy(1) = -kplus1*y(1)*y(7) + kmin1*y(2) - r1S*y(1);
 dy(2) = kplus1*y(1)*y(7) - kmin1*y(2) - kplus2*y(2) + kmin2*y(3)*y(7) - r1ES*y(3);
 dy(3) = kplus2*y(2) - kmin2*y(3)*y(7) - r1P*y(3);

 dy(4) = -kplus1*y(4)*y(7) + kmin1*y(5) + r1S*y(1);
 dy(5) = kplus1*y(4)*y(7) - kmin1*y(5) - kplus2*y(5) + kmin2*y(6)*y(7) + r1ES*y(3);
 dy(6) = kplus2*y(5) - kmin2*y(6)*y(7) + r1P*y(3);

 dy(7) = -kplus1*y(7)*(y(1)+y(4)) + (kmin1+kplus2)*(y(2)+y(5)) - kmin2*y(7)*(y(3)+y(6));

end

S8 Matlab program for numerically calculating Lactate dehydrogenase kinetics for hyperpolarized pyruvate

in Figure 8

%%
% Set initial magnetizations Pyr*(0) = P0; Lac*(0) = L0; Pyr(0) = p0; Lac(0)
% = l0; NADH(0) = nadh0; NAD(0) = nad0; E.NADH(0) = Enadh0; E.NAD(0) = Enad0;
% E(0) = E0;

 P0 = 1e-3; L0 = 0; p0 = 0; l0 = 0; nadh0 = 0.1e-3; nad0 = 1e-3;
 Enadh0 = 0; Enad0 = 0; E0 = 1.2e-9;

%%
% Set relaxation rate constants r1 and exchange rate constants k

 r1P = 1/60; r1L = 1/60;
 kplus1 = 1.03e8; kmin1 = 549;
 kplus2 = 6.72e6; kmin2 = 3.44e4;
 kplus3 = 842; kmin3 = 9.12e5;

%%
% Set initial magnetization M0 in basis vector [P* L* P L NADH NAD E.NADH
% E.NAD E]

 M0 = [P0,L0,p0,l0,nadh0,nad0,Enadh0,Enad0,E0];

%%
% Set input parameters as vector xIn

 xIn = [r1P,r1L,kplus1,kmin1,kplus2,kmin2,kplus3,kmin3];

%%
% Set time vector for simulation

 dt = 0.01; tmax = 600;
 t = 0:dt:tmax;

%%
% Calculate time evolution using DEs

 options = odeset('RelTol',1e-10,'AbsTol',1e-10);
 [t,y] = ode15s(@diff_eqs,t,M0,options,xIn);

%%
% Plot results

 subplot(1,3,1)
 plot(t,y(:,1),'k',t,y(:,3),'k--',t,y(:,2),'r',t,y(:,4),'r--');
 subplot(1,3,2)
 plot(t,y(:,7),'g',t,y(:,8),'b',t,y(:,9),'y');
 subplot(1,3,3)
 plot(t,y(:,1)+y(:,3),'k',t,y(:,2)+y(:,4),'r',t,y(:,5),'g',t,y(:,6),'b');

%%
function dy = diff_eqs(~,y,xIn)

 dy = zeros(9,1);

 r1P = xIn(1); r1L = xIn(2);
 kplus1 = xIn(3); kmin1 = xIn(4);
 kplus2 = xIn(5); kmin2 = xIn(6);
 kplus3 = xIn(7); kmin3 = xIn(8);

 dy(1) = -kplus2*y(1)*y(7) + kmin2*y(2)*y(8) - r1P*y(1);
 dy(2) = kplus2*y(1)*y(7) - kmin2*y(2)*y(8) - r1L*y(2);

 dy(3) = -kplus2*y(3)*y(7) + kmin2*y(4)*y(8) + r1P*y(1);
 dy(4) = kplus2*y(3)*y(7) - kmin2*y(4)*y(8) + r1L*y(2);

 dy(5) = -kplus1*y(5)*y(9) + kmin1*y(7);
 dy(6) = -kmin3*y(6)*y(9) + kplus3*y(8);

 dy(7) = kplus1*y(5)*y(9) - kmin1*y(7) - kplus2*y(7)*(y(1)+y(3)) + kmin2*y(8)*(y(2)+y(4));
 dy(8) = kplus2*y(7)*(y(1)+y(3)) - kmin2*y(8)*(y(2)+y(4)) - kplus3*y(8) + kmin3*y(6)*y(9);

 dy(9) = -kplus1*y(5)*y(9) + kmin1*y(7) + kplus3*y(8) - kmin3*y(6)*y(9);

end

