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Supplemental Information - Extended Bloch-McConnell equations for mechanistic analysis of hyperpolarized 

13C magnetic resonance experiments on enzyme systems 

Matlab scripts used for simulation in Figures 1-8. These are provided here in full to enable a more detailed exploration 

of influence of different parameters on the simulations. Readers are invited to contact the corresponding author should 

further clarification be required. 

 

S1 Matlab program for numerically solving the Bloch McConnell equations for Figure 1 

%%  
% Set equilibrium magnetizations Meq 

  
    MeqA = 1; MeqB = 0.8; 

     
%%  
% Set initial magnetization M0 in basis vector [Ax Ay Az Bx By Bz] 

  
    M0 = [0,0,MeqA,0,0,MeqB]; 

     
%%  
% Set relaxation rate constants r1 and r2, exchange rate constants k and  
% peak frequencies freq 

  
    r1 = 1; r2 = 1; 
    kAB = 0; kBA = 0; 
    freq_A = 10*2*pi; freq_B = -10*2*pi;  

  
%%  
% Set spectral acquisition parameters sw = sweep width, td = # time domain  
% points, dt = dwell time 

  
    sw = 60; td = 256; dt = 1/sw; 

  
%%  
% Set RF pulse parameters, B1 = field strength, phi = RF phase offset =  
% RF offset, t_pulse = RF pulse duration 

  
    B1 = 1500*2*pi; phi = 90*pi/180; offset = 0*2*pi;  
    flip_angle = 90; t_pulse = flip_angle*pi/(180*B1); 

  
%%  
% Set input parameters as vector xIn 

  
    xIn  = [r1,r2,freq_A,freq_B,B1,offset,phi,MeqA,MeqB,kAB,kBA]; 

  
%%  
% Calculate evolution during pulse using DEs BlochMcConnell 

  
    options = odeset('RelTol',1e-6,'AbsTol',1e-6); 
    [~,Mt] = ode45(@BlochMcConnell,[0,t_pulse],M0,options,xIn);  
    B1 = 0; xIn(5) = B1; 

     
%%  
% Calculate evolution during FID using DEs BlochMcConnell 

  
    options = odeset('RelTol',1e-6,'AbsTol',1e-6); 
    [t,Mt] = ode45(@BlochMcConnell,dt:dt:td*dt,Mt(end,:),options,xIn);  



  
%%  
% Define observable magnetization Ax - i*Ay + Bx - i*By; 

  
    Obs = Mt(:,1) - 1i*Mt(:,2) + Mt(:,4) - 1i*Mt(:,5); 

  
%%  
% Calculate fid and spectrum 

  
    noise = randn(1,td)' + 1i*randn(1,td)'; 
    lb = 0; phase = 0;  
    fid = (Obs + noise/10).*exp(-lb*t)*exp(1i*phase*pi/180); 
    sig = fft(fid); 
    spec = [sig(td/2+1:td);sig(1:td/2)]; 
    freq_scale = sw/2:-sw/(td-1):-sw/2; 

  
%%  
% Plot results 

  
    subplot(1,3,1); plot(t,real(fid),'k'); 
    subplot(1,3,2); plot(freq_scale,real(spec),'k'); 
    subplot(1,3,3); plot(t,Mt(:,3),'k',t,Mt(:,6),'r'); 

  
%% 
function dMt = BlochMcConnell(t,Mt,xIn)         

    
    dMt = zeros(6,1);                

   
    r1 = xIn(1);     r2 = xIn(2);  
    freq_A = xIn(3); freq_B = xIn(4); 
    MeqA = xIn(8);   MeqB = xIn(9); 
    kAB = xIn(10);   kBA = xIn(11); 

         
    wx = RFx(t,xIn(5),xIn(6),xIn(7));                    % Calculate pulse wx 
    wy = RFy(t,xIn(5),xIn(6),xIn(7));                    % Calculate pulse wy 

         
    dMt(1) = -(r2+kAB)*Mt(1) - freq_A*Mt(2) + wy*Mt(3) + kBA*Mt(4);       %Ax 
    dMt(2) =  freq_A*Mt(1) - (r2+kAB)*Mt(2) - wx*Mt(3) + kBA*Mt(5);       %Ay 
    dMt(3) = -wy*Mt(1) + wx*Mt(2) - (r1+kAB)*Mt(3) + kBA*Mt(6) + r1*MeqA; %Az 
    dMt(4) =  kAB*Mt(1) - (r2+kBA)*Mt(4) - freq_B*Mt(5) + wy*Mt(6);       %Bx 
    dMt(5) =  kAB*Mt(2) + freq_B*Mt(4) - (r2+kBA)*Mt(5) - wx*Mt(6);       %By 
    dMt(6) =  kAB*Mt(3) - wy*Mt(4) + wx*Mt(5) - (r1+kBA)*Mt(6) + r1*MeqB; %Bz 

         
    function [a] = RFx(tH,B1,offset,phi)  
        a = B1*cos(offset*tH + phi);                                             
    end 

  
    function [a] = RFy(tH,B1,offset,phi)  
        a = B1*sin(offset*tH + phi);                                             
    end 

end 

  

 

  



S2 Matlab program for numerically solving the Bloch McConnell equations for hyperpolarized kinetics in 

Figure 2 

%%  
% Set equilibrium magnetizations Meq  

  
    MeqA = 1; MeqB = 0.8; 

  
%%  
% Set initial magnetization M0 in basis vector [Ax Ay Az Bx By Bz] 

  
    enhancement_factor = 1e4; 
    M0 = [0,0,MeqA*enhancement_factor,0,0,0];     

  
%%  
% Set relaxation rate constants r1 and r2, exchange rate constants k and  
% peak frequencies freq 

  
    r1 = 1/60; r2 = 1; 
    kAB = 0.005; kBA = 0.005; 
    freq_A = 10*2*pi; freq_B = -10*2*pi;  

  
%%  
% Set spectral acquisition parameters sw = sweep width, td = # time domain  
% points, dt = dwell time 

  
    sw = 60; td = 256; dt = 1/sw; 

     
%%  
% Set RF pulse parameters, B1 = field strength, phi = RF phase, offset =  
% RF offset, t_pulse = RF pulse duration 

  
    B1 = 1500*2*pi; phi = 90*pi/180; offset = 0*2*pi; 
    flip_angle = 1; 

  
%%  
% Set input parameters as vector xIn 

  
    xIn  = [r1,r2,freq_A,freq_B,B1,offset,phi,MeqA,MeqB,kAB,kBA]; 

     
%%  
% Create 2D data matrix SPEC and FID and time vector T, temporal resolution  
% dt1 

  
    td1 = 64; dt1 = 4.25; T = dt1:dt1:td1*dt1;  
    SPEC=zeros(td,td1); FID=zeros(td,td1); 
    Mt = M0; 

     
%%  
%  

  
for m = 1:1:td1 

  
    % Calculate evolution during pulse using DEs BlochMcConnell 
    B1 = 1500*2*pi; xIn(5) = B1; t_pulse = flip_angle*pi/(180*B1);  
    options = odeset('RelTol',1e-6,'AbsTol',1e-6); 
    [~,Mt] = ode45(@BlochMcConnell,[0,t_pulse],Mt(end,:),options,xIn);  
    B1 = 0;  xIn(5) = B1; 

     
    % Calculate evolution during FID using DEs BlochMcConnell 
    options = odeset('RelTol',1e-6,'AbsTol',1e-6); 
    [t,Mt] = ode45(@BlochMcConnell,dt:dt:td*dt,Mt(end,:),options,xIn);  

  
    % Calculate observable magnetization Ax - i*Ay + Bx - i*By; 
    Obs = Mt(:,1) - 1i*Mt(:,2) + Mt(:,4) - 1i*Mt(:,5); 

     



    % Calculate fid and spectrum 
    noise = randn(1,td)' + 1i*randn(1,td)'; 
    lb = 0; phase = 0;  
    fid = (Obs+noise./10).*exp(-lb*t).*exp(1i*phase*pi/180); 
    sig = fft(fid); 
    spec = [sig(td/2+1:td);sig(1:td/2)]; 
    freq_scale = sw/2:-sw/(td-1):-sw/2; 

  
    FID(:,m)  = fid; 
    SPEC(:,m) = spec; 

     
end 

  
%%  
% % Plot results as a waterfall plot 

  
   waterfall(freq_scale,T,real(SPEC'));axis square;axis tight; 

  
%%  
% % Plot 1st and last spectrum in time series 

  
   figure; 
   subplot(2,2,1); plot(t,real(FID(:,1)),'k');  
   subplot(2,2,2); plot(freq_scale,real(SPEC(:,1)),'k');  
   subplot(2,2,3); plot(t,real(FID(:,td1)),'k');  
   subplot(2,2,4); plot(freq_scale,real(SPEC(:,td1)),'k'); 

    
%% 
function dMt = BlochMcConnell(t,Mt,xIn)         

    
    dMt = zeros(6,1);                

   
    r1     = xIn(1);  r2     = xIn(2);  
    freq_A = xIn(3);  freq_B = xIn(4); 
    MeqA   = xIn(8);  MeqB   = xIn(9);  
    kAB    = xIn(10); kBA    = xIn(11); 

         
    wx = RFx(t,xIn(5),xIn(6),xIn(7));                    % Calculate pulse wx 
    wy = RFy(t,xIn(5),xIn(6),xIn(7));                    % Calculate pulse wy 

         
    dMt(1) = -(r2+kAB)*Mt(1) - freq_A*Mt(2) + wy*Mt(3) + kBA*Mt(4);       %Ax 
    dMt(2) =  freq_A*Mt(1) - (r2+kAB)*Mt(2) - wx*Mt(3) + kBA*Mt(5);       %Ay 
    dMt(3) = -wy*Mt(1) + wx*Mt(2) - (r1+kAB)*Mt(3) + kBA*Mt(6) + r1*MeqA; %Az 
    dMt(4) =  kAB*Mt(1) - (r2+kBA)*Mt(4) - freq_B*Mt(5) + wy*Mt(6);       %Bx 
    dMt(5) =  kAB*Mt(2) + freq_B*Mt(4) - (r2+kBA)*Mt(5) - wx*Mt(6);       %By 
    dMt(6) =  kAB*Mt(3) - wy*Mt(4) + wx*Mt(5) - (r1+kBA)*Mt(6) + r1*MeqB; %Bz 

         
    function [a] = RFx(tH,B1,offset,phi)  
        a = B1*cos(offset*tH + phi);                                             
    end 

  
    function [a] = RFy(tH,B1,offset,phi)  
        a = B1*sin(offset*tH + phi);                                             
    end 

  
end 

  

  

 
  

 

 

 

  



S3 Matlab program for numerically calculating 13C relaxation times based on a simple dipole-dipole plus 

chemical shift anisotropy mechanism in Figure 3 

%%  
% Set gyromagnetic ratios gamma of 1H and 13C  

  
    gamma_H = 26.7522e7; gamma_C = 6.7283e7;               % rad s-1 T-1 
%%  
% Set chemical shift anisotropies csa of 1H and 13C 

  
    csa_H = 10e-6; csa_C = -98e-6;                 

  
%%  
% Set Planck's constant h, Boltzmann constant kB, vacuum permeability no  

  
    h = 6.626176e-34; hbar = h/(2*pi); kB = 1.380658e-23; mu = 4*pi*1e-7; 

  
%%  
% Set vectors for magnetic field B0 and rotational correlation time tc 

  
    B0 = (0.5:0.5:14.1)'; 
    x = -12:0.1:-7;  
    tc = 10.^x; 

     
%%  
% Set Larmor frequencies  

  
    wH = -gamma_H*B0;  
    wC = -gamma_C*B0; 

  
%%  
% Set CH bond length, dipolar coupling constant and csa constant 
%  
% Set rch ~ 1.09e-10 one bond C-H distance 

  
    rch = 1.45e-10; 
    d = (mu/(4*pi))*(gamma_H*gamma_C*hbar/rch^3); 
    c = gamma_C*B0*csa_C; 

  
%%  
% Calculate spectral density functions 

  
    J0 = 2*tc.*ones(length(B0),1);  
    Jc = 2*tc./(1 + (wC.^2*tc.^2)); 
    Jh = 2*tc./(1 + (wH.^2*tc.^2));  
    Jmin = 2*tc./(1 + ((wH - wC).^2*tc.^2)); 
    Jplus = 2*tc./(1 + ((wH + wC).^2*tc.^2));  
    Jhh = 2*tc./(1 + ((wH + wH).^2*tc.^2));  

  
%%  
% Calculate dipole-dipole relaxation rate constants and time constants 

  
    R1DD = d^2*((3/20)*Jc + (1/20)*Jmin + (3/10)*Jplus);  
    R2DD = d^2*((1/10)*J0 + (3/40)*Jc + (1/40)*Jmin + (3/20)*Jh + (3/20)*Jplus);  
    T1DD = 1./R1DD; T2DD = 1./R2DD; 

     
%%  
% Calculate CSA relaxation rate constants and time constants 

  
    R1CSA = c.^2.*((1/15)*Jc);  
    R2CSA = c.^2.*((2/45)*J0 + (1/30)*Jc);  
    T1CSA = 1./R1CSA; T2CSA = 1./R2CSA; 

     
%%  
% Calculate sum of DD and CSA contributions to R1 and R2 



  
    R1 = R1DD + R1CSA;  
    R2 = R2DD + R2CSA;  
    T1 = 1./R1; T2 = 1./R2; 

     
%%  
% Surface plot of T1 and T2 as a function of B0 and tauc 

  
    subplot(1,2,1); 
    mesh(B0,x,T1');axis square; 
    subplot(1,2,2); 
    mesh(B0,x,T2');axis square; 

  



S4 Matlab program for numerically calculating hyperpolarized kinetics of a first order two-site exchange 

reaction A ↔ B in Figure 4 

%%  
% Set initial magnetizations A*(0) = A0, A(0) = a0, B*(0) = 0; B(0) = b0; 

  
    A0 = 1; B0 = 0; a0 = 0; b0 = 0;  

  
%%  
% Set relaxation rate constants r1 and r2, exchange rate constants k  

  
    r1A = 1/60; r1B = 1/60; 
    kAB = 0.01; kBA = 0.005;  

  
%%  
% Set initial magnetization basis vector [A* B* A B] 

  
    M0 = [A0,B0,a0,b0]; 

  
%%  
% Set input parameters as vector xIn 

  
    xIn  = [r1A,r1B,kAB,kBA]; 

  
%%  
% Set time vector for simulation 

  
    dt = 0.01; tmax = 600; 
    t = 0:dt:tmax; 

     
%%  
% Calculate time evolution using DE function diff_eqs 

  
    options = odeset('RelTol',1e-6,'AbsTol',1e-6); 
    [tx,y] = ode15s(@diff_eqs,t,M0,options,xIn);    

  
%%  
% Plot results 

  
    subplot(1,2,1); 
    plot(t,y(:,1),'k',t,y(:,2),'r',t,y(:,3),'k--',t,y(:,4),'r--'); 
    subplot(1,2,2); 
    plot(t,y(:,1)+y(:,3),'k',t,y(:,2)+y(:,4),'r'); 

  
%% 
function dy = diff_eqs(~,y,xIn) 

    
    dy = zeros(4,1);                

   
    r1A = xIn(1); r1B = xIn(2); 
    kAB = xIn(3); kBA = xIn(4); 

         
    dy(1) = -kAB*y(1) + kBA*y(2) - r1A*y(1);               % A*     
    dy(2) =  kAB*y(1) - kBA*y(2) - r1B*y(2);               % B* 

     
    dy(3) = -kAB*y(3) + kBA*y(4) + r1A*y(1);               % A   
    dy(4) =  kAB*y(3) - kBA*y(4) + r1B*y(2);               % B 

         
end 

  

 

 



S5 Matlab program for numerically calculating hyperpolarized kinetics of a first order three-site exchange 

reaction A ↔ B ↔ C in Figure 5 

%%  
% Set initial magnetizations A*(0) = A0, B*(0) = B0; C*(0) = C0; A(0) =  
% a(0); B(0) = b0; C(0) = c0; 

  
    A0 = 1; B0 = 0; C0 = 0; a0 = 0; b0 = 0; c0 = 0; 

  
%%  
% Set relaxation rate constants r1 and r2, exchange rate constants k  

  
    r1A = 1/60; r1B = 1/60;  r1C = 1/60; 
    kAB = 0.01; kBA = 0.005; kBC = 0.01; kCB = 0.005; 

  
%%  
% Set initial magnetization basis vector [A* B* C* A B C] 

  
    M0 = [A0,B0,C0,a0,b0,c0]; 

  
%%  
% Set input parameters as vector xIn 

  
    xIn  = [r1A,r1B,r1C,kAB,kBA,kBC,kCB]; 

  
%%  
% Set time vector for simulation 

  
    dt = 0.01; tmax = 600; 
    t = 0:dt:tmax; 

  
%%  
% Calculate time evolution using DE function diff_eqs  

  
    options = odeset('RelTol',1e-6,'AbsTol',1e-6); 
    [t,y] = ode15s(@diff_eqs,t,M0,options,xIn); 

        
%%  
% Plot results 

  
    subplot(1,2,1) 
    plot(t,y(:,1),'k',t,y(:,2),'b',t,y(:,3),'r'); hold on;  
    plot(t,y(:,4),'k--',t,y(:,5),'b--',t,y(:,6),'r--'); 
    subplot(1,2,2) 
    plot(t,y(:,1)+y(:,4),'k',t,y(:,2)+y(:,5),'b',t,y(:,3)+y(:,6),'r'); 

  
%% 
function dy = diff_eqs(~,y,xIn)         

         
        dy = zeros(6,1); 

         
        r1A = xIn(1); r1B = xIn(2); r1C = xIn(3); 
        kAB = xIn(4); kBA = xIn(5); kBC = xIn(6); kCB = xIn(7); 

         
        dy(1) = -kAB*y(1) + kBA*y(2) - r1A*y(1);                         % A* 
        dy(2) =  kAB*y(1) - kBA*y(2) - kBC*y(2) + kCB*y(3) - r1B*y(2);   % B* 
        dy(3) =  kBC*y(2) - kCB*y(3) - r1C*y(3);                         % C* 

         
        dy(4) = -kAB*y(4) + kBA*y(5) + r1A*y(1);                         % A 
        dy(5) =  kAB*y(4) - kBA*y(5) - kBC*y(5) + kCB*y(6) + r1B*y(2);   % B 
        dy(6) =  kBC*y(5) - kCB*y(6) + r1C*y(3);                         % C 

         
end 

  



S6 Matlab program for numerically calculating hyperpolarized kinetics of a second order two-site exchange 

reaction A + C ↔ B + D in Figure 6 

%%  
% Set initial magnetizations A*(0) = A0, B*(0) = 0; A(0) = a0, B(0) = b0;  
% C(0) = c0; D(0) = d0; 

  
    A0 = 1; B0 = 0; a0 = 0; b0 = 0; c0 = 0.95; d0 = 0.05;  

     
%%  
% Set relaxation rate constants r1 and r2, exchange rate constants k     

  
    r1A = 1/60; r1B = 1/60; 
    kAB = 0.01; kBA = 0.005; 

  
%%  
% Set initial magnetization M0 in basis vector [A* B* A B C D] 

  
    M0 = [A0,B0,a0,b0,c0,d0]; 

     
%%  
% Set input parameters as vector xIn 

  
    xIn = [r1A,r1B,kAB,kBA]; 

  
%%  
% Set time vector for simulation 

  
    dt = 0.01; tmax = 600; 
    t = 0:dt:tmax; 

  
%%  
% Calculate time evolution using DE function diff_eqs 

  
    options = odeset('RelTol',1e-6,'AbsTol',1e-6); 
    [t,y] = ode15s(@diff_eqs,t,M0,options,xIn); 

  
%%  
% Plot results 

  
    subplot(1,2,1); 
    plot(t,y(:,1),'k',t,y(:,2),'r',t,y(:,3),'k--',t,y(:,4),'r--'); 
    subplot(1,2,2); 
    plot(t,y(:,1)+y(:,3),'k',t,y(:,2)+y(:,4),'r',t,y(:,5),'b',t,y(:,6),'g'); 

  
%% 
function dy = diff_eqs(~,y,xIn) 

         
        dy = zeros(6,1); 

         
        r1A = xIn(1); r1B = xIn(2); 
        kAB = xIn(3); kBA = xIn(4); 

          
        dy(1) = -kAB*y(1)*y(5) + kBA*y(2)*y(6) - r1A*y(1);          % A* 
        dy(2) =  kAB*y(1)*y(5) - kBA*y(2)*y(6) - r1B*y(2);          % B* 

         
        dy(3) = -kAB*y(3)*y(5) + kBA*y(4)*y(6) + r1A*y(1);          % A 
        dy(4) =  kAB*y(3)*y(5) - kBA*y(4)*y(6) + r1B*y(2);          % B 

         
        dy(5) = -kAB*y(5)*(y(1) + y(3)) + kBA*y(6)*(y(2) + y(4));   % C 
        dy(6) =  kAB*y(5)*(y(1) + y(3)) - kBA*y(6)*(y(2) + y(4));   % D     
end 

  



S7 Matlab program for numerically calculating Michaelis Menten kinetics of a hyperpolarized substrate in 

Figure 7 
 

%%  
% Set initial magnetizations S*(0) = S0, ES*(0) = ES0; P*(0) = P0, S(0)  
% = s0; ES(0) = es0; P(0) = p0; E(0) = E0; 

  
    S0 = 1e-3; ES0 = 0; P0 = 0; s0 = 0; es0 = 0; p0 = 0; E0 = 1e-9; 
%%  
% Set relaxation rate constants r1 and exchange rate constants k 

  
    r1S = 1/60; r1ES = 1/60; r1P = 1/60; 
    kplus1 = 1e7; kmin1 = 1e2; kplus2 = 5e3; kmin2 = 0;  

  
%%  
% Set initial magnetization M0 in basis vector [S* ES* P*  S  ES  P  E] 

  
    M0 = [S0,ES0,P0,s0,es0,p0,E0]; 

     
%%  
% Set input parameters as vector xIn    

  
    xIn  = [r1S,r1ES,r1P,kplus1,kmin1,kplus2,kmin2]; 

  
%%  
% Set time vector for simulation 

  
    dt = 0.01; tmax = 600; 
    t = 0:dt:tmax; 
%%  
% Calculate time evolution using DE function diff_eqs  

  
    options = odeset('RelTol',1e-10,'AbsTol',1e-10); 
    [t,y] = ode15s(@diff_eqs,t,M0,options,xIn); 
%%  
% Plot results 

  
    subplot(2,2,1) 
    plot(t,y(:,1),'k',t,y(:,4),'k--',t,y(:,3),'r',t,y(:,6),'r--'); 
    subplot(2,2,2) 
    plot(t,y(:,1)+y(:,4),'k',t,y(:,3)+y(:,6),'r'); 
    subplot(2,2,3) 
    plot(t,y(:,2),'g',t,y(:,5),'g--'); 
    subplot(2,2,4) 
    plot(t,y(:,2)+y(:,5),'g',t,y(:,7),'y'); 

  
%% 
function dy = diff_eqs(~,y,xIn)         

         
    dy = zeros(7,1); 

         
    r1S    = xIn(1); r1ES  = xIn(2); r1P = xIn(3); 
    kplus1 = xIn(4); kmin1 = xIn(5); 
    kplus2 = xIn(6); kmin2 = xIn(7); 

  
    dy(1) = -kplus1*y(1)*y(7) + kmin1*y(2) - r1S*y(1); 
    dy(2) =  kplus1*y(1)*y(7) - kmin1*y(2) - kplus2*y(2) + kmin2*y(3)*y(7) - r1ES*y(3); 
    dy(3) =  kplus2*y(2) - kmin2*y(3)*y(7) - r1P*y(3); 

         
    dy(4) = -kplus1*y(4)*y(7) + kmin1*y(5) + r1S*y(1); 
    dy(5) =  kplus1*y(4)*y(7) - kmin1*y(5) - kplus2*y(5) + kmin2*y(6)*y(7) + r1ES*y(3); 
    dy(6) =  kplus2*y(5) - kmin2*y(6)*y(7) + r1P*y(3); 

  
    dy(7) = -kplus1*y(7)*(y(1)+y(4)) + (kmin1+kplus2)*(y(2)+y(5)) - kmin2*y(7)*(y(3)+y(6)); 
 

end 



S8 Matlab program for numerically calculating Lactate dehydrogenase kinetics for hyperpolarized pyruvate 

in Figure 8 

%%  
% Set initial magnetizations Pyr*(0) = P0; Lac*(0) = L0; Pyr(0) = p0; Lac(0)  
% = l0; NADH(0) = nadh0; NAD(0) = nad0; E.NADH(0) = Enadh0; E.NAD(0) = Enad0;  
% E(0) = E0; 

  
    P0 = 1e-3; L0 = 0; p0 = 0; l0 = 0; nadh0 = 0.1e-3; nad0 = 1e-3;  
    Enadh0 = 0; Enad0 = 0; E0 = 1.2e-9; 

     
%%  
% Set relaxation rate constants r1 and exchange rate constants k 

  
    r1P = 1/60;      r1L = 1/60; 
    kplus1 = 1.03e8; kmin1 = 549;  
    kplus2 = 6.72e6; kmin2 = 3.44e4;  
    kplus3 = 842;    kmin3 = 9.12e5;  

  
%%  
% Set initial magnetization M0 in basis vector [P* L* P L NADH NAD E.NADH  
% E.NAD E] 

  
    M0 = [P0,L0,p0,l0,nadh0,nad0,Enadh0,Enad0,E0]; 

     
%%  
% Set input parameters as vector xIn     

  
    xIn  = [r1P,r1L,kplus1,kmin1,kplus2,kmin2,kplus3,kmin3]; 

  
%%  
% Set time vector for simulation 

  
    dt = 0.01; tmax = 600; 
    t = 0:dt:tmax; 

  
%%  
% Calculate time evolution using DEs  

  
    options = odeset('RelTol',1e-10,'AbsTol',1e-10); 
    [t,y] = ode15s(@diff_eqs,t,M0,options,xIn); 

  
%%  
% Plot results 

  
    subplot(1,3,1) 
    plot(t,y(:,1),'k',t,y(:,3),'k--',t,y(:,2),'r',t,y(:,4),'r--'); 
    subplot(1,3,2) 
    plot(t,y(:,7),'g',t,y(:,8),'b',t,y(:,9),'y'); 
    subplot(1,3,3) 
    plot(t,y(:,1)+y(:,3),'k',t,y(:,2)+y(:,4),'r',t,y(:,5),'g',t,y(:,6),'b'); 

  
%% 
function dy = diff_eqs(~,y,xIn)         

         
    dy = zeros(9,1); 

         
    r1P    = xIn(1); r1L   = xIn(2); 
    kplus1 = xIn(3); kmin1 = xIn(4); 
    kplus2 = xIn(5); kmin2 = xIn(6); 
    kplus3 = xIn(7); kmin3 = xIn(8); 

  
    dy(1) = -kplus2*y(1)*y(7) + kmin2*y(2)*y(8) - r1P*y(1); 
    dy(2) =  kplus2*y(1)*y(7) - kmin2*y(2)*y(8) - r1L*y(2); 

  



    dy(3) = -kplus2*y(3)*y(7) + kmin2*y(4)*y(8) + r1P*y(1); 
    dy(4) =  kplus2*y(3)*y(7) - kmin2*y(4)*y(8) + r1L*y(2); 

  
    dy(5) = -kplus1*y(5)*y(9) + kmin1*y(7); 
    dy(6) = -kmin3*y(6)*y(9) + kplus3*y(8); 

  
    dy(7) =  kplus1*y(5)*y(9) - kmin1*y(7) - kplus2*y(7)*(y(1)+y(3)) + kmin2*y(8)*(y(2)+y(4)); 
    dy(8) =  kplus2*y(7)*(y(1)+y(3)) - kmin2*y(8)*(y(2)+y(4)) - kplus3*y(8) + kmin3*y(6)*y(9); 

  
    dy(9) = -kplus1*y(5)*y(9) + kmin1*y(7) + kplus3*y(8) - kmin3*y(6)*y(9); 

         
end 

  

  

 
 


