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Abstract. Magic-angle spinning is routinely used to average anisotropic interactions in solid-state nuclear mag-
netic resonance (NMR). Due to the fact that the homonuclear dipolar Hamiltonian of a strongly coupled spin
system does not commute with itself at different time points during the rotation, second-order and higher-order
terms lead to a residual dipolar line broadening in the observed resonances. Additional truncation of the residual
broadening due to isotropic chemical-shift differences can be observed. We analyze the residual line broaden-
ing in coupled proton spin systems based on theoretical calculations of effective Hamiltonians up to third order
using Floquet theory and compare these results to numerically obtained effective Hamiltonians in small spin
systems. We show that at spinning frequencies beyond 75 kHz, second-order terms dominate the residual line
width, leading to a 1/ωr dependence of the second moment which we use to characterize the line width. How-
ever, chemical-shift truncation leads to a partial ω−2

r dependence of the line width which looks as if third-order
effective Hamiltonian terms are contributing significantly. At slower spinning frequencies, cross terms between
the chemical shift and the dipolar coupling can contribute in third-order effective Hamiltonians. We show that
second-order contributions not only broaden the line, but also lead to a shift of the center of gravity of the line.
Experimental data reveal such spinning-frequency-dependent line shifts in proton spectra in model substances
that can be explained by line shifts induced by the second-order dipolar Hamiltonian.

1 Introduction

Magic-angle spinning (MAS) (Andrew et al., 1958, 1959;
Lowe, 1959) is a prerequisite for almost all high-resolution
solid-state nuclear magnetic resonance (NMR) spectroscopic
techniques. Over the years, a steady increase in MAS fre-
quencies has been achieved (Böckmann et al., 2015) up to
170 kHz for cylindrical rotors (Lin et al., 2018; Samoson,
2019; Schledorn et al., 2020), and alternate rotor designs
have also been implemented based on spheres (Chen et al.,
2018; Gao et al., 2019). With the spinning frequencies cur-
rently available, proton-detection experiments in fully proto-
nated and labeled proteins have become feasible (Andreas
et al., 2016; Agarwal et al., 2014; Stöppler et al., 2018;
Medeiros-Silva et al., 2016; Vasa et al., 2019; Stanek et al.,
2016; Nishiyama et al., 2014; Struppe et al., 2017; Schubeis
et al., 2018; Vasa et al., 2018). The residual line width of
such proton-detected protein spectra is on the order of a

few hundred Hertz (full width at half maximum, FWHM)
and decreases with increasing spinning frequency, ωr. There
are different contributions to the residual line width as dis-
cussed in detail in Penzel et al. (2019), which can be clas-
sified as homogeneous or inhomogeneous contributions ac-
cording to Maricq and Waugh (1979). The inhomogeneous
contributions can be refocused in a Hahn echo experiment
(Hahn, 1950), e.g., magnetic-field inhomogeneity or suscep-
tibility broadening, while homogeneous contributions cannot
be refocused. The homogeneous contributions originate ei-
ther from coherent terms that are due to incomplete averaging
by MAS or from incoherent relaxation due to stochastic dy-
namic processes in the molecule. The incoherent relaxation
contribution is expected to change only little with a change
in MAS frequency since the only difference comes from
the spinning-frequency-dependent sampling of the spectral-
density function J (ωr) (Schanda and Ernst, 2016) that con-
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tributes to T2. The refocused line width FWHM(hom)=
π/T ′2 is, therefore, the sum of a nearly constant term π/T2
and the coherent contribution that scales with the spinning
frequency.

To describe experiments with time-dependent Hamilto-
nians as is the case under MAS, average-Hamiltonian the-
ory (AHT) (Haeberlen and Waugh, 1968; Haeberlen, 1976;
Ernst et al., 1990) or Floquet theory (Scholz et al., 2010;
Leskes et al., 2010) can be used to calculate effective time-
independent Hamiltonians to different orders. Since the dipo-
lar coupling is a traceless second-rank tensor, one would
expect no contribution in the first-order term. However,
second-order (commutator) terms and third-order (double-
commutator) terms are possible as well as higher-order con-
tributions. The second-order terms are expected to scale with
1/ωr, while in general terms on order n are expected to
scale with ω−(n−1)

r . Experimental observations of the resid-
ual homogeneous line width as a function of spinning fre-
quency show that it can often be approximated by a linear
correlation with the inverse of the spinning frequency with
some deviation that indicates a partial inverse quadratic de-
pendence (Nishiyama, 2016; Sternberg et al., 2018; Penzel
et al., 2019; Schledorn et al., 2020). This has been attributed
to third-order contributions to the effective Hamiltonian or
to chemical-shift effects (Sternberg et al., 2018; Moutzouri
et al., 2020).

Second-order effective Hamiltonians under MAS for
strongly coupled spin systems have been calculated be-
fore based on AHT (Brunner et al., 1990b, a; Brunner,
1993, 2001; Malär et al., 2019) for three-spin sub-systems
with an arbitrary geometry. We extend this work to a gen-
eral solution for the third-order terms based on Floquet the-
ory. The analytical solutions can be used to calculate spectra
numerically based on different orders of the analytical solu-
tion and analyze their scaling behavior under MAS. Alterna-
tively, exact effective Hamiltonians based on the numerical
propagator (calculated by time slicing of the time-dependent
Hamiltonian) can be calculated using the matrix logarithm of
the propagator (Liu et al., 1990). When calculating an effec-
tive Hamiltonian from the propagator using the matrix loga-
rithm, one has to keep in mind that the eigenvalues can only
be determined modulo the inverse of the cycle time, which is
in our case the spinning frequency. For fast spinning, i.e.,
short cycle times, this is usually not a problem since the
eigenvalues of the effective Hamiltonian are within the inter-
val ±ωr/2. Based on these different effective Hamiltonians,
we calculate the second moment (M2) of the line which can
be correlated with an equivalent line width of a Gaussian line
(Mehring, 1983).

We show that third-order terms do not play a critical role in
the residual line width at MAS spinning frequencies beyond
75 kHz. At slower spinning frequencies, cross terms between
chemical shifts and homonuclear dipolar couplings start to
play an important role in third-order terms. Due to the struc-
ture of the second-order Hamiltonian, the lines are not only

broadened, but also shifted, which can be characterized by
the first moment (M1) of the line which describes the cen-
ter of gravity of the line. These line shifts can be observed
experimentally. The experimentally observed deviation from
the expected 1/ωr dependence can be reproduced in numeri-
cal calculations only if chemical-shift differences are consid-
ered. The additional truncation of the residual dipolar cou-
plings by the chemical shift is the reason for this difference.

2 Theory

We assume a homonuclear spin system with chemical shifts
and homonuclear dipolar couplings under MAS. The time-
dependent Hamiltonian for such a system can be written as

Ĥ(t)=
N∑
p=1

ωp Îpz+

N−1∑
p=1

N∑
q=p+1

ωpq (t)

×

[
2ÎpzÎqz−

(
Îpx Îqx + Îpy Îqy

)]
, (1)

where the time-dependent dipolar coupling is given by

ωpq (t)=
2∑

m=−2
ω(m)
pq e

imωrt , (2)

and the Fourier coefficients are defined by

ω(m)
pq =

1
√

6

2∑
m=2

2∑
m′=−2

d2
m,0 (−θm)e−imγ d2

m′,m(β)e−im
′α

× e−im
′φpq,12d2

0,m′
(
θpq,12

)√3
2
δpq . (3)

Here, δpq is the anisotropy of the dipolar coupling and
d l
m,m′

(θ ) are the reduced Wigner rotation matrix elements.
We transform the dipolar-coupling tensor from the principal-
axes system (PAS) to the laboratory frame system (LAB)
by three consecutive Euler rotations: (i) a rotation by
(0,θ(pq),φ(pq)) from the PAS of spin pair (pq) to the PAS
of spin pair (12); (ii) a rotation by (α,β,γ ) from the PAS
of spin pair (12) to the rotor fixed frame; (iii) a rotation by
(−ωrt,−θm,0) from the rotor-fixed frame to the laboratory
frame of reference. The Hamiltonian is periodic with a sin-
gle frequency and can be written as a Fourier series

Ĥ(t)=
2∑

n=−2
Ĥ(n)einωrt , (4)

and the Fourier coefficients of the Hamiltonian are given by

Ĥ(0)
=

N∑
p=1

ωp Îpz, (5)

Ĥ(n)
=

N−1∑
p=1

N∑
q=p+1

ω(n)
pq

[
2ÎpzÎqz−

(
Îpx Îqx + Îpy Îqy

)]
. (6)
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Based on single-mode Floquet theory, we can now calcu-
late the first three orders of the effective Hamiltonian (Scholz
et al., 2010; Hellwagner et al., 2020) according to

ˆH= ˆH(1)
+
ˆH(2)
+
ˆH(3)
+ ·· ·

= Ĥ(0)
+

1
2

∑
n6=0

[
Ĥ(n),Ĥ(−n)

]
nωr

+
1
2

∑
n6=0

[[
Ĥ(n),Ĥ(0)

]
,Ĥ(−n)

]
(nωr)2

+
1
3

∑
k,n 6=0

[
Ĥ(n),

[
Ĥ(k),Ĥ(−k−n)

]]
nωrkωr

+ ·· · (7)

Second-order terms are fully described by a three-spin sys-
tem, while third-order terms require a four-spin system to ob-
tain all possible terms. The first three orders of the effective
Hamiltonian for a dipolar-coupled spin system are given by

ˆH(1)
= Ĥ(0)

=

N∑
p=1

ωp Îpz, (8)

ˆH(2)
=

1
2

∑
n 6=0

[
Ĥ(n),Ĥ(−n)

]
nωr

=

∑
p,q,r

ω(eff)
pqr Îpz

(
Î+q Î

−
r − Î

−
q Î
+
r

)
(9)

ˆH(3)
=

1
2

∑
n 6=0

[[
Ĥ(n),Ĥ(0)

]
,Ĥ(−n)

]
(nωr)2

+
1
3

∑
k,n 6=0

[
Ĥ(n),

[
Ĥ(k),Ĥ(−k−n)

]]
nωrkωr

,

=

∑
p

ω(eff)
p Îpz+

∑
p,q

ω(eff)
pq,z

(
2ÎpzÎqz

)
−ω(eff)

pq

(
Îpx Îqx + Îpy Îqy

)
+

∑
p,q,r

ω(eff)
pqr Îpz

(
Î+q Î

−
r + Î

−
q Î
+
r

)
+

∑
p,q,r,s

ω(eff)
pqrs,zÎpzÎqz

(
Î+r Î

−
s + Î

−
r Î
+
s

)
+

∑
p,q,r,s

ω(eff)
pqrs,xy

(
Î+p Î

−
q Î
+
r Î
−
s + Î

−
p Î
+
q Î
−
r Î
+
s

)
. (10)

Detailed expressions for the various effective coupling fre-
quencies in Eqs. (9) and (10) can be found in the Supplement
or for the second-order terms in Brunner et al. (1990b).

The second-order Hamiltonian is a three-spin zero-
quantum-type Hamiltonian with an additional Îz term as
the third spin operator. Time evolution under such a zero-
quantum Hamiltonian does not lead to line splitting, but

a line shift has been shown for the rank-one part of the
J coupling (Andrew and Farnell, 1968), which also has a
purely zero-quantum Hamiltonian (Mehring, 1983). This fact
has also been mentioned in a recent paper about homonu-
clear J decoupling in solids (Moutzouri et al., 2020). As a
consequence of this, the second-order Hamiltonian will not
only lead to a line broadening, but also a shift of the line
that depends on the spinning frequency. In the presence of
large chemical-shift differences, the second-order Hamilto-
nian will be completely truncated and becomes invisible in
the limit of weak coupling. The third-order Hamiltonian,
however, also contains terms that lead to a splitting of the
lines and are visible in the weak-coupling limit.

3 Numerical simulations

All numerical simulations have been implemented using the
spin-simulation environment GAMMA (Smith et al., 1994),
which allows the use of arbitrary effective Hamiltonians. To
characterize the line width in a homonuclear dipolar-coupled
spin system, two different approaches were used. In a first
approach, the propagator of the time-dependent Hamiltonian
over a full rotor cycle was calculated using time slicing of the
Hamiltonian. The effective Hamiltonian over the rotor cycle
was then back-calculated according to

ˆH=
ln (U (τr))
i2πτr

. (11)

Here, τr = 2π/ωr is the cycle time of the MAS rotation. Typ-
ically, one has to be careful that the eigenvalues of the Hamil-
tonian can be multivalued with a multiple of ωr =

2π
τr

and the
correct solution is unknown. In the case of fast MAS, how-
ever, the eigenvalues of the effective Hamiltonian are typi-
cally much smaller than the spinning frequency, and this mul-
tivalued solution of the logarithm poses no problems. The
second approach uses the series expansion of the effective
Hamiltonian based on Floquet theory as presented in the The-
ory section. This allows us to compare spectra or properties
of spectra as a function of the different levels of approxi-
mation as provided by Floquet theory. We diagonalize the
effective Hamiltonian obtained from either method and cal-
culate transition frequencies (ωij ) from the difference of the
eigenvalues of the Hamiltonian in the eigenbase. The initial
density operator (usually F̂x =

∑
nÎnx) and the detection op-

erator (usually F̂− =
∑
Inx − i

∑
nIny) are transformed into

the eigenbase of the Hamiltonian, and the off-diagonal ele-
ments are used to determine the intensity of the transitions
(Iij = (σ0)ij (dji)∗). Here, σ0 is the initial density operator
and d is the detection operator. This is basically a standard
frequency-based spectrum calculation that allows us to re-
construct the spectrum with any desired resolution. Either
spectra are calculated by binning the transition frequencies
into a spectral range with a given frequency resolution or the
intensities, and the frequencies are directly used to calculate
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Figure 1. Schematic drawing of the (a) three-spin and (b) four-spin
systems used in numerical simulations indicating distances and rela-
tive orientations. The red dashed lines indicate out-of-plane vectors
to the fourth spin.

the nth moment of the line according to

Mn =

∑
i,j<i

ωnij Iij∑
i,j<i

Iij
. (12)

The second method has a higher precision because the round-
ing due to the binning of the frequency values is avoided.
Instead of the second moment (M2), we use the equivalent
FWHM of a Gaussian line with the same M2, which is given
by FWMH= 2

√
2ln(2)M2 as a measure of the line width

(Mehring, 1983).

4 Results and discussions

The spin systems are characterized by the coordinates of the
spins r i = (xi,yi,zi) leading to the distances rij and a set of
Euler angles (0,θij ,φij ). The anisotropy of the dipolar cou-
pling is then given by δij =−2µ0

4π
γiγj}
r3
ij

. We start with dis-

cussing a three-spin system since many characteristics of the
residual line width can already be seen in this simple spin
system. We assume the spin pair (12) is aligned along the z
axis defined by the static magnetic field. In a planar three-
spin system, a single Euler angle is sufficient to describe
the orientation of each coupling with respect to the coupling
(12). Figure 1a shows the geometry of the three-spin system
used in the simulations. In a second step we will go to a four-
spin system where the fourth spin can either be in or out of
the plane spanned by the spins 1, 2, and 3 (see Fig. 1b). The
details of each spin system are always given in the figure cap-
tions.

4.1 Three-spin system without chemical-shift
differences

For simplicity, we start out with a three-spin system with-
out chemical-shift differences and coordinates r1 = (0,0,0),
r2 = (0,0,1.75), and r3 = (3,0,0) (in units of Å) leading
to distances and angles given by r12= 1.75 Å, r13= 3.00 Å,
r23= 3.47 Å, θ13= 90◦, and θ23= 120◦ (see Fig. 1). This

is a mimic for a strongly coupled CH2 spin system with
one additional more distant proton. The dipolar couplings
in such a spin system are characterized by δ12/(2π )=
−44826 Hz, δ13/(2π )=−8898 Hz, δ23/(2π )=−5750 Hz.
Figure 2a shows the calculated spectra for this spin system
at an MAS frequency of 50 kHz using second-order, third-
order, and exact effective Hamiltonians. Note that the spec-
trum is cut off in the center at the top, and the complete spec-
trum is shown as an inset in Fig. 2a. Spectra at other spinning
frequencies ranging from 20 kHz to the currently experimen-
tally inaccessible 1000 kHz can be found in the Supplement
(Fig. S1). An expanded view of the central part of the spec-
tra is shown in Fig. 2b. The second-order Hamiltonian leads
to a spectrum (red) that is already quite close to the correct
spectrum obtained from the numerically calculated effective
Hamiltonian (blue) with some differences in features in the
center part of the spectrum (see Fig. 2b). These differences
are strongly reduced when we include the third-order terms
(orange), which leads to a spectrum that has all the features
and is very close to the exact one (blue) in the center of
the line. The second-order and third-order spectra, however,
agree very well outside the central region. The fact that the
third-order Hamiltonian leads only to changes in the central
part of the spectrum can be understood from the form of the
Hamiltonian as shown in Eqs. (9) and (10). Since the two

Hamiltonians do not commute, a large value for ˆH(2)
will

truncate ˆH(3)
, leading to negligible changes in the spectrum

at larger offsets. In the center of the spectrum ˆH(2)
is smaller,

and the influence of ˆH(3)
is visible in the spectra.

However, there are clear differences in the line width of the
exact spectrum and the spectrum based on second-order and
third-order effective Hamiltonians, which are clearly broader.
This difference in the breadth of the powder line shape must
be attributed to higher-order contributions to the effective
Hamiltonian. Since calculating terms beyond the third-order
term considered here are quite complex, we have investi-
gated how the difference of the total breadth scales with spin-
ning frequency. Figure 3 shows the difference in breadth in
a double-logarithmic plot for spinning frequencies ranging
from 20 to 250 kHz. The data points lie on a line with slope
−3, which indicates that the breadth depends on the spin-
ning frequency with the inverse third power. This is a clear
indication that the additional term that leads to the difference
in breadth is a fourth-order effective Hamiltonian term that
would scale with ω−3

r .
We can calculate the second moment of the powder lines as

a function of the spinning frequency (see Fig. S1) as shown in
Fig. 4. Above a spinning frequency of 50 kHz, there is a very
good linear correlation between the line width and the inverse
spinning frequency (ω−1

r ) for all three sets of spectra. For
second-order and third-order spectra, the correlation extends
down to 20 kHz MAS frequency, but for the full effective
Hamiltonian, we observe a deviation from the linear correla-
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Figure 2. (a) Calculated MAS spectra at a spinning frequency of 50 kHz using different approximations of the effective Hamiltonian.
All spectra were processed with an exponential line broadening of 1 Hz. The central very narrow peak is cut for a better display of the
spectrum, but the complete spectrum is shown as an inset in the upper left corner. The spin-system parameters are δ12/(2π )=−44826 Hz,
δ13/(2π )=−8898 Hz, δ23/(2π )=−5750 Hz, θ13 = 90◦, θ23 = 120◦. The spectral window was set to 2000 Hz with 20 000 data points
leading to a digital resolution of 0.1 Hz. One hundred thousand powder points were sampled according to the ZCW scheme (Cheng et al.,
1973). (b) Expanded central region of the spectrum in panel (a). Here one can clearly see the differences between the second-order and
third-order approximations that are very close to the exact spectrum.

Figure 3. Difference in breadth of the simulated spectra between
the third-order and exact effective Hamiltonians as a function of the
spinning frequency. The red line has a slope of−3 corresponding to
a ω−3

r dependence of the difference. This is the expected slope for
a contribution by a fourth-order effective Hamiltonian.

tion. This deviation towards narrower lines is most likely due
to the fourth-order effective Hamiltonian as discussed above.
This deviation becomes important for spinning frequencies
below 50 kHz, where the spinning frequency is on the or-
der of the biggest dipolar coupling used in the model spin
system. It is well known that perturbation expansions such
as the average Hamiltonian or the van Vleck expansion con-

verge slowly in this regime (Blanes et al., 2009). It is inter-
esting to note that the line widths for the second-order (red)
and third-order (orange) spectra agree very well over the full
range of spinning frequencies.

Of course, the second moment calculated over the com-
plete spectrum including the side bands is preserved under
MAS and is independent of the spinning frequency (Lowe,
1959). Since we are interested in the line width of the center
band, the second moment is calculated only over the center
band of the line, and we see a decrease in the second moment
as a function of the spinning frequency and a corresponding
decrease in the Gaussian line width.

4.2 Three-spin system with chemical-shift differences

Introducing chemical shifts makes the analysis of the spectra
in terms of second moments and line widths more complex.
This is due to the fact that we are now interested in second
moments of the different lines that may overlap with each
other or overlap with combination lines that are possible in
strongly coupled spin systems. Figure 5 shows the simulated
proton spectra at 100 kHz MAS frequency for two differ-
ent sets of chemical shifts. Spectra at different spinning fre-
quencies (between 50 and 500 kHz) can be found in Fig. S2.
Slower spinning frequencies are difficult to analyze due to
overlapping lines. Below the spectra the regions of the var-
ious transition frequencies are marked by a black line. One
can see that there are single-quantum transitions and combi-
nation lines, with the combination lines having much lower
intensity than the single-quantum transitions. Calculating the
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Figure 4. Line width (full width half maximum) of a Gaussian line
with the same second moment as the powder line shape shown in
Fig. S1 (FWMH= 2

√
2ln(2)M2). The line width obtained from

second-order and third-order effective Hamiltonians correlates al-
most perfectly linearly with ω−1

r , while the line width obtained
from the exact effective Hamiltonian shows some deviations which
become more prominent below 50 kHz. This deviation (narrower
line width) is the contribution of the fourth-order term as discussed
above (see Fig. 3).

second moment over the complete line and correcting for the
contributions by the isotropic chemical shifts confirm that the
second moment is preserved, as one would expect. However,
this is not the quantity of interest since we are interested in
the individual line width. We, therefore, calculate the first and
second moments of the individual one-quantum lines by re-
stricting the calculations to the relevant areas of the spectrum
indicated in the figure by black lines.

Calculating the transition-selective moments as a func-
tion of the MAS frequency shows that the first moment
and the second moment are spinning-frequency dependent.
The deviation of the first moment from the chemical shift
is shown in Fig. 6a and b. One can see that the differences
between the different approximations (second order, third
order, and exact effective Hamiltonian) are quite small and
that one can observe changes in the line position as a func-
tion of the spinning frequency. These changes in the line
position will limit the accuracy of the chemical shift deter-
mination in proton spectra and will be discussed in more
detail in Sect. 5. The dependence of the line width on the
spinning frequency is shown in Fig 6c–f for chemical shifts
δ1 = δ2= 0 ppm (squares), δ3= 0.7 ppm (circles) (left col-
umn) and δ1=−0.1 ppm (squares), δ2= 0.2 ppm (circles),
δ3= 0.7 ppm (triangles) (right column) as a function of ν−1

r
(middle row), and ν−2

r (lower row). One can see that for
three-spin systems with chemical-shift differences the clear
ν−1

r dependence of the three-spin systems without chemical-
shift differences does not hold anymore. For a strongly cou-

Figure 5. Calculated MAS spectra of a three-spin system at
an MAS frequency of 100 kHz. The spin-system parameters
are δ12/(2π )=−44826 Hz, δ13/(2π )=−8898 Hz, δ23/(2π )=
−5750 Hz, θ13 = 90◦, θ23 = 120◦. The spectral window was set
to 20 kHz with 20 000 data points leading to a digital resolution
of 1 Hz. One hundred thousand powder points were sampled ac-
cording to the ZCW scheme (Cheng et al., 1973). The chemical
shifts were chosen to be (a) δ1 = δ2= 0 ppm, δ3= 0.7 ppm and
(b) δ1=−0.1 ppm, δ2= 0.2 ppm, δ3= 0.7 ppm at a Larmor fre-
quency of 1 GHz. The black line under the spectra indicates regions
of transitions.

pled spin pair with a small chemical shift difference and an
additional coupling to a third spin with a strongly different
chemical shift (Fig. 6c and d), the dependence of the line
width on the spinning frequency is still quite close to ν−1

r .
For a three-spin system with three distinct chemical shifts,
the MAS dependence is closer to ν−2

r . In general, the de-
pendence on the MAS frequency is somewhere between ν−1

r
and ν−2

r and depends on the exact selection of the chemi-
cal shifts. We believe that this change in spinning-frequency
dependence is a consequence of additional truncation of the
second-order effective Hamiltonian by the chemical shifts.
The truncation explains the experimentally observed devia-
tion from the ν−1

r dependence of the homogeneous line width
(Nishiyama, 2016; Sternberg et al., 2018; Penzel et al., 2019;
Schledorn et al., 2020).
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Figure 6. (a, b) Plot of the deviation of the calculated chemical shift (first moment of the line) from the theoretical chemical shift.
Plot of the line width (FWHM) as a function of (c, d) ν−1

r and (e, f) ν−2
r . The spin-system parameters are δ12/(2π )=−44826 Hz,

δ13/(2π )=−8898 Hz, δ23/(2π )=−5750 Hz, θ13 = 90◦, θ23 = 120◦. The chemical shifts were chosen to be (a, c, e) δ1 = δ2= 0 ppm
(squares), δ3= 0.7 ppm (circles) and (b, d, f) δ1=−0.1 ppm (squares), δ2= 0.2 ppm (circles), δ3= 0.7 ppm (triangles) at a Larmor fre-
quency of 1 GHz. The straight lines go through (0,0) and the line width at the slowest spinning frequency. They are meant as a guide to the
eye for the linear correlation.

4.3 Larger spin system without chemical-shift
differences

Figure 1b shows the geometry of the four-spin system where
spin 4 can be out of the plane spanned by spins 1, 2, and 3.
Therefore, the directions of r14, r24, and r34 are defined by
sets of two Euler angles each (0,θij ,φij ). For simplicity, we
will show simulations for a four-spin system where all four
spins are in a plane, i.e., φij = 0. Simulations on spin systems
with out-of-plane spins show exactly the same behavior. The
details of the spin system are given in the figure captions.

Figure 7a shows spectra for a four-spin system using
second-order, third-order, and exact effective Hamiltonians.
All three spectra are virtually identical, except for the cen-
tral sharp peak that is significantly higher in the second-
order approximations. In addition, the narrower powder line
shapes for the exact effective Hamiltonian are observed
as in the three-spin simulations. The second moment of
the powder line shape in the four-spin systems scales as
a function of the MAS frequency in the same way as for
the three-spin systems (see Figs. S3 and S4) almost per-
fectly with ω−1

r , with some small deviations visible at spin-
ning frequencies below 75 kHz. This behavior is exactly
the same as in the three-spin case. If we calculate the sec-
ond moment of the four-spin system and compare it to the
sum of the four three-spin sub-systems, we find M (1234)

2 =

3
4

(
M

(123)
2 +M

(124)
2 +M

(134)
2 +M

(234)
2

)
to within an error of

less than 1 % for all spinning frequencies. This allows us to
calculate the line width of a multi-spin system based on the
three-spin sub-systems as long as the second-order contribu-
tion is dominating the residual line width under MAS. The
same behavior is observed for five-spin systems that can be
decomposed into four-spin or three-spin sub-systems for the
calculation of the second moment as long as the second-order
contribution dominates the line width (see Figs. S5 and S6).
Again, the deviation of the calculated second moments is less
than 1 %.

5 Experimental data

We also tried to experimentally characterize the line-position
changes associated with the time evolution under the second-
order Hamiltonian as expected from Eq. (9). As shown in
Fig. 6a, such effects are only on the order of several Hertz
and, therefore, hard to extract from experimental proton-
detected solid-state NMR spectra. To enhance proton reso-
lution to a degree that makes the observation of such small
effects possible, we recorded 1H MAS spectra of the crys-
talline compound ortho-phospho-L-serine previously studied
by solid-state NMR (Duma et al., 2008; Potrzebowski et al.,
2003; Iuga and Brunner, 2004) at MAS frequencies rang-
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Figure 7. (a) Calculated MAS spectra for a four-spin system at
a spinning frequency of 50 kHz using different approximations
of the effective Hamiltonian. All spectra were processed with
an exponential line broadening of 1 Hz. The spin-system param-
eters are r1 = (0,0,0) Å, r2 = (0,0,1.75) Å, r3 = (3.0,0,0) Å,
r4 = (3.5,0.0,2.0) Å, δ12/(2π )=−44826 Hz, δ13/(2π )=
−8898 Hz, δ14/(2π )=−3667 Hz, δ23/(2π )=−5734 Hz,
δ24/(2π )=−5561 Hz, δ34/(2π )=−27420 Hz. The Euler an-
gles can be calculated from the coordinates given above. The
spectral window was set to 2000 Hz with 20 000 data points leading
to a digital resolution of 0.1 Hz. Ten thousand powder points
were sampled according to the ZCW scheme (Cheng et al., 1973).
Panels (b)–(e) show the four three-spin sub-spectra that comprise
the complete four-spin spectrum shown in panel (a).

ing from 70 to 158 kHz and extracted the apparent isotropic
chemical shifts of the methylene group CH2 protons and the
CαH proton by line-shape deconvolution of each spectrum
using DMFIT4 (Massiot et al., 2002). This becomes possible
due to decreasing coherent line-broadening contributions to
the proton line width at fast MAS (Sternberg et al., 2018;
Malär et al., 2019). The chemical-shift deviations for the
three protons from the values obtained at 158 kHz are given
in Fig. 8 and indeed reveal the theoretically predicted depen-
dence on the MAS spinning frequency. We also simulated
the line-shift changes by using a simplified three-spin system

Figure 8. MAS dependence of 1H line positions in ortho-phospho-
L-serine (for the chemical structure, see panel a). (b) The filled
symbols indicate experimental data with a constant error of 20 Hz.
The two CH2 protons are shown in red (high ppm peak) and blue
(low ppm peak); the CαH proton is shown in black. The simula-
tions were based on a three-spin system with r12= 1.60 Å, r23 =
r13= 2.35 Å, and θ (1,2,3)= θ (2,1,3)= 70◦. Three 1H spectra
recorded with MAS frequencies of 70 kHz (black), 120 kHz (pur-
ple), and 158 kHz (green) are shown in panel (c). The dashed lines
indicate the isotropic 1H chemical shift at 158 kHz MAS. The ex-
periments were performed at a static magnetic field of 20 T.

with parameters relying on the crystal structure (CSD entry
SERPOP03). Indeed, the experimentally observed trends can
be reproduced reasonably well by these simple three-spin
simulations taking only second-order effects into account.
However, an even more accurate experimental determina-
tion of such an effect is still to some extent limited by the
residual broadening of proton resonances in this crystalline
compound (see Fig. 8c). The resonances of ortho-phospho-
L-serine reported in the experimental section (the methylene
CH2 and the CαH protons) do not show a measurable temper-
ature dependence of the chemical-shift values as described
recently (Malär et al., 2021).

6 Conclusions

We have shown through numerical simulations using vari-
ous orders of effective Hamiltonians that second-order dipo-
lar contributions under MAS lead to an MAS dependence
of the line position and dominate the residual line broad-
ening in dipolar-coupled homonuclear spin systems. Third-
order terms do not play a significant role for the residual line
width but change the line shape close to the center of the
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line. Fourth-order terms were not explicitly calculated but
were shown to be contributing to the line width at MAS fre-
quencies below 50 kHz in strongly coupled proton spin sys-
tems. Without chemical-shift differences we observe a clear
ω−1

r dependence of the residual line width under MAS in
three-spin as well as larger spin systems above 50 kHz MAS.
The implementation of chemical-shift differences leads to a
change in this spinning-frequency dependence in three-spin
systems. The clear ω−1

r dependence changes to a spinning-
frequency dependence somewhere between ω−1

r and ω−2
r de-

pending on the details of the involved chemical shifts. Look-
ing at larger spin systems with chemical-shift differences is
more complex using the approach used here since the sepa-
ration of the lines becomes more difficult due to the larger
number of combination lines. We are currently working on
this problem that is beyond the scope of this paper.

Data availability. The simulation data and the processing and plot
scripts for all figures are available at https://doi.org/10.3929/ethz-b-
000490555 (Chavez et al., 2021).
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