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Abstract. Radio-frequency field inhomogeneity is one of the most common imperfections in NMR experiments.
They can lead to imperfect flip angles of applied radio-frequency (rf) pulses or to a mismatch of resonance con-
ditions, resulting in artefacts or degraded performance of experiments. In solid-state NMR under magic angle
spinning (MAS), the radial component becomes time-dependent because the rf irradiation amplitude and phase
is modulated with integer multiples of the spinning frequency. We analyse the influence of such time-dependent
MAS-modulated rf fields on the performance of some commonly used building blocks of solid-state NMR exper-
iments. This analysis is based on analytical Floquet calculations and numerical simulations, taking into account
the time dependence of the rf field. We find that, compared to the static part of the rf field inhomogeneity, such
time-dependent modulations play a very minor role in the performance degradation of the investigated typical
solid-state NMR experiments.

1 Introduction

Radio-frequency (rf) field inhomogeneity describes the spa-
tial inhomogeneity of the rf field inside the coil or sam-
ple volume and is one of the major experimental imperfec-
tions that leads to artefacts or reduced efficiency in NMR
experiments. The magnitude of the rf field amplitude distri-
bution over the sample space can be estimated with a nu-
tation experiment (Torrey, 1949; Barnaal and Lowe, 1963).
Measuring such nutation spectra of thin sample slices placed
along the rotor axis allows the characterization of the spa-
tial rf field distribution along the coil axis (Nishimura et
al., 2001; Paulson et al., 2004). The full spatial distribution,
however, is only accessible using gradient methods (Guen-
neugues et al., 1999; Odedra and Wimperis, 2013) that are
typically not available in solid-state NMR probes. Alterna-
tive approaches include the measurement of the rf field am-
plitude using the ball shift experiment (Maier and Slater,
1952), numerical simulations based on finite elements, or
approximative analytical solutions of the Maxwell equations
(Engelke, 2002; Tošner et al., 2017, 2018). The design of the
coil geometry has a major influence on the magnitude and

distribution of the rf field amplitude over the active sample
volume, and different geometries have been proposed to im-
prove the rf homogeneity (Idziak and Haeberlen, 1982; Pri-
valov et al., 1996; Li et al., 2006). However, in solid-state
NMR probes, solenoid coils along the sample spinning axis
are most commonly used due to the high, achievable rf field
amplitudes. The gap between the rotor and the coil is min-
imized in order to optimize the filling factor. This design
choice typically leads to large rf field inhomogeneity that can
manifest itself in reduced efficiency in experiments such as
cross-polarization (Hartmann and Hahn, 1962; Stejskal et al.,
1977), homonuclear decoupling (Bielecki et al., 1989, 1990;
Mote et al., 2016), heteronuclear decoupling (Purusottam et
al., 2015; Frantsuzov et al., 2017), symmetry-based recou-
pling sequences (Levitt, 2007), or even pulsed recoupling ex-
periments like rotational-echo double-resonance (REDOR;
Nishimura et al., 2001).

Reducing the magnitude of the rf field inhomogeneity can
be achieved experimentally by physically restricting the sam-
ple along the rotor axis or even to a sphere in the centre of
the rotor (Lindon et al., 2009). Alternatively, gradients can be
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used for a virtual sample restriction (Charmont et al., 2000),
but since gradients are not very common in solid-state NMR
probes, this approach is rarely used. Another possibility is
radio or nutation-frequency-selective pulses that can be used
for the same purpose (Charmont et al., 2002; Aebischer et
al., 2020). All these methods, however, are accompanied by
a reduction in signal due to the restriction of the measured
sample volume to a smaller part of the coil volume.

In solid-state NMR under magic angle spinning (MAS)
conditions, the radial component of the rf field is modulated
by time (Levitt et al., 1988; Tekely and Goldman, 2001;
Goldman and Tekely, 2001; Tošner et al., 2017), leading
to further potential complications in the experiments. Such
MAS-induced time-dependent radio-frequency fields could
give rise to additional or modified resonance conditions or
to other changes in the effective Hamiltonian generated by
the pulse sequence. The importance of such time-dependent
terms was first described in rotary resonance recoupling
(Levitt et al., 1988), where it leads to changes in the ob-
served line shape. Besides the appearance of additional side-
bands in cross-polarization experiments (Tekely and Gold-
man, 2001; Goldman and Tekely, 2001), nutation spectra (El-
bayed et al., 2005), and reported phase distortions and loss
of magnetization in MLEV-16 sequences under MAS (Pi-
otto et al., 2001), there have been very few studies of the
effects of such modulations of the amplitude and phase of
the rf field caused by MAS rotation. These modulations have
been included in the design of a heteronuclear polarization
transfer scheme based on optimal control strategies (Tošner
et al., 2018), where impressive gains have been shown. These
improvements prompted us to investigate potential effects of
such MAS-modulated radio-frequency field amplitudes and
phases on basic building blocks in common solid-state NMR
pulse sequences in more detail. The approach we have cho-
sen is rather simple. We use analytical approaches based on
Floquet theory (Leskes et al., 2010; Scholz et al., 2010) and
numerical simulations based on computed rf field distribu-
tions in a typical MAS rotor to characterize the time evo-
lution of the density operator under MAS rotation with and
without time-dependent rf field amplitudes and phases. The
computational approach allows us to investigate the time evo-
lution of the density operator in different spatial parts of the
rotor and to magnify the amplitude or phase modulations of
the rf field to obtain a better picture of their importance.

2 Radio-frequency fields in solenoid coils

To illustrate the magnitude and distribution of the rf field
amplitude and phase over the active sample volume in some
typical MAS NMR probes, rf field distributions were calcu-
lated based on Engelke (2002) and Tošner et al. (2017). Fig-
ure 1 shows the relative amplitude and phase of the rf field in
a cylindrical coordinate system as a function of z (the axis
along the rotor axis) and r (the radial direction) for three

common probe designs with MAS rotors of 3.2, 1.9, and
1.3 mm outer diameter. In these plots, the angle ϑ = 90◦ was
chosen. The maximum intensity of the rf amplitude distribu-
tion was used as the reference point for the relative amplitude
ωrel(r); hence, a value of 1 means that the amplitude expe-
rienced at this position corresponds to the nominal rf ampli-
tude. The rf phase was computed relative to the centre point
of the rotor with (r,z)= (0,0). One can clearly see the decay
in the rf amplitude towards the edges of the rotor along the
rotor axis (large z values), while phase errors mostly occur
for large r and z values.

The radial dependence of the relative rf field amplitude
and phase as a function of the angle ϑ is shown in Fig. 2
for different values of z and r for the 3.2 mm MAS probe.
Under sample rotation, the angle ϑ varies as a function of
time, and the rf field amplitude and phase are periodically
modulated with the rotor frequency. The trajectories in Fig. 2
clearly show that the magnitude of these amplitude and phase
modulations increases towards the edges of the rotor. We,
therefore, expect crystallites located at large r and z values to
experience the strongest modulations of the rf field amplitude
and phase.

For numerical simulations of spin dynamics, the numerical
values for ω1,rel(r) and φrel(r), obtained from simulations of
the rf field distribution shown in Figs. 1 and 2, were used
directly as input. For analytical calculations based on Floquet
theory, a parameterization of the values using a Fourier series
with the MAS frequency, ωr, is more convenient and was
obtained by fitting the following expressions:

ωrel(t)= A
(A)
0 +

∞∑
n=1

A(A)
n · cos(nωrt +φ

(A)
n ) , (1)

φrel(t)= A
(P)
0 +

∞∑
n=1

A(P)
n · cos(nωrt +φ

(P)
n ) (2)

to the amplitude and phase changes of the rf field (see Fig. 2).
Typically, terms of the Fourier series up to n= 4 were used in
the fits to characterize the time-dependent amplitude ωrel(t)
and phase φrel(t).

3 Theory

3.1 Floquet description

In the high field approximation, the total Hamiltonian in the
rotating frame under MAS for a homonuclear spin system
comprised of NI spins is given by the following:

Ĥ(t)=
2∑

n=−2

N∑
p=1

ω(n)
p e

inωrt Îz+
∑
p<q

2∑
n=−2
n 6=0

ω(n)
pqe

inωrt

×

[
3ÎpzÎqz− Îp · Î q

]
+

∑
p<q

ω(0)
pq Îp · Î q + Ĥrf(t) . (3)

Magn. Reson., 2, 523–543, 2021 https://doi.org/10.5194/mr-2-523-2021



K. Aebischer et al.: Radial rf field modulations 525

Figure 1. (a) Coil geometry of a typical 3.2 mm Bruker MAS probe. The position within the sample space is indicated by the cylindrical
coordinates r , z, and ϑ . (b) Spatial rf field distributions for typical probe designs with MAS rotors of 3.2, 1.9, and 1.3 mm outer diameter at
a frequency of 600 MHz. Relative rf amplitudes ωrel and phases φrel are shown as a function of the position within the active sample volume
for ϑ = 90◦. The length and position of the solenoid coil is indicated by dashed lines. (c) Parameters of coil geometries of the 3.2, 1.9, and
1.3 mm MAS probes considered in this work. The z values were sampled in steps of 0.05 mm for all three probes. The r values were sampled
in steps of 0.05 mm for the 3.2 and the 1.9 mm probes and in steps of 0.025 mm for the 1.3 mm probe. The sample volume considered in the
numerical simulations and Floquet analyses presented in Sect. 5 was restricted to the length of the coil.

Figure 2. Relative rf amplitude ω1,rel and phase φrel as a function of ϑ for z= -4, 0, 2, and 4 mm and all r values in the 3.2 mm MAS probe
at a resonance frequency of 600 MHz. Under MAS, the rf amplitude and phase experienced by a crystallite will vary periodically with the
rotor frequency. These time-dependent modulations of the rf field are strongest at the edges of the rotor for large r and z values.

Fourier components of the spatial tensors ω(n) of the chemi-
cal shift of a spin Ip and couplings between two spins Ip and
Iq are given by the following:

ω(0)
p =�p (4)

ω(n)
p =

2
√

6
d2
n,0(θm)e−inγ

2∑
m=−2

d2
m,n(β)e−imαρ(p)

2,m (5)

ω(0)
pq = 2πJpq (6)

ω(n)
pq =

1
√

6
d2
n,0(θm)e−inγ d2

0,n(β)ρ(pq)
2,0 (7)

for the isotropic and anisotropic chemical shifts, the scalar J ,
and the anisotropic dipolar coupling. The sets of Euler angles

(α,β,γ ) describe the orientation of the tensors in the rotor-
fixed frame, and d`

m,m′
(β) denote the reduced Wigner matrix

elements. The elements of the tensor in its principal axis sys-
tem are denoted by ρ`,m. The most general rf Hamiltonian
for Eq. (3) is given by the following:

Ĥrf(t)= ω1(t)
N∑
p=1

(
cosφ(t)Îpx + sinφ(t)Îpy

)
, (8)

where both the rf amplitudeω1(t) and the rf phase φ(t) can be
time-dependent due to the irradiation scheme. Under MAS,
the radial part of the rf inhomogeneity will lead to additional
modulations of ω1(t) and φ(t) that are periodic with the rotor
frequency.
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The spin-system Hamiltonian can be transformed into an
interaction frame with respect to Ĥrf by the following:

ˆ̃H(t)= Û−1
rf (t)Ĥ(t)Ûrf(t) . (9)

The propagator characterizing the interaction frame transfor-
mation is given by the following:

Ûrf(t)= T̂ exp

−i t∫
0

Ĥrf(t ′)dt ′

 , (10)

where T̂ is the Dyson time-ordering operator (Dyson, 1949)
that ensures proper time-ordering of non-commuting opera-
tors in products. If the rf irradiation is periodic with τm, the
Îz spin operators in Eq. (3) will transform according to the
following:

ˆ̃
Iz(t)=

∑
χ=x,y,z

aχ (t)Îχ

=

∑
χ

∑
k

∑
`

a(k,`)
χ eikωmtei`ωeff Îχ , (11)

where the transformation behaviour of the Cartesian spin op-
erator Îz is characterized by the Fourier coefficients a(k,`)

χ

(Scholz et al., 2009, 2010). These coefficients only depend
on the rf irradiation scheme and are independent of the spin
system details. Generally, the interaction frame trajectories
of the spin operators are characterized by two basic frequen-
cies, i.e. the modulation frequency of the pulse sequence
ωm =

2π
τm

and an additional effective nutation frequency that
can be determined from the overall flip angle over one pe-
riod of the pulse scheme ωeff =

βeff
τm

. This additional effective
field is zero if the propagator over a full cycle of the pulse
sequence is unity (Tan et al., 2016).

The interaction frame Hamiltonian can thus be expanded
as a Fourier series with three basic frequencies, as follows:

ˆ̃H(t)=
∑
n

∑
k

∑
`

ˆ̃H(n,k,`)einωrteikωmtei`ωefft , (12)

with Fourier components ˆ̃H(n,k,`) as follows:

ˆ̃H(n,k,`)
=

N∑
p=1

ω(n)
p

∑
χ

a(k,`)
χ Îpχ +

[∑
p<q

ω(0)
pq Îp · Î q

]

× δn,0 · δk,0 · δ`,0+

[∑
p<q

3 ·ω(n)
pq

∑
µ

∑
χ

a(k,`)
µχ

×ÎpµÎqχ −
(
Îp · Î q

)
· δk,0 · δ`,0

]
·
(
1− δn,0

)
, (13)

where δm,m′ denotes the Kronecker delta. For convenience,
the general two-spin Fourier coefficients a(k,`)

χµ were defined.
They can be computed as the convolution of single-spin co-
efficients as follows:

a(k,`)
µχ =

∑
k1

∑
`1

a(k1,`1)
µ a(k−k1,`−`1)

χ . (14)

The scalar product of the I spin vector operators remains
time invariant under rf irradiation and can be incorporated
into the a(0,0)

µµ Fourier coefficients. In triple-mode Floquet
theory, the first-order effective Hamiltonian is given by all
contributions that satisfy the resonance condition, as follows:

n0ωr+ k0ωm+ `0ωeff = 0 , (15)

and thus, the sum of non-resonant (n0 = k0 = `0 = 0) and
resonant terms is as follows:

ˆH(1)
eff =

ˆ̃H(0,0,0)
+

∑
n0,k0,`0

ˆ̃H(n0,k0,`0) . (16)

Analogously, in the following the second-order effective
Hamiltonian is given by:

ˆH(2)
eff =

ˆ̃H(0,0,0)
(2) +

∑
n0,k0,`0

ˆ̃H(n0,k0,`0)
(2) , (17)

where:

ˆ̃H(n0,k0,`0)
(2) =−

1
2

∑
ν,κ,λ

[
ˆ̃H(n0−ν,k0−κ,`0−λ),

ˆ̃H(ν,κ,λ)
]

νωr+ κωm+ λωeff
. (18)

The summation is restricted to values of ν, κ , and λ for which
νωr+κωm+λωeff 6= 0 is satisfied in order to avoid singular-
ities.

3.1.1 Theoretical description including rf inhomogeneity

For spatial rf field distributions that do not have cylindri-
cal rotation symmetry, MAS will lead to a periodic modu-
lation of the rf field amplitude and phase experienced by a
spin packet. At a given position, the general rf Hamiltonian,
including these additional modulations, can be expressed as
follows:

Ĥrf(t)= ω1,rel(t) ·ω1,nom(t)
(

cos(φnom(t)+φrel(t))Îx

+ sin(φnom(t)+φrel(t)) Îy
)
, (19)

where ω1,nom(t), and φnom(t) correspond to the nominal rf
amplitude and phase, i.e. to the values corresponding to
a perfectly homogeneous rf field. They are determined by
the pulse scheme under investigation and are periodic with
ωm =

2π
τm

. Deviations from these nominal values are intro-
duced by the relative rf amplitude and phase ω1,rel(t) and
φrel(t) that are periodic with ωr =

2π
τr

. The overall period of
the rf Hamiltonian will only be of finite length if the mod-
ulation frequency of the pulse scheme ωm and the rotor fre-
quency ωr are commensurate:

ωm =
ωr

c
, (20)

where c corresponds to the number of rotor cycles required
for the synchronization of the rf irradiation and the MAS
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rotation. Such a synchronization condition is generally ful-
filled for rotor-synchronized pulse schemes such as most re-
coupling sequences (Nielsen et al., 2012). For irradiation
schemes that are typically applied asynchronously to avoid
resonance conditions, a careful selection of the synchroniza-
tion condition is required. In principle, the treatment can be
generalized to all cases where the largest common divisor of
ωr and ωm is not too small. Such a synchronization is re-
quired to make the modulations of the rf field Hamiltonian
by MAS cyclic over the basic repetition time of the sequence.
The interaction frame Hamiltonian can then be written as fol-
lows:

ˆ̃H(t)=
2∑

n=−2

∑
k

∑
`

ˆ̃H(n,k,`) einωrt︸ ︷︷ ︸
MAS

eikωmt ei`ωefft︸ ︷︷ ︸
rf irradiation

(21)

=

2∑
n=−2

∑
k

∑
`

ˆ̃H(n,k,`)ei(cn+k)ωmtei`ωefft (22)

=

∑
n′

∑
`

ˆ̃H(n′,`)ein
′ωmtei`ωefft , (23)

where the substitution n′ = c · n+ k was used. The summa-
tion over the index k runs from −∞ to +∞; the sum over
n′ in Eq. (23) is, thus, also unrestricted. The resulting in-
teraction frame Hamiltonian is modulated with ωr = c ·ωm
due to the time dependence of the spatial part of the Hamil-
tonian during MAS (Fourier number n). The radial rf inho-
mogeneity leads to an additional modulation of the spin part
with the rotor frequency. As the modulation frequency of the
pulse sequence is commensurate with ωr, these two modula-
tions can be combined and a single Fourier number n′ can be
used. Therefore, the Hamiltonian is given by a Fourier series
with only two basic frequencies (ωm and ωeff), and the triple-
mode Floquet analysis is reduced to a bimodal treatment. Al-
ternatively, one can continue with the triple-mode Floquet
description and assume resonance conditions between ωm
and ωr. For resonant phenomena, the triple-mode Floquet
approach is more suited since the additional effective field
can lead to changes in the resonance conditions, leading to
asynchronous sequences (Hellwagner et al., 2017; Tan et al.,
2015). For non-resonant phenomena, both descriptions will
give equivalent results. The periodic rf amplitude and phase
modulations due to the radial inhomogeneity merely affect
the interaction frame transformation, which is fully charac-
terized by ωm and ωeff, as long as these rf field modulations
are periodic on the length of the interaction frame trajectory.

Possible resonance conditions for the bimodal interaction
frame Hamiltonian of Eq. (23) are given by the following:

n′0ωm+ `0ωeff = 0 . (24)

As effective fields due to the rf inhomogeneity will typi-
cally be small compared to ωr, and ` is limited to a maxi-
mum value of two, it is reasonable to assume that only non-
resonant terms will contribute to the effective Hamiltonian.

The second-order approximation of ˆHeff can, thus, be writ-
ten as follows:

ˆHeff =
ˆ̃H(0,0)

−
1
2

∑
ν,λ

[
ˆ̃H(−ν,−λ),

ˆ̃H(ν,λ)
]

νωm+ λωeff
, (25)

where the summation over ν and λ is restricted to values sat-
isfying νωm+ λωeff 6= 0.

Each of the ˆ̃H(n′,`) Fourier components in Eq. (23) is com-

posed of a sum of several ˆ̃H(n,k,`) terms since there are mul-
tiple combinations of n and k resulting in the same n′. As the
index n is limited to values between ±2 (limited by the rank

of the spatial tensor), the ˆ̃H(n′,`) are given by the following:

ˆ̃H(n′,`)
=

2∑
n=−2

ˆ̃H(n,n′−c·n,`) . (26)

In the first-order approximation, the non-resonant contri-
bution to the effective Hamiltonian is simply given by the
ˆ̃H(0,0) Fourier component as follows:

ˆ̃H(0,0)
=
ˆ̃H(0,0,0)

+

2∑
n=−2
n 6=0

ˆ̃H(n,−c·n,0)

=

N∑
p=1

∑
χ

2∑
n=−2

ω(n)
p a

(−c·n,0)
χ Îpχ

+

∑
p<q

∑
χ,µ

2∑
n=−2
n 6=0

3 ·ω(n)
pqa

(−c·n,0)
χµ Îpχ Îqµ . (27)

In full analogy to Tan et al. (2016), the second-order ef-
fective Hamiltonian can be decomposed into three contribu-
tions from commutator cross-terms between chemical shift
and dipolar-coupling terms,

ˆ̃H(0,0)
(2) =

ˆHI⊗I+
ˆHI⊗II+

ˆHII⊗II , (28)

where:

ˆHI⊗I =

N∑
p=1

2∑
n1=−2

2∑
n2=−2

∑
χ

−i

2
ω(n1)
p ω(n2)

p q(n1,n2)
χ Îpχ , (29)

ˆHI⊗II =
∑
p 6=q

∑
χ,µ

2∑
n1=−2

2∑
n2=−2
n2 6=0

−3i
2
ω(n1)
p ω(n2)

pq q
(n1,n2)
χ,µ Îpχ Îqµ , (30)

ˆHII⊗II =
∑
p 6=q

∑
χ

∑
n1,n2

−
9i
8
ω(n1)
pq ω

(n2)
pq p

(n1,n2)
χ Îpχ

+

∑
p 6=q 6=o

∑
χ,µ,ξ

∑
n1,n2

−
9i
2
ω(n1)
pq ω

(n2)
qo p

(n1,n2)
µχξ

× ÎpµÎqχ Îoξ . (31)
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The second-order scaling factors q(n1,n2)
χ , q(n1,n2)

χµ , p(n1,n2)
χ

and p(n1,n2)
µχξ for χ = x are given by the following:

q(n1,n2)
x =

∑
ν,λ

1
νωm+ λωeff

(
a(−ν−c·n1,−λ)
y a(ν−c·n2,λ)

z

− a(−ν−c·n1,−λ)
z a(ν−c·n2,λ)

y

)
, (32)

q(n1,n2)
x,µ =

∑
ν,λ

1
νωm+ λωeff

(
a(−ν−c·n1,−λ)
y a(ν−c·n2,λ)

zµ

− a(−ν−c·n1,−λ)
z a(ν−c·n2,λ)

yµ

− a(ν−c·n1,λ)
y a(−ν−c·n2,−λ)

zµ

+ a(ν−c·n1,λ)
z a(−ν−c·n2,−λ)

yµ

)
, (33)

p(n1,n2)
x =

∑
µ

∑
ν,λ

1
νωm+ λωeff

(
a(−ν−c·n1,−λ)
yµ a(ν−c·n2,λ)

zµ

− a(−ν−c·n1,−λ)
zµ a(ν−c·n2,λ)

yµ

)
, (34)

p
(n1,n2)
µxξ =

∑
ν,λ

1
νωm+ λωeff

(
a(−ν−c·n1,−λ)
µy a

(ν−c·n2,λ)
zξ

− a(ν−c·n1,λ)
µy a

(−ν−c·n2,−λ)
zξ

− a(−ν−c·n1,−λ)
µz a

(ν−c·n2,λ)
yξ

+ a(ν−c·n1,λ)
µz a

(−ν−c·n2,−λ)
yξ

)
. (35)

Similar expressions result for χ = y and z and can be found
in the Supplement (Sect. S1).

All first- and second-order scaling factors can be obtained
from the Fourier coefficients a(k,`)

χ characterizing the rf inter-
action frame trajectory of the Cartesian spin operator Îz and,
thus, do not depend on the details of the spin system. The
effects of the additional rf field modulations due to the ra-
dial contribution to the rf inhomogeneity will lead to changes
in the interaction frame trajectories and, therefore, changes
in the scaling factors for the effective Hamiltonians com-
pared to those calculated assuming a perfectly homogeneous
rf field.

4 Methods and materials

4.1 Numerical simulations

The effect of the rf field inhomogeneity on common solid-
state NMR pulse sequences was investigated by numerical
simulations in the usual rotating frame using the GAMMA
spin-simulation environment (Smith et al., 1994). Unless oth-
erwise noted, spin dynamics were simulated at a B0 field

of 14.1 T, corresponding to a proton resonance frequency of
600 MHz. Powder averaging was implemented according to
the Zaremba–Conroy–Wolfsberg (ZCW; Cheng et al., 1973)
scheme, using between 100 and 10 000 crystallite orienta-
tions. A summary of the simulation parameters, such as MAS
frequencies and nominal rf field strengths for the individual
pulse sequences that were investigated, is given in the Sup-
plement (Table S1).

For all experimental schemes treated here, the general
form of the time-dependent rf field Hamiltonian is given by
Eq. (19). Deviations from the nominal rf amplitude and phase
due to the rf inhomogeneity are introduced by the relative
amplitude and phase, denoted by ω1,rel(r, t), and φrel(r, t),
respectively. These parameters depend on the position of the
crystallite in the sample space r and the rotor orientation.
Under MAS, they are modulated by the rotor frequency. The
time-dependent trajectories were computed numerically (see
Sect. 2) and are given as an input to the numerical simula-
tions.

Simulations were performed for volume elements of the rz
plane indicated in yellow in Fig. 1a, with an initial orientation
of ϑ0 = 0◦. For nutation experiments (see Sect. 5.1), several
ϑ0 values were considered, as the spin dynamics are, in prin-
ciple, dependent on ϑ0 due to the non-commuting Hamiltoni-
ans at different time points during a rotor period. The sample
space was restricted to the length of the coil along the rotor
axis (indicated by dashed lines in Fig. 1b). Potential effects
of the radial inhomogeneity should be similar for samples ex-
ceeding the length of the coil but might be more pronounced
since the magnitude of rf amplitude and phase modulations
increases towards the rotor edges (see Fig. 2). Simulation re-
sults of the individual volume elements were summed up dur-
ing data processing and weighted with r to account for the
increase in volume with radial distance. The coil sensitivity
(reciprocity theorem; Hoult and Richards, 1976; Tošner et
al., 2017) was taken into account by additional weighting of
each rz element with the average relative rf amplitude over a
rotor cycle ω1,rel(r).

In order to separate the effect of the static rf field inhomo-
geneity from time-dependent effects due to amplitude and
phase modulation arising from sample rotations, the spin dy-
namics were simulated under different conditions. Ampli-
tude and phase modulations were considered separately and
either treated as time dependent or as the static average over
a rotor period. The four following cases considered in this
work are denoted as C1–C4, where:

– C1 – time-averaged constant amplitude and zero phase;
ω1,rel(r)= 1

τr

∫ τr
t=0ω1,rel(r, t)dt , φrel(r, t)= 0

– C2 – time-dependent amplitude and zero phase;
ω1,rel(r, t), φrel(r, t)= 0

– C3 – time-averaged constant amplitude and time-
dependent phase;
ω1,rel(r)= 1

τr

∫ τr
t=0ω1,rel(r, t)dt , φrel(r, t)
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Table 1. Summary of the treatment of the relative rf amplitude and
phase for the four cases C1–C4.

C1 C2 C3 C4

Amplitude ω1,rel(r) ω1,rel(r, t) ω1,rel(r) ω1,rel(r, t)
Phase 0 0 φrel(r, t) φrel(r, t)

– C4 – time-dependent amplitude and time-dependent
phase;
ω1,rel(r, t), φrel(r, t).

Simulations with the time-averaged constant phase were not
performed as constant phase offsets are small (maximum of
less than 5◦), and the absolute phase of the rf irradiation has
no influence on the outcome of an experiment. For reference,
Table 1 summarizes the treatment of amplitude and phase
modulations for these four cases.

4.2 Experiment

Experiments were performed on a 500 MHz Bruker Avance
III HD NMR spectrometer equipped with a Bruker 1.9 mm
triple-resonance MAS probe in double-resonance config-
uration at a temperature of 285 K. All powdered sam-
ples (natural-abundance glycine and natural-abundance
L-histidine ·HCl ·H2O) were purchased from commercial
sources and used without further purification. Nutation spec-
tra of glycine were recorded as two-dimensional experiments
without sign discrimination in t1 (simple sine amplitude
modulation) at MAS frequencies of 15 and 30 kHz. The nom-
inal rf field amplitude was calibrated to 100 kHz using a nuta-
tion spectrum. Spectra were recorded with 512 t1 increments
with 12 scans each and a time increment for the nutation
pulse of 2.5 µs. The spectral width in the direct dimension
was set to 100 kHz, and 1024 complex data points were ac-
quired. MATLAB (The MathWorks Inc., Natick, MA, USA)
was used for data processing using a cosine-squared win-
dow function. The two-dimensional proton–proton correla-
tion spectra of L-histidine with frequency-switched Lee–
Goldburg (FSLG) decoupling (Bielecki et al., 1989, 1990;
Mote et al., 2016) in the indirect dimension were recorded at
MAS frequencies of 14 and 28 kHz. Spectra were acquired
with 512 t1 increments with eight scans each and time in-
crements between 43.2 and 48 µs. States-type (States et al.,
1982) data acquisition was used for phase-sensitive detec-
tion and sign discrimination in t1. The spectral width in the
direct dimension was set to 200 kHz, and 1024 complex data
points were recorded. Nutation-frequency-selective I-BURP-
2 (Geen and Freeman, 1991) pulses in the spin lock frame
were used for sample restriction (Aebischer et al., 2020).
The rf field amplitudes were calibrated using a nutation spec-
trum and set to 100 kHz during hard pulses and spin lock.
The FSLG decoupling was implemented using shaped pulses
with a time resolution of 100 ns for the phase ramp. Shape

files with 80, 108, and 160 points were used, correspond-
ing to nutation frequencies about the effective field of 250,
185.2, and 125 kHz. The carrier was placed outside the spec-
tral region of interest, and its position is indicated by an ar-
row. Spectra were processed in MATLAB with zero-filling
to 4096× 4096 data points and the application of a cosine-
squared apodization. The 1D spectra shown were obtained
by summation over the relevant spectral region in ω2. Fre-
quency axes in parts per million (ppm) were determined by
comparison of the peak positions observed for the α and δ2

proton resonances in histidine with those found in the litera-
ture (Mithu et al., 2013).

5 Results and discussion

In this section, we discuss how a number of common solid-
state NMR experiments are affected by the MAS time-
modulated radio-frequency fields. This is done by analytical
calculations based on the Floquet description presented in
Sect. 3.1, numerical simulations, and, in some cases, using
experimental data.

5.1 Nutation spectroscopy

5.1.1 Numerical simulations and experimental results

Nutation spectra represent a simple method for characteriz-
ing the rf field distribution in the sample. Such spectra were
simulated for one-spin systems, and the rf inhomogeneity
was included in the rf Hamiltonian of Eq. (19), setting the
nominal phase of the rf field to zero corresponding to rf ir-
radiation along the x axis. The nominal rf field amplitude
ν1,nom was set to 100 kHz, and the four cases C1–C4 (see Ta-
ble 1) were studied. As only isotropic spin interactions were
considered, simulations were performed for a single crystal-
lite orientation.

Simulated nutation spectra, using the rf field profiles of the
3.2 and 1.3 mm MAS probes at different spinning frequen-
cies (15 and 30 kHz, respectively), are shown in Fig. 3. The
overall nutation profile of the 1.3 mm probe is narrower, in-
dicating a more homogeneous rf field distribution inside the
coil and, thus, a less pronounced drop-off of the static rf field
amplitude along the rotor axis. Phase modulation of the rf
field (C3 and C4) leads to sidebands at 0±m · νr (m= 1,2
are visible). The intensity of these sidebands increases with
increasing MAS frequency. Amplitude modulation of the ap-
plied rf field, on the other hand (C2 and C4), leads to side-
bands at ν1±m ·νr (onlym= 1 visible). These sidebands are
significantly weaker than those arising due to phase modula-
tions, and their intensity increases with decreasing spinning
frequency. The reduced intensity of these amplitude modu-
lation sidebands can be explained by the fact that their posi-
tion depends on the magnitude of the static rf field amplitude
and, thus, varies depending on the position within the sample
space. Both types of sidebands are weaker in the 1.3 mm rf
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Figure 3. Simulated nutation spectra at a resonance frequency of 600 MHz for the 3.2 mm MAS probe (a, b) and the 1.3 mm MAS probe (c, d)
for a nominal rf amplitude of 100 kHz. A spinning frequency of 30 kHz (a, c) and 15 kHz (b, d) was assumed for the spectra. Sidebands at
0±m · νr arise when rf phase modulations are taken into account (C3 and C4), while those at ν1±m · νr occur if amplitude modulations are
present (C2 and C4). The amplitude modulation sidebands increase in intensity at lower MAS frequencies, whereas the phase modulation
sidebands are attenuated. Both sideband families are less intense in the 1.3 mm probe, and the overall nutation profile is narrower, indicating
an improved homogeneity of the rf distribution inside the coil.

profile, indicating that rf amplitude and phase modulations
are less pronounced in comparison to the 3.2 mm rf profile.
The phases of the sidebands depend on the initial position ϑ0
of the simulated rz plane (see Fig. S1 in the Supplement).
However, the obtained spectra are very similar for all initial
orientations, and no significant influence of ϑ0 on the effects
of the radial rf inhomogeneity has been observed.

Experimental 1H nutation spectra of natural-abundance
glycine measured at a proton resonance frequency of
500 MHz, using a Bruker 1.9 mm MAS probe, are shown in
Fig. 4 for MAS frequencies of 30 kHz (Fig. 4a) and 15 kHz
(Fig. 4b). As was observed in the simulated nutation spectra
(see Fig. 3), sidebands at 0±m·νr due to rf phase modulations
are visible in the experimental spectra. Moreover, sidebands
at ν1,nom±m·νr are visible that replicate the shape of the main
nutation profile at 100 kHz. At a lower MAS frequency, these
sidebands increase in intensity, whereas those at multiples
of the rotor frequency are attenuated. In the simulated spec-
tra shown in Fig. 3, the sidebands at 115 and 130 kHz were
significantly weaker and did not have the same shape as the
overall nutation profile. As is shown in Fig. S2, no such side-
bands are observed in the experimental nutation spectra of
natural-abundance adamantane (see Fig. S2a), indicating that
they arise from the MAS modulation of anisotropic interac-
tions. This is confirmed by the simulated nutation spectra ob-
tained for a dipolar-coupled two-spin system (see Fig. S2b),
where strong sidebands at ν1± νr are obtained that nicely
replicate the shape of the main nutation profile for all four
cases (C1–C4).

Figure 4. Experimental 1H nutation spectra of natural-abundance
glycine recorded at a proton resonance frequency of 500 MHz in a
Bruker 1.9 mm MAS probe spinning at 30 kHz (a) and 15 kHz (b).
The nominal rf amplitude was set to 100 kHz, as determined us-
ing a nutation spectrum. Sidebands due to rf phase modulations at
0±m·νr form= 1,2 are visible in both spectra but have lower inten-
sity at slower MAS, as expected from the simulations (see Fig. 3).
Much broader sidebands that replicate the shape of the overall nu-
tation profile are visible at ν1,nom±m ·νr form= 1. Their intensity
increases significantly at the lower MAS frequency.
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5.1.2 Floquet analysis

Phase modulation of the rf field leads to non-commuting
terms in the rf Hamiltonian at different points in time, thus
prohibiting an analytical determination of the time evolution
of the magnetization during the nutation experiment. How-
ever, insight can be gained from the interaction frame tra-
jectory of spin operators that can be computed numerically.
For the Îz spin operator, this trajectory can be expanded as
follows:

ˆ̃
Iz(t)= ax(t)Îx + ay(t)Îy + az(t)Îz . (36)

Fourier analysis of the time-dependent aχ (t) coefficients
then yields the frequency components present in the nutation
spectrum. Such interaction frame trajectories of the Îz spin
operator with rf irradiation along the x axis were computed
numerically in MATLAB with a time resolution of 50 ns. A
nominal rf field strength of 100 kHz was chosen and a MAS
frequency of 30 kHz assumed. The effects of MAS time-
dependent rf amplitude and phase modulations were studied
separately. Modulations were modelled as Fourier series (see
also Eqs. 1 and 2), and magnitude A(A/P)

n and phase φ(A/P)
n

coefficients were given as input.
Absolute values and phases of the aχ (t) coefficients are

shown in Figs. 5a and b as a function of the magnitude of
amplitude modulations with ωr and 2 ·ωr (A(A)

1 and A(A)
2 ).

The static amplitude offset A(A)
0 was set to 1, and all A(A)

n

with n≥ 3 were set to zero. No phase modulation was taken
into account. Amplitude modulation with the rotor frequency
(Fig. 5a) leads to sidebands at ν1±m · νr, with m being any
integer, whereas amplitude modulation with 2 ·ωr (Fig. 5b)
leads to sidebands at ν1±2m ·νr. The intensity of these side-
bands increases with the magnitude of the modulation in both
cases. However, sidebands arising from rf amplitude modu-
lation with the base frequency ωr are significantly stronger.
The phase of the amplitude modulation φ(A)

n for the spectra
in Fig. 5 was set to zero as it only influences the phases of the
centre band and sidebands. Static amplitude offsets A(A)

0 6= 1
will simply shift the entire spectrum. Figure 5c and d show
the absolute values and phases of aχ (t) for phase modula-
tions with ωr and 2 ·ωr (A(P)

1 and A(P)
2 ). The static phase off-

set A(P)
0 and all A(A)

n with n≥ 3 were set to zero. No rf am-
plitude modulations were taken into account. The frequency
range shown in the figure was limited to 0–90 kHz since rf
phase modulations lead to sidebands at 0±n · νr that are sig-
nificantly less intense than the main band at the nominal rf
amplitude (ν1 = 100 kHz). In contrast to the sidebands ob-
served for rf amplitude modulation, phase modulation with
n ·ωr exclusively leads to sidebands at 0±n ·νr. Compared to
the sidebands arising from amplitude modulation, the inten-
sities of these phase modulation sidebands are considerably
lower. Their intensity increases with the Fourier number n of
the modulation (sidebands arising fromA

(P)
2 are more intense

than the ones from A
(P)
1 ). The phase of the modulation (φ(P)

n )

was set to zero again, as it only affects the phase of the aχ (t)
coefficients (see also Fig. S1).

These results are in good agreement with the simulated
and experimental nutation spectra shown in Figs. 3 and 4,
where two separate families of sidebands arose for rf ampli-
tude and phase modulation. As described earlier, the higher
intensity observed for phase modulation sidebands in these
spectra can be explained by the overall larger magnitude of
the phase modulations and the independence of the sideband
position from the average rf field amplitude. The position of
the amplitude modulation sidebands, on the other hand, shifts
with the average static rf field amplitude, leading to a broad-
ening of the sidebands.

We have also looked at the effects of the radial rf field in-
homogeneity in the context of spin lock experiments which is
closely related to the nutation experiment. This connects to
the first experimental observation of such effects in rotary
resonance recoupling experiments, where additional peaks
in the centre of the expected dipolar doublet have been ob-
served. This was attributed to time-dependent phase modu-
lations (Levitt et al., 1988). A more detailed study of this
experiment is described in Sect. S4.

5.2 Cross-polarization

Hartmann–Hahn cross-polarization (Hartmann and Hahn,
1962; Stejskal et al., 1977) is probably the most ubiquitous
pulse sequence element in solid-state NMR. Under MAS, the
sum, or difference, of the two rf field amplitudes has to be
matched to an integer multiple of the spinning frequency as
follows:

ω1S±ω1I = n ·ωr n=±1,±2. (37)

Due to the rf field inhomogeneity across the sample, this con-
dition cannot be fulfilled simultaneously in the entire sample
volume, and only certain parts of the sample will participate
in the polarization transfer, thus decreasing the resulting sig-
nal intensity. One popular strategy to overcome this volume
selectivity is ramped-amplitude cross-polarization (Metz et
al., 1994) or the adiabatic modulation of the rf field amplitude
during the contact time (Hediger et al., 1995, see Sect. S5 for
more details). In this work Îx→ Ŝx magnetization transfers
at the n= 1 zero-quantum matching conditions in heteronu-
clear CN, HN, and HC two-spin systems, were simulated for
standard, ramped-amplitude, and adiabatic-passage CP ex-
periments for the 3.2 mm MAS probe at a proton resonance
frequency of 600 MHz. A MAS frequency of 20 kHz was as-
sumed, and the nominal rf fields and contact times were set
for CN as follows: 85 kHz on C, 65 kHz on N, and 5 ms. The
nominal rf fields and contact times were set for HN as fol-
lows: 70 kHz on H, 50 kHz on N, and 1 ms. The nominal rf
fields and contact times were set for HC as follows: 90 kHz
on H, 70 kHz on C, and 1 ms. The anisotropy of the dipolar-
coupling tensor δIS =−2µ0 γI γS

4πr3
IS

was estimated from aver-
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Figure 5. Absolute values and phases of the aχ (t) coefficients characterizing the interaction frame trajectory of the Îz operator during
a nutation experiment with rf irradiation along the x axis. A nominal rf field strength of 100 kHz and a MAS frequency of 30 kHz was
assumed. The magnitude and phase of the coefficients are shown as a function of the A(A)

n (a, b) and A(P)
n (c, d) magnitude coefficients for

rf amplitude modulations, with ωr (a) and 2 ·ωr (b), as well as phase modulations with ωr (c) and 2 ·ωr (d). Sidebands due to the MAS
modulation of the rf amplitude at ν1±m ·νr, with m being any integer for modulations with ωr (A(A)

1 ), and any even integer for modulations

with 2 ·ωr (A(A)
2 ) is observed. The intensity of these sidebands increases with the strength of the modulation. For rf phase modulations,

sidebands at 0± n · νr arise for modulations with n ·ωr. The intensity of these sidebands increases with the strength of the modulation and
considerably higher intensities are observed for higher n (note the different scaling of the colour bars for A(P)

1 and A(P)
2 in c and d). The

frequency axes in (c, d) were restricted to 0–90 kHz since the phase modulation sidebands are significantly weaker than the main band
contribution to az(t) at the nominal rf amplitude of 100 kHz.

age bond lengths, and δIS
2π values of 1.9, 25, and −46 kHz

were used for the CN, HN, and HC simulations, respectively.
Chemical shifts as well as J coupling constants were set to
zero. The simulations were performed with a time resolution
of 250 ns, and the x magnetization of both the source and the
destination spin was detected every 5 µs. Powder averaging
was performed over 1154 crystallite orientations.

The simulated time evolution of the spin-locked x magne-
tization on both spins for the cases C1–C4 (see Table 1) is
shown in Fig. 6 for all three spin pairs. The rf amplitude on
the source spin was either kept constant (left-hand column),
modulated with a linear ramp (middle column), or used a
tangential modulation (right-hand column; see Fig. S4 for
more details). In CN spin pairs, a tangential modulation of
the rf amplitude on one of the spins leads to a significant im-
provement of the transfer efficiency (up to 35 %) compared
to both the standard and the ramped amplitude CP experi-
ment (less than 20 %). For spin pairs with stronger dipolar

couplings, such as HN and HC, both the ramped amplitude
CP and the adiabatic passage CP lead to similar transfer ef-
ficiencies of up to 70 %. In all simulated experiments, only
marginal differences between the obtained transfer efficien-
cies for the four cases C1–C4 are observed for all spin pairs.
Time-dependent modulations of the rf amplitude and phase
due to the radial rf inhomogeneity, therefore, do not seem
to have a significant effect on the magnetization build up on
the destination spin. On the source spin, some magnetiza-
tion is lost when rf phase modulations are present (C3 and
C4), which is also observed for one-spin spin lock simula-
tions. As the radial contributions to the rf inhomogeneity are
weaker in the 1.9 and 1.3 mm probes, similar results would
be expected for these probes. Overall, these simulation re-
sults suggest that the effect of the radial inhomogeneity on
CP polarization transfers is negligible. Only the static rf am-
plitude offset over the relevant sample space is important due
to the volume selectivity it causes.
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Figure 6. Simulated time evolution of the expectation value of the Îx (dotted lines) and Ŝx (solid lines) operators during CP zero quantum
Îx→ Ŝx polarization transfers in CN (top row), HN (middle row), and HC (bottom row) spin pairs for C1–C4 (see Table 1) in a 3.2 mm
probe at a proton resonance frequency of 600 MHz, assuming a MAS frequency of 20 kHz. Shown are magnetization transfers for constant rf
amplitude (left-hand column), a linear rf amplitude modulation (middle column), and a tangential rf amplitude modulation on the source spin
(right-hand column). The rf amplitude on the destination spin was kept constant (65 kHz on N in CN, 50 kHz on N in HN, and 70 kHz on C
in HC), and modulations of the rf amplitude on the source spin are shown in Fig. S4. Overall, no significant effects of the time-dependent
amplitude and phase modulations due to radial contributions to the rf inhomogeneity are observed for the destination spin in any of the
simulated transfers.

Moreover, polarization transfers in NCA and NCO two-
spin systems using the tm-SPICE sequences (Tošner et al.,
2018) were simulated. These pulse schemes were developed
using optimal control (OC) strategies, taking into account the
MAS modulations of the rf field due to the radial rf inhomo-
geneity. The resulting magnetization transfers are shown in
Fig. 7 for the 3.2 mm MAS probe at a proton resonance fre-
quency of 400 MHz. Nominal rf amplitudes on both channels
were set to 40 kHz, and a spinning speed of 20 kHz was as-
sumed. The shape files for the pulse sequences contain 1750
points, with a time resolution of 2 µs, corresponding to a
contact time of 3.5 ms. The time resolution for the propa-
gation was set to 250 ns, and the expectation value of the
Îx and Ŝx operators was detected every 5 µs. Powder aver-
aging was performed over 1154 crystallite orientations. Spin
system parameters (J couplings, chemical shift anisotropy,
CSA, and dipolar coupling tensors) were taken from Tošner
et al. (2018) and can be found in Tables S2 and S3. Im-
pressive transfer efficiencies of around 60 % are obtained for
both NCA (Fig. 7a) and NCO (Fig. 7b) spin pairs. However,
only minor differences between the four cases C1–C4 are
observed in these simulations. This reflects the fact that the

optimization of this sequence took rf amplitude and phase
modulations of different magnitude, as well as varying initial
phases of these modulations, into account. Therefore, the se-
quence performs well under all possible conditions encoun-
tered in the rotor, leading to an increase in the robustness
of the resulting sequences towards static and time-dependent
rf inhomogeneity. The broad range of considered conditions
stabilizes the optimization towards a broader minimum that
gives a better transfer over the complete rotor.

5.3 Rotational-echo double resonance

In REDOR recoupling (Gullion and Schaefer, 1989a, b), the
heteronuclear dipolar coupling is reintroduced by trains of
two rotor-synchronized π pulses per rotor cycle. This tech-
nique allows the quantitative measurement of dipolar cou-
plings in heteronuclear spin pairs and has become a valuable
tool in the characterization of structure (Hong, 2006; Rien-
stra et al., 2002; Michal and Jelinski, 1997; Jia et al., 2015)
and dynamics (Schanda et al., 2010).

Numerical simulations of REDOR recoupling were per-
formed for CN and HN spin pairs at a proton resonance fre-
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Figure 7. Simulated time evolution of the Îx (dotted lines; 15N)
and Ŝx (solid lines; 13C) operators during tm-SPICE (Tošner et al.,
2018) CP polarization transfers in NCA (a) and NCO (b) two-spin
systems (see Tables S2 and S3 for spin system parameters) in a
3.2 mm MAS probe at a proton resonance frequency of 400 MHz.
A spinning frequency of 20 kHz was assumed, and the nominal rf
amplitudes were set to 40 kHz on both channels. Impressive transfer
efficiencies of approximately 60 % are achieved in both spin pairs.
However, no significant differences between the four cases C1–C4
are observed.

quency of 600 MHz, with an XY-4 phase cycling scheme
(Gullion et al., 1990) as it is commonly implemented to gen-
erate a pure Ising-type Hamiltonian. Dipolar couplings were
estimated from average bond lengths, and the anisotropy of
the coupling δIS

2π was set to 2 and 24 kHz in CN and HN,
respectively. Chemical shift tensors and scalar J couplings
were set to zero. Resulting simulated REDOR curves for CN
spin pairs are shown in Fig. 8 for a 1.3 mm (Fig. 8a) and a
3.2 mm (Fig. 8b) probe, assuming a spinning frequency of
20 kHz. The nominal rf field strengths were set to 100 kHz
(62.5 kHz) on C and 65 kHz (50 kHz) on N in the 1.3 mm
(3.2 mm) probe. A time resolution of 250 ns was chosen
for the propagation, and 538 crystallite orientations were
used for the powder averaging. Compared to the theoretical
REDOR curve (dashed line; analytical expression including
finite-pulse effects can be found in Jaroniec et al., 2000), con-
siderably lower recoupling efficiencies are obtained for C1–
C4 in both probes (Nishimura et al., 2001). However, only
minor differences between the four cases are observed with
amplitude modulations (C2 and C4), leading to a slight de-
terioration of the recoupling performance. These effects are
very similar for both probes. The relative timing of the rotor-
synchronized π pulses in the REDOR sequence with respect
to the time-dependent rf field amplitude and phase modu-
lations only has a marginal effect on the recoupling perfor-
mance (see Fig. S6 for further details). Simulated REDOR
curves for the HN spin system in the 1.9 mm probe, assum-
ing a spinning frequency of 40 kHz, are shown in Fig. 8c and

d. As the dipolar coupling in the HN spin pair is too large
to allow sufficient sampling of the REDOR curve, modified
REDOR implementations were simulated in which one (Gul-
lion and Schaefer, 1989b, Fig. 8c) or both (Jain et al., 2019,
Fig. 8d) of the pulses in the basic building block are shifted.
The corresponding pulse sequences are shown in Fig. S5.
These schemes lead to a scaling of the effective dipolar cou-
pling and, thus, allow sufficient sampling of the REDOR
curve even for strongly dipolar-coupled spin pairs. A time
resolution of 125 ns was chosen, and the nominal rf fields
were set to 125 kHz on H and 50 kHz on N. Powder averag-
ing was performed for 10 000 crystallite orientations. Theo-
retical REDOR curves are again indicated by the dashed lines
(analytical expressions, including finite-pulse effects, can be
found in Schanda et al., 2011, for Fig. 8c and Jain et al., 2019,
for Fig. 8d). For both shifting regimes, only slight deviations
from the theoretical curves are observed. Moreover, resulting
REDOR curves for C1–C4 are identical, indicating that time-
dependent amplitude and phase modulations have no effect
on the recoupling performance in strongly dipolar-coupled
spin pairs. Overall, the REDOR sequence seems to be pre-
dominantly affected by the static rf inhomogeneity which
causes deviations in the pulse flip angles from the desired
180◦ due to average rf field amplitude deviations.

5.4 Symmetry-based CN recoupling – C7 and POST-C7

Symmetry-based CNν
κ sequences represent an important

class of homonuclear recoupling sequences. Since the first
introduction of the original C71

2 sequence (Lee et al., 1995),
many other symmetry-based sequences have been proposed
and characterized; however, only the C71

2 and the POST-
C7 sequence (Hohwy et al., 1998), where the basic Cφ =
(2π )φ(2π )φ+π is replaced by the cyclically permuted Cφ =
(π2 )φ(2π )φ+π ( 3π

2 )φ POST element, were considered in this
work.

Numerical simulations of Ŝ1z→ Ŝ2z polarization trans-
fers during C7 and POST-C7 recoupling were performed for
CC two-spin systems under conditions typical for a 3.2 mm
MAS probe at a carbon resonance frequency of 150 MHz.
The nominal rf field amplitude was set to 70 kHz, and a spin-
ning frequency of 10 kHz assumed. A time resolution of ap-
proximately 714 ns was chosen, and 538 crystallite orienta-
tions were used for the powder averaging. The time evolu-
tion of the expectation values of Ŝ1z and Ŝ2z in a CC spin
pair with isotropic chemical shifts that are symmetric around
zero (�1 =−�2) is shown in Fig. 9 for C7 (Fig. 9a) and
POST-C7 (Fig. 9b) for the cases C1–C4. The anisotropy of
the dipolar coupling tensor was estimated from average bond
lengths and δIS

2π set to 4.5 kHz. For both sequences, transfer
efficiencies of approximately 70 % are achieved in the first
transient for a mixing time of approximately 10 ms. Ampli-
tude modulations due to the radial rf field inhomogeneity (C2
and C4) lead to a slight deterioration in the recoupling per-
formance. This effect is more pronounced for C7, indicating

Magn. Reson., 2, 523–543, 2021 https://doi.org/10.5194/mr-2-523-2021



K. Aebischer et al.: Radial rf field modulations 535

Figure 8. (a, b) Simulated REDOR curves for a CN spin pair, with a value of 2 kHz for the anisotropy of the dipolar coupling tensor δIS
2π

at a carbon resonance frequency of 150 MHz in a 1.3 mm MAS probe (a) and a 3.2 mm MAS probe (b), assuming a spinning frequency of
20 kHz. The nominal rf field strengths were set to 100 kHz (62.5 kHz) for C and 62.5 kHz (50 kHz) for N in the 1.3 mm (3.2 mm) probe.
For all four cases (C1–C4), the resulting recoupling efficiencies are significantly lower than the theoretical REDOR curve (dashed line).
Amplitude modulations (C2 and C4) lead to a further marginal deterioration of the recoupling efficiency. The remaining two cases (C1 and
C3) are indistinguishable. (c, d) Simulated REDOR curves for a HN spin pair with a δIS

2π of 24 kHz at a proton resonance frequency of
600 MHz in a 1.9 mm MAS probe, assuming a spinning frequency of 40 kHz. The nominal rf field strengths were set to 125 kHz for H and
50 kHz for N. A scaling of the effective dipolar coupling is achieved by shifting one pulse (c; delay until first pulse t1 = 2.5 µs) or both pulses
(d; delay until first pulse t1 = 16 µs) per rotor period. No significant deviation in any of the four cases (C1–C4) from the theoretical REDOR
curves (dashed lines) is observed, indicating the robustness of these REDOR implementations towards rf inhomogeneity.

the improved robustness of the POST-C7 sequence. At longer
times, a loss of magnetization on both spins is observed when
time-dependent amplitude modulations are taken into ac-
count. Interestingly, the overall order of the cases is different
for the two sequences. For C7 recoupling, higher transfer ef-
ficiencies are observed for C4 in comparison to C2, whereas
this order is reversed for POST-C7. Thus POST-C7 seems to
be more sensitive to combined amplitude and phase modu-
lations (C4). Figure 9c (C7) and d (POST-C7) show simula-
tion results of the same spin system for a spatially restricted
sample (central third along the rotor axis). This restriction of
the sample space mitigates the effects of amplitude modula-
tions, and only very marginal differences between the four
cases are observed for both sequences. In order to further in-
vestigate the robustness of the two sequences, simulations in
a second model system with a large CSA tensor were per-
formed at a lower external magnetic field (75 MHz carbon
resonance frequency). The parameters of this spin system
were based on phthalic acid (Hellwagner et al., 2017, see Ta-
ble S4). Significantly lower overall transfer efficiencies (ap-
proximately 50 %) are observed (see Fig. 9e and f), and for
both sequences, rf field amplitude modulations (C2 and C4)
further deteriorate the recoupling efficiency. This decrease is
less pronounced for POST-C7 (see Fig. 9f), again indicating
its improved robustness. We have not carried out a complete
Floquet analysis of the effects caused by the time-dependent
rf field amplitudes. We believe that the decreased efficiency
is due to the appearance of effective fields that shift the res-

onance condition slightly as is the case for pulse transients
(Hellwagner et al., 2017).

5.5 Frequency-switched Lee–Goldburg decoupling

5.5.1 Numerical simulation and experimental results

Frequency-switched Lee–Goldburg (FSLG) decoupling is a
homonuclear dipolar decoupling technique that can be used
in combination with MAS to improve resolution of spec-
tra for dipolar-coupled homonuclear spin systems (Lee and
Goldburg, 1965; Goldburg and Lee, 1963; Bielecki et al.,
1989, 1990). The experiment is based on off-resonance rf
irradiation, leading to a truncation of the second-rank spin
tensor of the homonuclear dipolar coupling by an effective
radio-frequency field inclined at an angle θm ≈ 54.74◦ with
respect to the static magnetic field. Experimentally, FSLG
can also be implemented using on-resonance irradiation with
a constant rf field amplitude and a continuous phase ramp to
generate the frequency offset. The total cycle time is divided
into two intervals of equal length during which the phase is
rotated in opposite directions (inverting the offset) and with
a phase jump of 180◦ in between.

The effects of the radial part of the rf field inhomogene-
ity on the residual linewidth under FSLG decoupling were
simulated for a homonuclear dipolar-coupled three-spin sys-
tem in a 3.2 mm MAS probe at a proton resonance frequency
of 600 MHz, assuming a MAS frequency of 12.5 kHz. The
nominal rf field amplitude was set to 102.06 kHz, corre-
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Figure 9. Simulated Ŝ1z→ Ŝ2z polarization transfers in CC spin
systems during C7 (a, c, e) and POST-C7 (b, d, f) recoupling for
C1–C4 in a 3.2 mm probe. A nominal rf field amplitude of 70 kHz
and a spinning frequency of 10 kHz was assumed. Simulations
shown in panels (a–d) were performed at a carbon resonance fre-
quency of 150 MHz. Resulting expectation values of Ŝ1z and Ŝ2z for
a spin pair with isotropic chemical shifts that are symmetric around
zero (�1 =−�2) and a value of 4.5 kHz for δIS

2π are shown for the
full rotor (a, b) and for a spatially restricted sample (central third
along rotor axis; (c, d). Overall, rf field amplitude modulations (C2
and C4) lead to a slight deterioration in the recoupling performance
for both sequences. The other two cases (C1 and C3) are nearly
identical. (e, f) Simulation results for a CC spin pair with consid-
erable CSA and a value of −585 Hz for δIS

2π at a lower magnetic
field (carbon resonance frequency of 75 MHz) for C7 (e) and POST-
C7 (f) recoupling. Lower overall transfer efficiencies are observed
for this spin system, and modulations of the rf field amplitude (C2
and C4) further deteriorate the recoupling performance (C1 and C3
are indistinguishable). This effect is stronger for C7.

sponding to a tilting along the magic angle of an effective
field with a strength of 125 kHz (FSLG cycle time of 16 µs).
Using such a synchronization between the FSLG sequence
and the sample spinning makes the simulations much more
efficient than an asynchronous implementation, while at the
same time avoiding all resonance conditions up to and in-
cluding the second order. The FSLG decoupling was imple-
mented using a phase ramp with a time resolution of 50 ns.
The same time resolution was chosen for the propagation
of the Hamiltonian. The initial density operator was set to

F̂y =
3∑

p=1
Îpy and transverse magnetization components de-

tected every 48 µs (three FSLG cycles). A total of 8192 data

points were acquired, and the free induction decay (FID) pro-
cessed in MATLAB. Powder averaging was performed over
1154 orientations. The parameters characterizing the chemi-
cal shift and dipolar coupling tensors were chosen to mimic a
CH2 group, with couplings to an additional remote spin, and
can be found in Tables S5 and S6. Scalar J couplings were
neglected and set to zero.

Simulated spectra of the three-spin system are shown in
Fig. 10a for C1–C4. In all four cases, all resonances show
strong asymmetric features on the left-hand side of the spec-
tral line due to the distribution of the chemical shift scal-
ing factors (Hellwagner et al., 2020). Considerable addi-
tional line broadening is observed when amplitude modu-
lations are taken into account (C2 and C4). As the same
linewidths were obtained in simulations of an asynchronous
implementation of FSLG decoupling (MAS frequency of ap-
proximately 14.1 kHz; see Fig. S7), the broadening is not
caused by resonance effects. This effect is observed for all
three resonances but is most pronounced for the CH2 reso-
nance around 1.25 kHz. The additional time dependence of
the rf phase in C4 results in no additional broadening, and
the two remaining cases (C1 and C3) are indistinguishable.
Phase modulation, therefore, does not seem to have an influ-
ence on the obtained linewidth. Figure 10 also shows simu-
lated FSLG spectra for radial slices of the simulated rz plane
at r = 0.65 (Fig. 10b) and 1.3 mm (Fig. 10c) and for a spa-
tially restricted sample space (central third along the rotor
axis; z=−1.35–1.35 mm; all r values; Fig. 10d). As the
magnitude of the rf amplitude modulations increases towards
the rotor edges (see Fig. 2), significantly stronger broadening
is observed for radial slices closer to the coil windings. Spa-
tial restriction of the sample space to the central third leads
to a reduction in the linewidth. This line narrowing is sig-
nificantly more pronounced for the resonance at −2.75 kHz,
where the foot on the left-hand side of the resonance is elim-
inated for all four cases. For C2 and C4, broadening is ob-
served even in this spatially restricted sample, indicating that
time-dependent amplitude modulations without a static rf
amplitude offset still result in contributions to the residual
linewidth. Simulations were also performed for a six-spin
system, and qualitatively similar results were obtained.

In order to observe this broadening experimentally, the
sample space has to be restricted to areas close to the coil
windings where strong rf field amplitude modulations occur.
This could, in principle, be achieved by physically restrict-
ing the sample using cylindrical spacers. However, homoge-
neous packing in such a sample is difficult to achieve. Al-
ternatively, nutation-frequency-selective pulses, as described
in Aebischer et al. (2020), can be used to select the de-
sired areas which also correspond to high average rf field
amplitudes. Figure 11 shows the FSLG decoupled proton
spectra of L-histidine measured at a proton resonance fre-
quency of 500 MHz in a Bruker 1.9 mm MAS probe, using
a 2 ms I-BURP-2 pulse in the spin lock frame for the B1
field selection of areas where the rf field amplitude corre-
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Figure 10. Simulated FSLG decoupled proton spectra of a three-spin system at a resonance frequency of 600 MHz for a 3.2 mm MAS probe,
assuming a MAS frequency of 12.5 kHz for C1–C4. The rf field strength along the magic angle was set to 125 kHz. (a) Spectrum for the
full rz plane. Significant additional line broadening is observed when amplitude modulations are taken into account (C2 and C4). The two
remaining cases are indistinguishable, indicating that rf phase modulations do not contribute to the residual linewidth. (b, c ,d) Contributions
from radial slices (all z values for given r) at r = 0.65 (b) and 1.3 mm (c), as well as the spectrum of a spatially restricted sample (central
third along the rotor axis; z=−1.35–1.35 mm; all r values; d). Stronger line broadening is observed towards the edges of the rotor where rf
modulations are more pronounced. Significantly narrower lines are obtained for the restricted sample; however, considerable broadening is
still observed when time-dependent rf amplitude modulations are taken into account (C2 and C4). The observed splitting of the line for C1
and C3 in (c) can be attributed to the distribution of the isotropic chemical shift scaling factors in this radial slice (see Fig. S8 for details).

sponds to the nominal value (see Fig. S9 for a simulated
inversion profile). Spectra were recorded with different B1
field strengths for the FSLG decoupling at spinning frequen-
cies of 14 and 28 kHz. No significant improvement in the
obtained linewidth is observed for higher MAS frequencies
and stronger decoupling field strengths. This indicates that
the residual linewidth in these spectra is not decoupling lim-
ited which, therefore, prohibits the experimental characteri-
zation of the additional broadening caused by rf field ampli-
tude modulations due to the radial rf field inhomogeneity.

5.5.2 Floquet analysis

In order to gain physical insight into the origin of the ob-
served line broadening in FSLG-decoupled spectra due to rf
field amplitude modulations, scaling factors for the first- and
second-order contributions to the effective Hamiltonian were
computed (see Sect. 3.1.1 for more details). As a simple mea-
sure for the magnitude of contributing first-order terms the
norms of one-spin coefficients,

a(k)
χ =

√√√√∑
χ ′

1∑
`=−1

a
(k,`)
χ ′

2
, (38)

and two-spin coefficients,

a(k)
χµ =

√√√√∑
χ ′,µ′

2∑
`=−2

a
(k,`)
χ ′µ′

2
, (39)

were computed.

Interaction frame trajectories using the rf field distribu-
tion in a 3.2 mm MAS probe during FSLG decoupling were
computed numerically in MATLAB with a time resolution
of 50 ns and the Fourier coefficients extracted. The spinning
frequency was chosen to be 12.5 kHz and the effective field
strength along the magic angle set to 125 kHz, corresponding
to a modulation frequency of the rf Hamiltonian of 62.5 kHz.
This leads to the synchronization of the MAS rotation and the
rf irradiation after a single rotor cycle or five FSLG cycles.
This choice of frequencies should avoid all resonance condi-
tions up to and including the second order. Relative rf field
amplitude and phase modulations were modelled as Fourier
series, and fitted Fourier coefficients up to the fourth order
were used as input (see Sect. 2). In analogy to the treatment
of the rf field inhomogeneity in numerical simulations, am-
plitude and phase modulations were considered separately,
and the four cases C1–C4 summarized in Table 1 studied.

A full FSLG cycle assuming a time-independent rf Hamil-
tonian and an ideal phase ramp with a 180◦ phase shift in the
middle consists of two β rotations with an opposite direction
about the effective field. The overall propagator would, thus,
be the unity operator and ωeff = 0 in Eq. (12). However, the
time-dependent modulations of the rf amplitude and phase
due to the radial rf inhomogeneity can give rise to an addi-
tional effective field. The magnitude of this field as a func-
tion of the position within the sample space in the 3.2 mm
probe is shown in Fig. 12. As the static rf field inhomogene-
ity does not lead to additional effective fields, only cases in
which either the rf field amplitude, the phase, or both are time
dependent (C2, C3 and C4) are shown. Effective fields arise
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Figure 11. Experimental FSLG decoupled proton spectra of
natural-abundance L-histidine recorded at a proton resonance fre-
quency of 500 MHz, using a 1.9 mm Bruker MAS probe. All spectra
were recorded using a 2 ms I-BURP-2 pulse with a modulation fre-
quency of 100 kHz (corresponding to the nominal rf field amplitude
as determined using a nutation spectrum) for the B1 selection (Ae-
bischer et al., 2020). The effective rf field strength along the magic
angle during the FSLG decoupling was set to 125 (a, b), 185.2 (a),
and 250 kHz (b) at MAS frequencies of 14 and 28 kHz. The arrows
indicate the positions of the carrier frequency. No significant im-
provements are observed for stronger B1 fields and higher spinning
frequencies, indicating that the residual linewidth is not decoupling
limited.

mainly at the edges of the rotor (large r and z) where modula-
tions are strongest. Amplitude and phase modulations alone
(C2 and C3 respectively) lead to very small effective fields
(max. 50 Hz), whereas larger effective fields (up to 400 Hz)
result for combined amplitude and phase modulations (C4).
In comparison to the rotor frequency and the basic modula-
tion frequency of the FSLG sequence, these additional fields
are small and will most likely not have any significant effects,
except for a small change in the effective field direction and
magnitude.

In the first-order approximation, the relevant scaling
factors are those of the chemical shift (a(k,`)

χ with k =

0,±1,±2) and those of the dipolar coupling (a(k,`)
χµ with

k =±1,±2). These can contribute to the first-order effec-
tive Hamiltonian (see Eq. 27), since the modulation by the rf
field amplitude can be compensated by the time dependence
due to MAS. The resulting norm of the a(k,`)

χ coefficients
(Eq. 38) as a function of the position within the sample space
is shown in Fig. 13a for C1–C4. As coefficients are symmet-
ric (a(k)

χ = a
(−k)
χ ), only those corresponding to k = 0,1 and 2

are shown. The scaling of the isotropic chemical shift (k = 0)
is close to the ideal value of cos(θm)≈ 0.577 in regions of
the rotor where the rf field amplitude is comparable to the
nominal value. Towards the edges of the rotor, the rf field

Figure 12. Effective nutation frequencies νeff over a MAS pe-
riod during FSLG decoupling as a function of the position within
the 3.2 mm MAS probe for C2, C3, and C4. Effective fields were
extracted from interaction frame trajectories computed for a field
strength of 125 kHz along the magic angle and a MAS frequency
of 12.5 kHz. Small effective fields of up to 50 Hz arise for rf ampli-
tude and phase modulations alone (C2 and C3). Substantially larger
fields up to 400 Hz are observed for combined modulations (C4).
In general, effective fields of considerable size are only obtained
at the rotor edges, and even the maximum resulting magnitudes re-
main small compared to the nominal rf field strength and the rotor
frequency.

amplitude decreases, leading to a smaller tilt angle of the ef-
fective field during FSLG and, thus, an increase in the scaling
factor. The time-modulated part of the rf field inhomogeneity
does not appear to have any influence on the isotropic chem-
ical shift, as no significant differences between the four cases
are observed. Time-dependent amplitude modulations (C2
and C4) lead to additional non-zero coefficients for chem-
ical shift contributions with k 6= 0 that can also contribute
to the first-order effective Hamiltonian for k =±1,±2 (see
Eq. 27) where parts of the CSA tensor become time indepen-
dent. These contributions will be strongest at the very edges
of the sample space (large r and z), but non-zero coefficients
are also obtained in the central third of the rotor close to the
coil windings.

Under ideal conditions, the FSLG decoupling scheme
leads to the averaging of the anisotropic dipolar coupling
in the first-order approximation, and the corresponding scal-
ing factors would be zero. However, dipolar coupling terms
are reintroduced when rf modulations are taken into account.
The norm of the relevant a(k,`)

χµ coefficients (Eq. 39) is shown
in Fig. 13b for the 3.2 mm MAS probe. Again, only the
k =±1,±2 terms can contribute to the first-order effective
Hamiltonian and partially reintroduce Fourier components
of the dipolar coupling. As was the case for the chemical
shift scaling factors, the coefficients are symmetric, and thus,
only those for k = 1 and 2 are shown. Amplitude modula-
tions (C2 and C4) lead to significant k = 1 scaling factors,
and non-zero coefficients are not only obtained at the very
edges of the rotor but also in the central third close to the
coil windings. The additional phase modulation in C4 does
not have an influence, and amplitude modulations alone thus
seem to be responsible for the reintroduction of the first-
order coupling terms. The contribution of individual a(k=1)

χµ

coefficients to the norm are shown in Fig. S10 for C4. Sig-
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Figure 13. Norm of the scaling factors of the chemical shift terms a(k)
χ (for k = 0,1,2, a) and the homonuclear dipolar coupling terms a(k)

χµ

(for k = 1,2, b) in the first-order effective Hamiltonian for FSLG decoupling for C1–C4. Coefficients were extracted from interaction frame
trajectories of single-spin operators for a nominal rf field strength of 125 kHz along the magic angle and a MAS frequency of 12.5 kHz in
a 3.2 mm MAS probe. (a) The scaling of the isotropic chemical shift (k = 0) is unaffected by the time-dependent rf field modulations (no
difference between C1–C4) and is close to the ideal value of cosθm ≈ 0.577 in the centre of the rotor, where the rf field amplitude corresponds
to the nominal rf field strength. Scaling factors increase towards the rotor edges where the rf field amplitude is significantly lower, leading to
a smaller tilt angle. Additional non-zero coefficients for k = 1 and 2 terms are obtained when amplitude modulations are taken into account
(C2 and C4). (b) Amplitude modulations (C2 and C4) lead to non-zero scaling factors and, thus, to the reintroduction of dipolar couplings in
areas where strong modulations occur. No significant effects are observed for the two remaining cases.

nificant a(k=1)
χµ are obtained for ÎpzÎqx , Îpx Îqx , and ÎpzÎqz

terms. These first-order time-independent homonuclear cou-
pling terms contribute to the residual linewidth under FSLG
decoupling and, thus, lead to an additional line broadening.
Numerical simulations taking only the first-order effective
Hamiltonian into account confirmed that the observed line
broadening for C4 in simulated spectra (see Fig. 10) can in-
deed be attributed to the first-order contributions to the effec-
tive Hamiltonian (see Fig. S11).

In principle, the second-order effective Hamiltonian dur-
ing FSLG decoupling contains three types of commuta-
tor cross-terms. However, contributions from chemical shift
cross-terms ( ˆHI⊗I) only contain one-spin operators and will,
thus, lead to an additional effective field and will only weakly
influence the residual linewidth under FSLG by changing the
direction or magnitude of the effective field. The same is
true for the one-spin component of the dipolar–dipolar cross-

terms ( ˆHII⊗II). This leaves only two sources of coupling
terms in the second-order effective Hamiltonian, namely the
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three-spin contribution of dipolar–dipolar cross-terms and
commutators between chemical shift and dipolar terms. Out
of these two, the former will be most relevant for the residual
linewidth as dipolar couplings are generally much larger than
typical chemical shifts. The corresponding p(n1,n2)

µχξ scaling

factors for the three-spin contribution in ˆHII⊗II were com-
puted according to Eq. (35). Because the effective fields gen-
erated by the modulations of the rf field amplitude and phase
are small (see Fig. 12), ν = 0 was excluded from the sum-
mation in order to avoid near-resonance conditions and the
norm,

p
(n1,n2)
3 =

√∑
µ,χ,ξ

p
(n1,n2)
µχξ

2
, (40)

was computed to characterize the strength of the three-spin
coupling terms. Logarithmic contour plots for the resulting
p

(n1,n2)
3 for C1–C4 in the 3.2 mm MAS probe are shown in

Fig. 14. Scaling factors are shown for n1 = 1 (Fig. 14a) and
n1 = 2 (Fig. 14b) and all possible values of the index n2. It
can be seen that time-dependent rf modulations (C2, C3, and
C4) increase the magnitude of the second-order cross-terms
significantly compared to static rf amplitude and phase off-
sets alone (C1). However, the observed scaling factors are
still negligible compared to the magnitude of the first-order
terms, and no significant effect on the linewidth would be ex-
pected. In all four cases, substantially higher scaling factors
are obtained for pairs of indices where n1+ n2 = 0. These
increase strongly towards the edges of the rotor along the ro-
tor axis, but since no difference between the cases C1–C4 is
observed, they do not seem to be influenced by the radial part
of the rf inhomogeneity.

The analysis of the scaling factors of the terms contribut-
ing to the effective Hamiltonian up to the second order sug-
gests that the static part of the rf inhomogeneity has a sig-
nificant influence on the isotropic chemical shift scaling and
also leads to stronger second-order contributions. However,
the overall magnitude of these second-order terms remains
small compared to first-order contributions. Time-dependent
rf amplitude modulations have pronounced first-order effects
and lead to the reintroduction of anisotropic chemical shift
and dipolar coupling terms that cause line broadening (see
Fig. S11). No such effects were observed for phase modula-
tions.

6 Conclusion and outlook

Magic angle spinning in combination with inhomogeneous
radial rf fields leads to a time-dependent modulation of the
rf field amplitude and phase. We have investigated the ef-
fect of these time-dependent rf fields on some common solid-
state NMR pulse sequences using numerical simulations and
an analytical approach based on Floquet theory. In none of
the investigated building blocks used in solid-state NMR ex-

Figure 14. Magnitude of the scaling factors of the three-spin contri-
bution to the dipolar–dipolar cross-terms in the second-order effec-
tive Hamiltonian during FSLG decoupling with an rf field strength
of 125 kHz along the magic angle at a MAS frequency of 12.5 kHz
in a 3.2 mm MAS probe. The resulting magnitudes are shown for
n1 = 1 (a) and n1 = 2 (b) for all possible n2 values with a logarith-
mic scale. The largest scaling factors are obtained for combinations
where n1+ n2 = 0; however, no difference between C1–C4 is ob-
served. For other n1,n2 pairs, significantly larger scaling factors
result when rf modulations are present (C2, C3, and C4). Never-
theless, they remain several orders of magnitude smaller than the
first-order contributions.

periments could we find significant effects from such time-
dependent rf fields. In nutation spectra, two distinct families
of sidebands, arising due to rf field amplitude and rf field
phase modulations, respectively, were observed in simulated
and experimental spectra. The intensity of these sidebands
can help to characterize the strength of the modulations and,
thus, to give insights into the radial contribution to the rf field
inhomogeneity for a given MAS probe. In the polarization
transfer sequences, like Hartmann–Hahn cross-polarization,
REDOR, and C7, only minor effects were observed that will
most likely be of no consequence for experimental imple-
mentations. In all these sequences, the static rf field inhomo-

Magn. Reson., 2, 523–543, 2021 https://doi.org/10.5194/mr-2-523-2021



K. Aebischer et al.: Radial rf field modulations 541

geneity over the sample volume played a much larger role
and leads to significant performance degradation.

In simulations of homonuclear FSLG decoupling, consid-
erable line broadening was observed for rf field amplitude
modulations. Floquet analysis of the effective Hamiltonian
up to the second order revealed that this broadening is most
likely due to the reintroduction of homonuclear coupling
terms to the first order caused by the MAS modulation of
the rf field amplitude. However, no experimental character-
ization of this effect was possible as the experimentally ob-
tained linewidths were not limited by the homonuclear de-
coupling. Overall, the results presented in this work suggest
that the influence of the MAS modulation of the rf field am-
plitude and phase in many pulse sequences is small and, thus,
negligible for typical experimental implementations. More-
over, they manifest themselves in areas of the sample space
close to the rotor edges and can, thus, be reduced by physi-
cal or virtual sample restriction. Nevertheless, these modula-
tions can become relevant in the development of new pulse
sequences based on optimal control strategies and should be
taken into account in their development in order to increase
their robustness towards rf inhomogeneity and enlarge the
NMR-responsive sample volume.
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