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Abstract. Multiplet structure deconvolution provides a robust method to determine the values of the coupling
constants in first-order 1D nuclear magnetic resonance (NMR) spectra. Functions simplifying the coupling struc-
ture for partners with spin larger than 1/2 and for doublets with unequal amplitudes were introduced. The chem-
ical shifts of the coupling partners causing mild second-order effects can, in favourable cases, be calculated from
the slopes measured in doublet structures. Illustrations demonstrate that deconvolution can straightforwardly
analyse multiplet posing difficulties to humans and, in some cases, extract coupling constants from unresolved
multiplets.

1 Introduction

When studying organic compounds, 1D 1H nuclear magnetic
resonance (NMR) spectra are often the only, and sufficient,
analytical method engaged. All chemists know how to de-
scribe simple multiplet structures. It consists of determining
their position (chemical shift), integral and, when possible,
coupling structure by identifying doublets (d), double dou-
blets (dd), etc. Any serious analysis also includes the val-
ues of the scalar coupling constants. Indeed, the multiplet
structures provide important topological and structural infor-
mation on organic compounds and natural products. For ex-
ample, the presence of a methyl group on a carbon bearing
a proton will produce a quartet structure, the conformation
of a double bond has clearly distinct geminal coupling con-
stants, dihedral angle influences vicinal coupling constants
(Karplus, 1963), etc.

These NMR parameters are not only helping researchers to
identify their products, but they also allow reviewers to assess
the validity of the argument supporting their identification
and benefit the community by providing very precious in-
formation when structurally similar compounds are encoun-
tered. It is therefore of fundamental importance to provide

chemists with the most powerful tools to analyse multiplets,
in particular in the cases where the multiplet structure is too
complex to be deciphered by visual inspection because of
high degeneracy (complex structures such as “dqd”), partial
overlap of multiplet structures or second-order effects.

The measurement of scalar coupling constants has been
the subject of very intense academic work, either for di-
rect application to 1D spectra (McIntyre and Freeman, 1992;
del Río Portilla and Freeman, 1993) or involving the devel-
opment of NMR pulse sequences producing spectra where
coupling constants can be measured easily (Marquez et al.,
2001), even in situations of extensive overlap (Prasch et al.,
1998; Kiraly et al., 2020; Berger, 2018). The sad observation
is that the impact of these developments is extremely limited
because the broad community of chemists almost exclusively
relies on basic 1D 1H spectra to extract coupling constants.
Even if users of NMR were aware of them, they would be
reluctant to use experiments going against the common prac-
tice in their fields except if they were producing key results –
something NMR coupling constants alone rarely do.

We shall report here on a significant improvement of the
analysis of 1D 1H spectra based on multiplet-structure de-
convolution which will be introduced in a future release of
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Mestrelab’s Mnova software (Mnova NMR version 14.3.0,
2021). This method was originally developed during the 90s
to automatize the analysis of multiplet structure from spec-
tra generated by one of the forgotten pulse sequences: the
soft-COSY experiment (Emsley et al., 1990). Multiplet de-
convolution proved to be applicable to the more “standard”
DQF-COSY experiment (Jeannerat, 2000) after simply in-
creasing the direct acquisition time to provide higher reso-
lution – something which was problematic because of the
data storage available at that time but which is no longer jus-
tifiable. We shall demonstrate the power of the application
of multiplet deconvolution outside the world of 2D correla-
tion spectroscopy, where positive and negative peaks coexist
and cause specific challenges (Jeannerat and Bodenhausen,
1999), and apply it to the common – not to say mundane –
multiplet structure present in standard 1D NMR spectra.

1.1 Multiplet structure in 1D spectra

For weakly coupled spin systems, the multiplet structure ob-
served in 1D spectra can be seen as the result of the combi-
nation (see Fig. 1) of the resonance frequency, the effects
of the exponential relaxation, B0-field inhomogeneity and
scalar coupling (J ) interactions (Metz et al., 2000).

In the frequency domain, the ⊗ symbol stands for the
“convolution product” which corresponds, in the time do-
main, to pointwise multiplication. The detected FID is, in-
deed, the product of the chemical shift evolution, the expo-
nential decay (producing a Lorentzian shape L(υ)), a func-
tion reflecting the effect of B0 inhomogeneity (often mod-
elled as Gaussian shapes in both domains) and cosine modu-
lations caused by the first-order J -coupling interactions (re-
sulting in a doublet in the 1D spectrum).

In liquid-state NMR and in isotropic media a doublet F (J )
is expressed, mathematically, by a pair of so-called δ func-
tions, i.e. a function returning zero values everywhere ex-
cept for the values of v =−J/2 and +J/2, where J is the
scalar coupling constant. When taking the convolution prod-
uct of any set of δ functions with any other function, typically
a spectral line shape H , the position and amplitude of the
δ functions can be understood as indicating where the con-
voluted function H should be duplicated before summation
(see the grey components in the right part of Fig. 1).

The deconvolution consists in reversing the effect of the
convolution of a given function. The symbol �F is some-
times used to represent the process reversing the effect of
⊗F . However, what seems to be a simple division is mis-
leading because, in reality, the ⊗ symbol stands for an inte-
gral which has no general inverse. One should, instead, look
for an inverse of the F function and replace the deconvolu-
tion operator with the convolution with an inverse function
⊗1/F (J ). An alternative is to operate in the time domain,
but the simplicity of the division is compensated for by the
difficulty in dealing with division by zero.

Whether it is applied in the time or frequency domain, de-
convolution is a difficult process prone to producing noise
and artifacts. The low efficiency of image deblurring is a re-
minder of this fundamental difficulty. In the field of NMR,
methods improving the spectral line shape (relaxation and
field inhomogeneity) were developed in the group of Gareth
A. Morris under the general framework known as refer-
ence deconvolution (Morris et al., 1997; Morris, 2002), but
the difficulty in automating them makes deconvolution dis-
appointingly disregarded. We shall not discuss, here, the
deconvolution of spectral line shapes but shall concentrate
on the deconvolution of the effect of coupling interactions
called “multiplet-structure deconvolution”. Following devel-
opments in the time domain (Le Parco et al., 1992; Bothner-
By and Dadok, 1987; Prost et al., 2006), the frequency
domain became more popular to avoid the back-and-forth
Fourier transformation. This branch of research started in the
1980s in the group of R. Freeman (del Río Portilla et al.,
1994), continued in the 1990s in Geoffrey Bodenhausen’s
group (Huber and Bodenhausen, 1993a, b; Jeannerat, 2000;
Jeannerat and Bodenhausen, 1999) and continued to resonate
when the ACCA method (Cobas et al., 2005) was developed
for Mestrelab’s software Mnova.

This paper presents a follow-up of one published in 1999
(Jeannerat and Bodenhausen, 1999) which showed how to ef-
fectively use a set of inverse functions of F to obtain, through
a recursive procedure (Novič and Bodenhausen, 2002), the
list of the coupling constants and the line shape G. The in-
verse function M(J ∗), reminiscent of the set of δ functions
seen in the 1990s (del Río Portilla et al., 1994), is discussed
in the next paragraph. While earlier work focused on the sim-
plification of a simple doublet, we will present applications to
the deconvolution of structures originating from the coupling
with partners with S > 1/2 and deal with partially overlap-
ping multiplet structures. It is generally limited to the anal-
ysis of first-order multiplets, but a method to accommodate
some “roof effects” is discussed (i.e. deal with the unequal
amplitude of the two lines of doublets caused by second-
order effects; see Sect. 1.7) and turns it into an advantage
to determine, in favourable cases, the chemical shifts of the
coupling partners.

1.2 Deconvolution of doublet structures

The process we shall use to reverse the effect of a doublet
is the convolution product of the starting multiplet with the
simplification functionM(J ∗) (see Fig. 2). The deconvoluted
function will usually be an experimental multiplet with a pos-
sibly complex structure, but the top of Fig. 2 shows how it
applies to the model function of a doublet F 1/2(J ) to pro-
vide the mathematical demonstration that M simplifies any
doublet structure. The functionM(J ∗) is a doubly infinite se-
ries of δ functions separated by J ∗. Their signs are positive
for the pair located at ±J ∗ and alternate signs when running
away from this core along the two directions of the abscissa.
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Figure 1. Multiplet structure of a 1D NMR spectrum expressed as the convolution product of the contributions of the Larmor frequency of
the nucleus R(υ0), the Lorentzian line shape L(T2), the B0-field inhomogeneity G(inhom.) and the scalar coupling constants F (Ji ).

Figure 2. (Left) The functionM(J ∗) cancels the doublet of a weakly coupled partner with a spin 1/2 when J ∗ = J . (Middle left) Duplicating
M and shifting one copy by the distance J indeed cancels all except the central peak, resulting in the expected simplification (bottom left).
(Centre) When J ∗ 6= J , the convolution product results in the complex set of δ functions S (middle bottom). (Right) Illustration of the
algorithm starting at one side of the spectrum. It can be seen as walking from one boundary of the multiplet, in the manner of an integrator,
and subtracting, at the distance J ∗, the amplitude measure locally.

The simplification of the doublet structure into the sin-
glet I is obtained when the distance between the δ functions
ofM(J ∗) corresponds to the true coupling (i.e. when J ∗ = J ,
bottom left in Fig. 2). Otherwise S = F (J )⊗M(J ∗) consists
of a complex set of δ functions that we call deconvolution
artifacts (bottom centre in Fig. 2). Determining the coupling
constants consists in measuring the degree of simplification
of the result S as a function of J ∗. In principle, S should be
infinite arrays, but beyond the boundaries of the experimental
multiplet structures (see the section framed by dotted lines in
the centre of Fig. 2) two patterns (in four shades of grey) re-
peat themselves with alternating signs, rendering the useful
part of the S series finite.

In the perspective of speeding up calculations, it has been
demonstrated (Jeannerat, 1997; Aksel Bothner-By, personal
communication, 1995) that the result of the application of the
arrays of δ functions M(J ∗) is equivalent to a recursive pro-
cess starting on either side of the multiplet illustrated in the
right part of Fig. 2. It shows that the calculation can be un-
derstood as the result of moving a cursor (represented by the
excavator) over the vector of signal amplitudes and subtract-
ing, at arm’s distance, representing the tested value of J ∗, the
value measured at its current position. After chopping off the
margins which should be empty (in grey) to align the sub-
multiplets, the sum of SL and SR is numerically equal to S.
This approach has the advantage of being computationally
quite effective: each point in the deconvoluted spectrum is
calculated as the sum of only two points instead of [W/J ∗],

where W is the width of the multiplet region. When J ∗ = J ,
the remote subtraction eliminates the second occurrence of
the substructure split by J . A key property of this algorithm
is that artifacts and the residuals of sub-multiplet subtraction
increase from the starting boundary to the other as the num-
ber of operations increases. It is tempting to reduce artifacts
by taking only the most favourable half of the simplified mul-
tiplets, but it is not generally recommended because it often
produces a small discontinuity in the middle of the resulting
multiplet. The most significant advantage of the side-to-side
process is to facilitate the measure of the similarity of SL and
SR to test the success of the simplification process. It takes
advantage of the presence of deconvolution artifacts, indicat-
ing that J ∗ 6= J only in the right or left marginal regions (in
grey in Fig. 2) of SL and SR. Instead of the classical Chi-
squared test, we favoured a scalar product (Huber and Bo-
denhausen, 1993a) as a measure of similarity, but this should
only be a matter of personal preference. Finally, the presence
of two sub-multiplets makes it possible to simply discard one
of them when an artifact (solvent singlet, spike, etc.) or par-
tial overlap makes the complementarity fail (see Sect. 1.8).

1.3 Recursive simplification of multiplet structure

As mentioned earlier, deconvolution produces artifacts be-
cause the components of multiplets are never perfectly iden-
tical. This causes imperfect multiplet subtraction due to the
presence of random noise, etc. These artifacts tend to be du-
plicated for each δ function of M , and their presence is of-
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ten a limiting factor for the analysis of complex structures.
Reducing them is therefore decisive for making multiplet de-
convolution reliable. Deconvolution with large values of J ∗

generates fewer artifacts because they contain less δ function
per unit distance. This is one of the reasons to aim first at
the largest coupling present in any multiplet. Note that it is
the opposite to what a human would do based on the knowl-
edge that only the smallest coupling can be readily measured
between the first and second outermost lines of any multi-
plet. The other reason to start with the largest coupling con-
stants is that values of J ∗= J/(2n+ 1) (where n ∈N∗) also
produces a multiplet structure with no marginal signal (see
the extremum at J ∗= J/3 in Fig. 3), making it unreliable
for using symmetry as a criterion for the determination of
values smaller than one-third of the largest coupling of the
multiplet. This problem becomes irrelevant when using a re-
cursive process where the result of the simplification of the
largest coupling constants is used as the starting point of the
next step. In order to limit the accumulation of artifacts, ap-
plying symmetry at each step or taking the best part of the
sub-multiplets SL and SR is generally recommended.

An alternative to the measure of symmetry consists in test-
ing the sum of the absolute values of the resulting multiplets.
It should reach half the value of the starting multiplet when it
is simplified. It requires onlyML andMR (instead of both for
the comparison using symmetry), but we used it solely when
only one side was available, for example when analysing par-
tially overlapping multiplets (see Sect. 1.8).

Having a good starting multiplet is also important and re-
quires the spectrum to present a reasonable baseline, and the
identification and subtraction of solvent and other artifact
peaks by the processing software prior to the deconvolution
process increase the chances of success of multiplet deconvo-
lution. On the other hand, random noise should only impact
the confidence level of the identification of each coupling.

1.4 Multiplet line shape

An interesting property of multiplet deconvolution is to make
no assumption about the underlying signals’ line shape. It
can be any mixed Lorentz/Gauss function, transformed by
any type of apodization or line-shape deconvolution. Mul-
tiplet deconvolution only needs a pattern, of any shape, to
be equally split. Figures 4 and S1 in the Supplement illus-
trate this point for a classical phase distortion, a distorted line
shape, and the results of a resolution enhancement replacing
the multiplet with its second derivative (Wahab et al., 2018).
This being said, the above-mentioned symmetrization pro-
cedure applied at each step of the simplification process is
generally beneficial (compare Figs. S2 and S3 in the Supple-
ment). It averages out noise, artifacts and asymmetrical cou-
pling structures caused by mild second-order effects (roof ef-
fects), but it usually does not work properly when signals do
not have a pure absorption line shape (i.e. when the phase is

incorrect) or when theB0 inhomogeneity produces a severely
asymmetrical line shape.

1.5 Spin system degeneracy

When spin systems are n-fold degenerated, the convolution
with M(J ∗) is simply applied n times before measuring the
degree of simplification. A trivial example of quartet struc-
ture is shown in Fig. S4 in the Supplement. A user-controlled
specification of degeneracy simplifies the structure in one
step and avoids the possible errors of the automatic iden-
tification which takes as degenerate the coupling constants
differing by less than 0.5 Hz.

Another difficulty arises, in highly degenerate systems,
when the automatic analysis misses the outermost signals
(see Fig. 5).

A post-processing procedure using multiplet simulations
(see Sect. 2.3) to test whether higher levels of degeneracy
match better the starting multiplet turned out to be useful,
including in the case illustrated in Fig. 5.

1.6 Coupling partner with S > 1/2

When compounds contain deuterium (S= 1, 1 : 1 : 1 struc-
ture), boron (11B, S= 3/2, 1 : 1 : 1 : 1 structures) and other
atoms with S > 1/2 isotopes, the simplification of the mul-
tiplet structure with n equal-amplitude δ function is neces-
sary when quadrupolar relaxation does not effectively hide
the coupling structure. The general inverse function M(J ∗),
valid for S ≥ 1/2, consists of a core of nδ functions with unit
values producing the main singlet. It is flanked at both sides
by a repeat of blocks made of one negative δ function with in-
tensity equal to−(n−1) and n−1 lines with unit intensities.
The function M3/2(J ∗) is shown in Fig. 6.

The convolution product of F 3/2(J ) and M3/2(J ∗ = J )
is indeed I because the sum of any set of four consecu-

tive δ functions
(
m+n∑
i=m

δi

)
is equal to zero for all positions

except the middle one. The side-to-side recursive functions
ML, S>1/2(J ∗) and MR, S>1/2(J ∗) also exist (see ML at the
bottom left of Fig. 6).

For a given coupling constant, the density of δ functions
in the simplifying function is the same as for spin 1/2, but
the fact that the average of the intensities of the M functions
increases with spin order and that these multiplets are more
extended should generally make the simplification of com-
plex multiplets more prone to artifacts.

The analysis of the main 1 : 1 : 1 : 1 quartet of the proton
of borohydride produced by the coupling with 11B is straight-
forward (see Fig. 6). The process is not disturbed by the pres-
ence of the signal of the 20 % abundance of the 10B isotopo-
logue. Note that a refinement of the parameters involving a
fit of the experimental spectrum with spectral simulation tak-
ing into account the presence of isotopologues could provide
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Figure 3. (Top right) Quality function of the deconvolution of an experimental doublet (top left). When starting with large values of J ∗,
the first extremum points to the largest coupling constant of the multiplet structure (J ∗= 4.15 Hz). (Bottom) Structures obtained for decon-
volution with J ∗= 1.38 (= J/3), 4.15 (= J ) and 4.38 (= J + 0.23) Hz and ML for 4.38 Hz. When J ∗ 6= J , the presence of deconvolution
artifacts (in the grey area) breaks the symmetry of the structure and causes a drop in the quality function except when J ∗= J/(2n+1), where
n ∈N∗. (See text for more details.)

Figure 4. Comparison of the first step of the analysis of the reference multiplet before (top left) and after introduction of a phase error (top
right), a distorted line shape (bottom left) and using its second derivative (bottom right). The measured coupling constants are the same in
all cases (not shown), as the position of extrema in the four error functions shows. The narrower extrema of the error functions in the latter
indicate a higher potential to identify small coupling constants. See Fig. S1 for a more detailed analysis.

Figure 5. Example of automatic analysis failing to identify a triplet structure after six steps of simplification. Because the outermost lines
(see arrows) were too small, it identified a problem because the reconstructed multiplet (triple quintet filled in red) was not perfectly matching
(the scalar product was < 0.99) the starting multiplet (in blue). The post-analysis procedure found a satisfactory match (not shown) for a
triplet (7.0 Hz) caused by methylene (C5) of heptet (4J = 1.3 Hz) caused by the coupling with two methyl groups bound to C1 of geraniol.

values for the isotopic shift and the line widths of both mul-
tiplets.

The analysis of a system including the deuterium atoms of
the CHD2 residual signal of DMSO-D6 is shown in Fig. S5
in the Supplement.

1.7 Mild second-order effects

Because second-order effects are often observed in other-
wise well-behaved multiplets (i.e. when only the peak in-
tensities are uneven with no significant shift or additional

second-order transitions), we introduced, in this work, the
function deconvoluting doublets with non-equal amplitudes.
Mild second-order effects usually do not impair the extrac-
tion of coupling constants, especially when symmetrizing
multiplet structures, but the validation of the results match-
ing simulation with the experimental multiplet (see Sect. 2.3)
may fail because of the mismatch of the peak amplitudes. Ac-
counting for the roof effect restores high confidence in the re-
sults of the analysis. The simplification functionM1/2(J ∗,θ )
(see Fig. 7) includes the strength of the coupling as a param-
eter expressed a θ = tan−1(J/1δ) where 1δ is the differ-
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Figure 6. (Top right) Model multiplet structure for coupling with S = 3/2 partners. (Middle right) Simplifying series of δ functions
M3/2(J ∗). The braces show examples of integration regions and illustrate that it is zero for all positions except the central one. The side-to-
side process is quite similar to the case of S = 1/2 except that subtraction of the cursor position has to be made to the n−1 positions located
J ∗ further in the data array. (Centre) Analysis of the proton spectrum of BH+4 . Specifying the spin of the partner as 3/2 replaces the wrong
assignment dd (J = 163.6, 81.6 Hz, not shown) with the correct 1 : 1 : 1 : 1 quartet with J = 81.6 Hz (bottom centre). The extremum of the
quality function (right) for J ∗ = J/3= 27.25 is due to a non-simplified but symmetric structure (bottom centre). The presence of the minor
multiplet for the 10B isotope (20 % natural abundance, S = 3, seven transitions) with a γ one-third that of 11B is highlighted in grey in the
top subplot. Note that the artifact (probably traces of acetone highlighted by a star symbol) was scaled down by symmetrization.

ence in the chemical shift of the two coupling partners ex-
pressed in Hertz. It produces the identity function when tak-
ing the convolution product with the second-order doublet
F 1/2(J,θ ) where the ratio of peak amplitudes is

r =
1− sin(θ )
1+ sin(θ )

. (1)

Note that the stronger the coupling, the more artifacts will
be amplified on one side of the resulting multiplet. In order
to avoid having two independent variables to adjust, θ can
be optimized only for values of J ∗ corresponding to an ex-
tremum of the values obtained for θ = 0.

Besides the fact that taking into account the roof effects
increases the level of confidence that any measure splitting
is correct, exploiting them provides, when it can be mea-
sured with sufficient precision, the chemical shift of the rel-
evant coupling partner (Stan Sykora, personal communica-
tion, 2008). This information normally requires a 2D COSY
spectrum, but extracting this information for the 1D spec-
trum has the additional advantage of identifying which of the
couplings observed in a given multiplet corresponds to the
designated coupling partner. In other words, instead of only
qualitatively pointing to the side of the spectrum where one
should look for the coupling partner of a signal showing roof
effects, one can actually point to the chemical shift of the
partner according to

δpartner = δref.+
J

tan(θ )
. (2)

The determination of the coupling partner position is ex-
pected to provide useful values for a relatively narrow range
of second-order effects (say 3<1δ/J < 20). In the example

of Fig. 7, taken from the 1H spectrum of a sample of taxol
(Peng et al., 1997),1δ/J = 6.6. Indeed, the second-order ef-
fect should not be too strong to prevent the minor line of
the doublet from being too small to be measured accurately.
Similarly, if the effect is too weak, the difference of intensity
of the two lines of the doublet becomes too small to be sig-
nificant and generate large errors because 1/tan(θ ) becomes
quite large when θ is small (see the example in Fig. S6 in the
Supplement). Taking into account the error in the partner po-
sition by standard error propagation calculation is therefore
essential to avoid misinterpretation. Obviously, the chances
of success of simply picking the nearest multiplet about the
expected chemical shift as the true partner depends on the
complexity of the spectra.

1.8 Partially overlapping multiplets

The side-to-side deconvolution algorithm allows us to deal
with multiplets that are partially superposed. Figure 8 shows
that signal overlap over a distance smaller than the largest
coupling present in the multiplet can be analysed success-
fully.

When attempting to simplify the left multiplet, the decon-
volution process should be run from left to right and the de-
convolution process stopped at the position where the inte-
gral reaches 1/2 in the reconstructed multiplet.

When testing different values of J ∗, the measure of the
success of the simplification cannot be applied to the whole
spectral region because the segment where the sub-multiplet
subtraction occurs may be occupied by multiplet B. How-
ever, successful deconvolution produces a minimal and pre-
dictable integral when J ∗ = J . This multiplet separation
method requires us to know the integral of the analysed mul-
tiplet relative to the total integral of the region of interest.
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Figure 7. (Left) Illustration of the model function of a doublet with non-equal amplitude F 1/2(J,θ ) and its inverse function M1/2(J ∗,θ ).
The amplitude ratio of the absolute values of two consecutive δ inM is the inverse of the ratio in F 1/2(J,θ ). (Right) Analysis of two multiplet
structures of an AB spin system (300 MHz spectrum of a taxol sample).1δ/J = 6.6, 2θ = 8.6 deg. and the ratio of signal amplitudes r = 0.74.
The error in the determination of partner chemical shift was about 0.01 ppm. The open circles in the quality functions indicate the level of
the measure of the quality function after optimization of θ .

Figure 8. Analysis of multiplet A in the presence of partially overlapping multiplet B with relative integrals of 1 and n, respectively. When
deconvolution is successful, the left-to-right deconvolution process eliminates the second occurrence of sub-multiplet A which effectively
eliminates overlap (bottom left). (Right) Example of separation of two slightly overlapping multiplet structures from a sample of artemicinin
dissolved in CDCl3. The coupling constants J = 14.71, 4.77, 2.89 and 13.77, 6.15, 3.91 and 2.93 Hz were extracted from the left and right
multiplets, respectively, and used to reconstruct the matching green multiplets. Note the slight mismatch due to second-order effects which
could be ignored in this analysis. See Fig. S7 in the Supplement for the detailed simplification.

This is usually not problematic as integration is generally
straightforward. An example of analysis resulting in a sub-
multiplet separation is shown in the right part of Figs. 8
and S7.

Following the analysis of A, multiplet B can be analysed
independently (from right to left) only if its largest cou-
pling is also large enough, as in the example on the right
of Fig. 8. Otherwise, a recursive process analysing and sub-
tracting multiplet structures sequentially is necessary. This
would make the quality of the subtraction of each multiplet
high enough to leave no significant residual signals on the
rest, but allows us, in principle, to deal with more than two
overlapping multiplets.

For more severely overlapping structures, the methodol-
ogy developed to separate 2D multiplets (Jeannerat and Bo-
denhausen, 1996) could be adapted to the processing of 1D
spectra.

2 Implementation

2.1 Deconvolution parameters

As mentioned above, the simplification of structure is a re-
cursive process where the noise and artifacts tend to increase
along the course of the analysis and depend on the quality
of the multiplet (complexity, baseline distortion, presence of
spurious peaks, etc.).

In order to increase the robustness of multiplet deconvo-
lution, different sets of parameters driving the deconvolution
process are tested and their results validated (see next para-
graph). These parameters are the threshold for considering a
deconvolution to be successful, the threshold for considering
the recursive process to be completed, the range of values
tested for the roof effect, whether symmetry is applied be-
fore starting the analysis, whether symmetry is applied after
each simplification, whether the baseline offset is corrected,
whether the crude spectrum is used instead of the GSD-based
synthetic spectrum (Cobas et al., 2008; Schoenberger et al.,
2016), etc.
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Figure 9. Example of a ddd structure analysed straightforwardly by multiplet deconvolution. The symbol indicates that symmetrization was
applied before deconvolution. The symbol indicates that the results of the deconvolution running from both sides were added (instead of
taking the best part of both of each or only the result of one direction).

2.2 Limit of deconvolution analysis

Obviously, the recursive simplification stops when the re-
sult is a singlet. However, the ability of multiplet deconvo-
lution to find unresolved coupling means that simply test-
ing the presence of only one extremum in the result of a
simplification step could miss unresolved coupling constants
(see Sect. 3.2). Testing values down to 1 Hz seems to be a
good compromise for standard 1D 1H spectra. Note that sub-
linewidth coupling constants should be used with great care
and only to facilitate the process of a structure elucidation
process. They should not be used as the sole argument for
any key interpretation. Indeed, the behaviour of the deconvo-
lution has not been studied sufficiently to provide a general
and safe limit as to how far out it can be carried. A rigor-
ous analysis of unresolved structures would involve a pro-
cess taking, among other elements, the line shape found in
other multiplets into account. When a candidate structure is
available, predictable long-range coupling constants should
be considered. Depending on the priority of the application,
one may favour safety over ambition and decide to ignore
any unresolved structure in a “fully automated” mode. Push-
ing the limit of multiplet analysis could be a user-triggered
operation providing visualization tools to assess the validity
of the results and correct them if necessary.

2.3 Validation and post-processing

The validation and ranking of the results of the different
methods consist in the measure of the similarity of the start-
ing multiplet to a reconstructed multiplet build using the ex-
tracted data. The latter are obtained by starting with the final
singlet shape and reintroducing the measured coupling con-
stants including, when relevant, the tilt caused by the second-
order effect, and testing the similarity with the initial mul-
tiplet. In this work, the starting line shapes were synthetic
Lorentzian but allowing more degrees of freedom (i.e. using
Voigt, generalized Lorentzian (Schoenberger et al., 2016),
etc., line shapes) should improve the match with the shape
obtained at the end of the deconvolution.

Finally, a refinement of all parameters, signal intensity,
chemical shift, coupling constants, but also roof effect, sig-
nal phase, baseline level, and line-shape parameters, could
be used to further improve the quality of the validation and
take into account context-dependent information such as the
degeneracy of the coupling constants.

3 Results and discussion

Multiplet deconvolution has been applied to numerous test
spectra. Many multiplet structures which could not be anal-
ysed using the GSD peak-based multiplet analysis (reported
as “m”) were correctly deciphered. It also has a lower occur-
rence of false positives – the situation where coupling con-
stants are automatically extracted but turn out to be incor-
rect – thanks to the strict validation process. We shall only
present here two typical examples where multiplet deconvo-
lution succeeds while manual analysis would be difficult.

3.1 Human-unfriendly multiplets

Figure 9 shows a typical example of a multiplet that causes
difficulties for human analysis. The partial overlap of three
transitions (see arrows) makes the structure difficult to inter-
pret. The destiny of such a structure is to be called the bad
name “m” for a lack of courage and proper tool to identify
it. Multiplet deconvolution straightforwardly identifies the
largest coupling as 9.9 Hz. Similarly, the seeming triplet of
the second step (bottom left of Fig. 9) would have been as-
signed to a t with two equal coupling constants of 5.27 Hz –
possibly causing confusion if nothing explains this apparent
degeneracy. Here again, deconvolution has no difficulties in
resolving overlap and identifies a double doublet with 6.32
and 4.22 Hz – an almost 2 Hz difference for a final line width
of 2.7 Hz.

An example of successful analysis of a “dqdd” multiplet
structure which was too complex to be analysed manually
is shown in Fig. S8 in the Supplement. The six coupling
interactions, among which three were degenerate, produced
32 lines with no visible splitting patterns.
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Figure 10. Extraction of unresolved coupling constants of the proton signals of C4 (left) and C5 (right) of a 6-deoxy-pyranose unit. The
symbol indicates that symmetrization was not applied and deconvolution run from left to right.

3.2 Unresolved couplings

In carbohydrate chemistry, geminal coupling constants are
often too small to be resolved, making it difficult to as-
sign their signals. The analysis of the multiplet structures of
Fig. 10 identified a common coupling of 1.2 Hz which in-
creases the confidence in their suspected geminal relation-
ship. In the signal at 3.655 ppm, neither the 2.2 nor 1.2 Hz
were resolved in the starting multiplet, providing a good ex-
ample of the potential of multiplet deconvolution to access
useful coupling constants.

4 Conclusions

The recursive analysis of NMR spectra by multiplet deconvo-
lution demonstrated its ability to extract coupling constants
in a robust and fully automated manner. The results are val-
idated when simulations based on the extracted data match
the experimental multiplet structures. Additional features in-
cluding the analysis of structures produced by coupling part-
ners with S > 1/2 and of regions presenting signal overlap
are proposed with the option of using a graphical interface
providing a full user control on the stepwise analysis of mul-
tiplet structures.

By reducing the number of unsuccessfully analysed multi-
plets, multiplet deconvolution increases the information con-
tent of NMR spectra at a much lower cost than increasing the
field strength of NMR spectrometers. Combined with other
efforts aiming at automatizing the analysis of NMR spec-
tra, these methods can significantly increase the quantity and
quality of NMR data available to the community. However,
this will only occur if researchers make their NMR spectra
and extracted data available as supplementary data deposited
in public databases instead of providing only crude images
of spectra and other non-computer-readable information.

Code and data availability. The software presented here is the
property of Mestrelab, but the code for a basic recursive de-

convolution of a first-order multiplet with spin 1/2 partners
is copyright free and available as JavaScript node modules
on https://doi.org/10.5281/zenodo.4973506 (Jeannerat and Patiny,
2021a). The JCAMP-DX files of the spectra presented in this paper
are available on Zenodo (https://doi.org/10.5281/zenodo.4616665,
Jeannerat, 2021). They can be visualized with the open-
source NMR displayer (also known as NMRium) accessi-
ble from https://doi.org/10.5281/zenodo.4973419 (Jeannerat and
Patiny, 2021b) and analysed by the basic implementation of decon-
volution by clicking on the Ranges Picking button and selecting a
multiplet region with the mouse while pressing the shift key.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/mr-2-545-2021-supplement.
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Novič, M. and Bodenhausen, G.: Symmetry mapping and re-
cursive reduction of multiplet patterns in nuclear magnetic
resonance spectra obtained with two-dimensional correlation
and multiple-quantum methods, Anal. Chem., 60, 582–591,
https://doi.org/10.1021/ac00157a018, 2002.

Peng, C., Jeannerat, D., and Bodenhausen, G.: Determination
of homonuclear scalar coupling constants by combining se-
lective two-dimensional NMR spectroscopy with convolution
and deconvolution: applications to paclitaxel (taxol), Magn.
Reson. Chem., 35, 91–99, https://doi.org/10.1002/(SICI)1097-
458X(199702)35:2<91::AID-OMR22>3.0.CO;2-B, 1997.

Prasch, T., Gröschke, P., and Glaser, S. J.: SIAM, a
Novel NMR Experiment for the Determination of
Homonuclear Coupling Constants, Angew. Chem. Int.
Edit., 37, 802–806, https://doi.org/10.1002/(sici)1521-
3773(19980403)37:6<802::Aid-anie802>3.0.Co;2-m, 1998.

Magn. Reson., 2, 545–555, 2021 https://doi.org/10.5194/mr-2-545-2021

https://doi.org/10.1016/j.pnmrs.2018.10.001
https://doi.org/10.1016/0022-2364(87)90158-2
https://doi.org/10.3247/sl2nmr08.011
https://doi.org/10.1002/mrc.1623
https://doi.org/10.1006/jmra.1993.1236
https://doi.org/10.1006/jmra.1994.1238
https://doi.org/10.1002/anie.199005171
https://doi.org/10.1006/jmra.1993.1070
https://doi.org/10.1006/jmra.1993.1194
https://doi.org/10.1002/(SICI)1097-458X(200003)38:3<156::AID-MRC610>3.0.CO;2-R
https://doi.org/10.1002/(SICI)1097-458X(200003)38:3<156::AID-MRC610>3.0.CO;2-R
https://doi.org/10.5281/zenodo.4616665
https://doi.org/10.5281/zenodo.4973506
https://doi.org/10.5281/zenodo.4973419
https://doi.org/10.1021/ja00901a059
https://doi.org/10.1002/ange.202011642
https://doi.org/10.1016/0022-2364(92)90035-6
https://doi.org/10.1002/mrc.902
https://doi.org/10.1016/0022-2364(92)90098-R
https://doi.org/10.1002/(sici)1099-0534(2000)12:1<21::Aid-cmr4>3.0.Co;2-r
https://doi.org/10.1002/(sici)1099-0534(2000)12:1<21::Aid-cmr4>3.0.Co;2-r
https://doi.org/10.1021/ac00157a018
https://doi.org/10.1002/(SICI)1097-458X(199702)35:2<91::AID-OMR22>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1097-458X(199702)35:2<91::AID-OMR22>3.0.CO;2-B
https://doi.org/10.1002/(sici)1521-3773(19980403)37:6<802::Aid-anie802>3.0.Co;2-m
https://doi.org/10.1002/(sici)1521-3773(19980403)37:6<802::Aid-anie802>3.0.Co;2-m


D. Jeannerat and C. Cobas: Application of multiplet structure deconvolution 555

Prost, É., Bourg, S., and Nuzillard, J.-M.: Automatic first-order
multiplet analysis in liquid-state NMR, C.R. Chimie, 9, 498–502,
https://doi.org/10.1016/j.crci.2005.05.012, 2006.

Schoenberger, T., Menges, S., Bernstein, M. A., Perez, M., Seoane,
F., Sykora, S., and Cobas, C.: Improving the Performance of
High-Precision qNMR Measurements by a Double Integration
Procedure in Practical Cases, Anal. Chem., 88, 3836–3843,
https://doi.org/10.1021/acs.analchem.5b04911, 2016.

Wahab, M. F., Gritti, F., O’Haver, T. C., Hellinghausen, G., and
Armstrong, D. W.: Power Law Approach as a Convenient
Protocol for Improving Peak Shapes and Recovering Areas
from Partially Resolved Peaks, Chromatographia, 82, 211–220,
https://doi.org/10.1007/s10337-018-3607-0, 2018.

https://doi.org/10.5194/mr-2-545-2021 Magn. Reson., 2, 545–555, 2021

https://doi.org/10.1016/j.crci.2005.05.012
https://doi.org/10.1021/acs.analchem.5b04911
https://doi.org/10.1007/s10337-018-3607-0

	Abstract
	Introduction
	Multiplet structure in 1D spectra
	Deconvolution of doublet structures
	Recursive simplification of multiplet structure
	Multiplet line shape
	Spin system degeneracy
	Coupling partner with S>1/2
	Mild second-order effects
	Partially overlapping multiplets

	Implementation
	Deconvolution parameters
	Limit of deconvolution analysis
	Validation and post-processing

	Results and discussion
	Human-unfriendly multiplets
	Unresolved couplings

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

