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Abstract. Chemical shift tensors in '3C solid-state NMR provide valuable localized information on the chem-
ical bonding environment in organic matter, and deviations from isotropic static-limit powder line shapes sen-
sitively encode dynamic-averaging or orientation effects. Studies in '3C natural abundance require magic-angle
spinning (MAS), where the analysis must thus focus on spinning sidebands. We propose an alternative fitting
procedure for spinning sidebands based upon a polynomial expansion that is more efficient than the common
numerical solution of the powder average. The approach plays out its advantages in the determination of CST
(chemical-shift tensor) principal values from spinning-sideband intensities and order parameters in non-isotropic
samples, which is here illustrated with the example of stretched glassy polycarbonate.

1 Introduction

Chemical-shift anisotropy (CSA) is one of the most useful
interactions in solid-state NMR, as the principal values of
its tensor span a convenient frequency range for many rele-
vant heteronuclei present in organic materials, such as 13C,
5N or 3!P. Excluding effects of intermediate motions on
the NMR timescale, deviations from the static-limit isotropic
powder line shapes, characterized by the three principal
values or the three commonly derived invariants (isotropic
shift, anisotropy and asymmetry), are immediately informa-
tive about the geometry of fast-limit motions (Kulik et al.,
1994; Titman et al., 1994) as well as orientation effects in
non-isotropic samples (Maricq and Waugh, 1979; Hentschel
et al., 1978). The latter are the main concern of this contribu-
tion.

The most complete information would be the extraction
of the full orientation distribution function (ODF), which
is best achieved with the dedicated DECODER 2D exper-

iment involving a mechanical sample flip (Schmidt-Rohr
et al., 1992) or with some compromises in special cases even
from 1D spectra (Hempel and Schneider, 1982). Alterna-
tively, the anisotropy can be quantified by orientational mo-
ments, which are proportional to expansion coefficients of
the orientation distribution in terms of Legendre polynomi-
als. For the evaluation of static powder line shapes, two dif-
ferent schemes for the estimation of orientational moments
were applied: (i) a decomposition of the spectra into ele-
mentary spectra belonging to different Legendre polynomi-
als (Hentschel et al., 1978) or (ii) the estimation of the ori-
entational moments from the line-shape moments (Hempel
etal., 1999). All these low-resolution approaches suffer from
spectral overlap, leaving selective isotope labeling, possibly
also with 2H (Spiess, 1982) and harnessing its well-defined
quadrupolar coupling, as a certainly non-routine and often
unfeasible alternative.

Multiple sites even in natural abundance of '3C can of
course be addressed in single experiments using fast magic-

Published by Copernicus Publications on behalf of the Groupement AMPERE.



590
ST
trigger |

o :
13C E i P Observe

|7t14)' t

Figure 1. Pulse sequence for 2D syncMAS (Harbison et al., 1987).
The direct dimension consists of the usual data acquisition time do-
main after cross-polarization, while the indirect dimension consists
in an incrementation of the delay between a rotor trigger and the
start of the actual pulse sequence, covering a single rotor period
T; typically following ¢; =i Ty/2" with i =0...2" (2" =16 in our
case).

angle spinning (MAS) but at the expense of removing the
anisotropy effects from the spectra. One must then rely on
recoupling experiments such as CODEX (deAzevedo et al.,
2000) or the more dedicated SUPER experiment (Liu et al.,
2002), but these are often subject to uncertainties related to
scaling factors and line broadening arising from experimen-
tal imperfections. In this paper, we demonstrate that a some-
what “revisionist” approach of using lower spinning frequen-
cies and the focus on a spinning-sideband (SSB) manifold
can help to solve a given problem without strong require-
ments concerning the sample or the spectrometer hardware.
A simple comparison of sideband intensities of an isotropic
vs. oriented sample may be sufficient. With some more ef-
fort in terms of experimental time, one can record a series
of spectra with an incremented triggered rotor phase, result-
ing in the 2D syncMAS experiment (Harbison et al., 1987).
which enables much better accuracy (see Fig. 1). A fur-
ther improvement in line separation is provided by the time-
consuming 3D ORDER method (Titman et al., 1993), where
spinning sidebands of different order are separated in differ-
ent 2D planes of the 3D stack.

In any such experiment, precise knowledge of the CS ten-
sor is required, which can again be deduced from MAS
sidebands. A famous analytical relation between tensor and
SSB intensities was given by Herzfeld and Berger (1980),
Egs. (24) and (25) therein. However, this equation is rather
complicated to apply; see below. Instead, computer programs
involving numerical solutions of the powder average inte-
gral are nowadays available and readily applicable. One can
proceed along this line and obtain orientational moments in
an anisotropic sample by numerical calculation of SSB sub-
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spectra. At this point, we argue that a more simple analytical
connection between SSB intensities and anisotropy parame-
ters would be very helpful, for instance, in the form of poly-
nomials. Then, well-established fitting procedures (such as
Gauss—Newton, Levenberg—Marquardt and others) could be
applied, also for the estimation of the uncertainties. The aims
of this paper are as follows: (i) the introduction of an exact
polynomial representation of SSB intensities. This is tested
by evaluating SSBs in glycine, for which the CSA prin-
cipal values are known from single-crystal measurements.
(i) The derivation of a sixth-order polynomial approxima-
tion of syncMAS NMR data: this is demonstrated to be of
great use in estimating the orientational moments in stretched
glassy polycarbonate (PC). Our data analysis approach offers
more flexibility with regards to the inherent model assump-
tions, which cannot as easily be tested or changed within the
originally proposed data analysis scheme relying on precal-
culated subspectra (Harbison et al., 1987). It goes without
saying that our results are readily generalized for the case
of dipole—dipole interactions (for heteronuclear or isolated
homonuclear spin pairs) and also for first-order quadrupolar
interactions (H, Li).

2 Theoretical part

2.1 Definitions
2.1.1 CSA tensor parameters

In solid-state NMR, the anisotropic electronic shielding ef-
fect is written as a dimensionless tensor o,

BIOC:(l_g)B()7 (D

with B the external magnetic field and Bj,. the local field at
the position of the nucleus. The shielding effect is always ref-
erenced to a known isotropic shift of a reference compound
oref (1: unit tensor),

d:=g—orf - L 2)

The tensor, henceforth referred to as a CST (chemical-shift
tensor), has only real eigenvalues and is uniquely defined
by six independent quantities, where one commonly reports
three eigenvalues and three Euler angles, the latter character-
izing the orientation of the principal-axes frame (PAF). For
an isotropic static powder sample or a MAS sideband man-
ifold the orientation information is lost, and one can only
measure the three eigenvalues. We follow the common con-
vention for the principal components: §33 is the eigenvalue
which deviates most from the isotropic shift dis, := (511 +
822+ 833)/3, and 8 deviates least. Alternatively, one can
also use only the invariants: isotropic shift d;so, anisotropy
8 1= 833 — iso, and asymmetry parameter 1 := (822 — 611)/9.
With this we have two possibilities: §33 < Siso < §22 <811
and § are positive, or 833 > Siso > 822 > 811 and § are neg-
ative. In either case we fulfill the convention 0 < n < 1. For
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sake of simplicity we assume in the following that the spec-
trometer frequency is set to the center of the powder pattern,
1.e., 8iso := 0.

We finally comment on an often neglected aspect: as there
are six possibilities to assign the three eigenvalues to three
principal axes of the CST, there are six solutions for the pair
{8, n}. Exchange of the values for 811 and 8,7 simply changes
the sign of n, but cyclic permutation of the indices produces
more complex changes. The resulting six value pairs all yield
the identical static-limit powder spectrum or SSB pattern.
Only one of them fulfills 0 <75 < 1, but some cases exist
where it might be helpful to deviate from this convention.
One example is discussed below, where the CST of para-
substituted phenylene carbons will be assigned in different
ways to the PAF. For the sake of simplicity, it will be advan-
tageous to surrender the numbering order from above for one
of the carbons; the benefit will be a common frame for both
carbons which simplifies the data evaluation appreciably.

2.1.2 Angle conventions, transformations and
orientational moments

The focus of the second part is on the description of orien-
tational effects of molecular-scale structural units character-
ized by a given distribution of orientations. Following Har-
bison et al. (1987) and Schmidt-Rohr and Spiess (1994), we
summarize the relevant definitions. Starting with the com-
mon transformation from the PAF to the molecular frame
(which we will later identify with a main-chain section of
the polymer backbone), we need an additional frame that
is related to the macroscopic sample deformation (“director
frame”). The order of the required transformations is

PAF — molecular frame — director frame

— MAS rotor frame — lab frame.

For the purpose of symbolic treatment, two changes are
made to simplify the resulting expressions as much as pos-
sible. For the background of both arguments, we refer to
Hentschel et al. (1978), Harbison et al. (1987), and Henrichs
(1987). First, the orientation of a frame with respect to its
preceding one is characterized by three Euler angles. Fol-
lowing this scheme, for the transformation from one of the
frames above to the next, three single-angle rotations are re-
quired. It is a well-known property of sequential Euler ro-
tations that the first single-angle rotation of a succeeding
transformation is simply the continuation of the third single-
angle rotation of the preceding transformation; i.e., both ro-
tations are performed around the same axis. Particularly for
symbolic treatment the result will be simplified substantially
if both equal-axis rotations are combined to a single rota-
tion by the sum angle. This simplifies the problem to only
two rotations per transformation between succeeding frames,
which are (1) rotation around the z axis such that the y axis
is parallel to the new y axis and both xz planes are paral-
lel and (2) rotation around the y axis to reach the new frame.
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This results in a sequence of four double rotations alternating
around the z and y axes instead of four triple transformations
by the complete sets of Euler angles. The first z rotation is in-
cluded already. The last z rotation remains; however, this is a
rotation around By which has no meaning here and is never
performed.

Second, the coordinate transformations are usually per-
formed in Cartesian vector space; i.e., the 3 x 3 matrix of
the CST is multiplied bilinearly from left as well as from
right with 3 x 3 matrices. Also here, a possibility for sim-
plification is used which is in the spirit of using a spherical
representation that relies on linear combination using Wigner
matrix elements but which is defined in Cartesian space. We
use symmetric matrices with six independent elements in-
stead of nine in the general case which do not require the full
set of operations. Instead of the bilinear matrix operations,
we rather use transformations in tensor space (details are to
be published under a separate cover), in which the traceless
part of the CST is represented by a five-membered column
vector. The transformation matrices have size 5 x 5 but have
to be applied only once, from left. This reduces the number
of multiplication and addition operations, which is important
for working with analytical expressions. Matrices for z ro-
tation and y rotation by angle ¥ are denoted by R (1) and
R, (¥), respectively.

The following angles are relevant.

CST PAF to molecular frame: z rotation by v (azimuth)
and y rotation by « (polar angle)

Molecular frame to director frame: z rotation by & and
y rotation by 8

Director frame to rotor frame: z rotation by ¢ and y ro-
tation by B,

Rotor frame to lab frame: z rotation by y and y rotation
by the magic angle dya = arccos(%)

With these definitions we can move to the specific features
of the given problem. Following Roe (1970) we have an
ODF W (e, cos B, ¢) of Euler angles. This function can be ex-
panded in terms of Wigner matrices; the determination of the
expansion coefficients is the goal of our syncMAS experi-
ments (see Fig. 1). For uniaxial deformation the ODF de-
pends on the polar angle 8 only and not on the azimuth ¢. In
this case there is no preferred lateral orientation of the molec-
ular units with respect to the plane spanned by the z axes of
the molecular frame and the director frame, which means that
all & have equal probability. It is then sufficient to describe
orientation effects by a 1D uniaxial function U (cos ). It can
be expanded in terms of Legendre polynomials P;(cos ),

U(cosB)= Y Cy Py(cosp), neN. (3)
n=0
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The expansion coefficients are

1 .
Cp = 1 (P,), with

1

(Py) :=/Pn(cosﬂ) U(cosB) dcosf,
0
nell, 2, ...} (Y]

According to Henrichs (1987) we denote the (P,) as orien-
tational moments. NMR methods are sensitive only to the
symmetric part of the ODF of the CSTs, U(cos 8); any non-
zero skew-symmetric parts cannot be detected by evaluating
CSA spectra; hence all odd orientational moments vanish.

2.2 Calculation procedure

The treatments of the 1D MAS and 2D syncMAS experi-
ments are largely equivalent, and we here summarize the se-
quence of calculation steps.

1. Estimation of the angle ® (“phase”) between the instan-
taneous magnetization direction and the initial direction
by time integration of the instantaneous precession fre-
quency w(t):

t

() = / w(t')dt. 5)

0

o and therefore ® will depend on the orientation of the
CST with respect to By, which depends periodically on
time due to MAS. The angles which describe the tensor
orientation are chosen such that the time dependence is
contained in one angle termed rotor angle y specifying
the instantaneous rotor position.

For 1D MAS,

y(t) = wit + yo. (6)

For 2D syncMAS,

y(ti, ) = oy +yo(t1) 5 yo(t1) = ot + yoo. @)

yo describes the rotor position at the end of signal ex-
citation (start of the data acquisition) of the current ex-
periment; o describes the rotor position at the start of
acquisition of the very first of the 2D slices. In the case
of 1D MAS, we used the well-known equations from the
literature for ®(¢); see the next section. To describe the
2D experiment, an equivalent analytical expression for
the instantaneous precession frequency is easily derived
and integrated.

2. Calculation of orientational averages of phase powers
(D" (1))or- In the particular case of an isotropic sample,
this average is the powder average (P"(#))powder-
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3. Assembling the free-induction decay (FID) and estima-
tion of the SSB intensities by Fourier analysis via

=" ("), ®)

FID() = (/7))
n=0

or

The periodicity of the MAS signal originates from the
periodic modulation of the precession frequency. The
integration providing the phase generally gives the sum
of a likewise periodic component and a linear compo-
nent. If the angle between rotation axis and B is ex-
actly the magic angle arccos \% and if the spectrometer
frequency is set to the isotropic average of the CS, the
linear term vanishes and @ is a purely periodic function.
This further holds for the orientation-averaged phase
powers. Therefore, for physical reasons we expect pe-
riodic FIDs which can be written as a Fourier series:

0o .
Z Im elma)rt

m=—00
for 1D MAS,
FID(t) = | | ©)
an():foozzifoo]mk el elkwrtl

for 2D syncMAS.

After FT, the I,,, appear as intensities of the SSB in the
1D MAS spectrum and the /,,;; as intensities of the 2D
SSB in the 2D syncMAS spectrum.

2.3 Polynomials for 1D SSB intensities of an isotropic
sample

2.3.1 Step 1 (phase)

For this case we can neglect the intermediate transformations
involving the molecular frame and the director frame and use
a single transformation from the CST PAF directly into the
rotor frame using only the angles v (azimuth) and « (polar
angle). In the absence of thermal motion, the time depen-
dence due to the motion of the tensor under MAS leads to
(Schmidt-Rohr and Spiess, 1994; Duer, 2002)

wod 1
wr 12

+2ncosasin2yr fo.(t)

—2V2(3 - ncos2y)sin2a fy(t)

+ [SSinza + g (3 + cos2a)cos 2@0] fzs(l)} , (10)

(1) =

{4«/5 nsinasin2y f.(t)

with the abbreviations

fe (t) : = cos(wit + y9) — cos yp,

fac(t) : = cosRuwyt + 2y9) — cos2yyp,

f5 (1) : = sin(wyt +yp) — sin o,

fas (£) : = sinRext + 2yp) — sin2yy. (11)

wo = 21 fo, with fo being the Larmor frequency and o, the
spinning rate in units of angular frequency.
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2.3.2 Step 2 (orientational averages of phase powers)

Steps 2 and 3 could be performed by inserting these expres-
sions into Eq. (8) by symbolic software (here Mathematica)
for n < 14. These are the same expressions as listed below.
However, a general expression was not found in this way. To
obtain such a general expression for " with n € N to obtain
terms of arbitrarily high order, we factorize (") into a term
which depends only on time and one which depends only
on orientation. The separation of time and orientation depen-
dence enables symbolic calculations. This can be achieved
by replacing

wyt
fe(t) = cos(wy + y9) —cosyy — —2siny; sin Tr

. wrt
with yp = Tr + 10, (12)

and similarly for f(z), f2.(t) and fos(¢).
The phase powers can be written as

5\" ! !
<1>"=(“2 ) (Asin%rJrBsinwrt) : (13)
T

with

22, o 1 :
= —T[n siny, sino sin2y + 5 cosyz sin2a

(3 —n cos2y)],

1 1
B = g{ — 1 sin2y, cosa sin2w+§ cos2y»

[n (1 + COSZOé) cos2y + SSin2a] } (14)

y» describes the rotor position in the middle of the integration
interval [0, t] in Eq. (5). It can be regarded as an azimuthal
angle which can be used for a powder average. Therefore, A
and B are effectively time-invariant. In combination with the
binomial law we can convert Eq. (13) to

s\ /2] ;
o () Bttt
=0

Wy

Here we made use of the fact that powder averages with odd
powers of A vanish. [n/2] denotes the integer part of n/2.

We now have a sum of products in which orientation-
and time-dependent terms are separated into separate factors.
Thus, powder average can be restricted to A2 B"—2k:

<A2an—2k>
/A7)
| 2 T 2
= 8—fdy2 fda sina /dw A%k pn—2k (16)
0 0
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The following auxiliary formulae can be applied further for
averaging over an azimuth y,

(sin”y cos"g//)w

(m=Dn—D1 .
_ 1 if m and n are even, an

0 otherwise,

and for y», for averaging over a polar angle «.

. m!l(n—1)!
<cos"oz smma) =

——— forevenm and n.  (18)
cose (m+n+1)!

Both relations can be proven by complete induction; see
Sect. S1 in the Supplement. The operation !! denotes the dou-
ble factorial (n! =n!!-(n — D).

Insertion of the auxiliary formulae yields

2k pn—2k g X k! n—2k
<A b > ;;X(;pq’(k pP— q)'< r )

<apchk—p—qdren—2k—r>
(p+r—Dg+n—2k—r—-1
X

(p+qg+n—-2k
1+(_1)p+r 1+(_1)q+n—2k—r
2 2 '

19)

We insert Eq. (19) into Eq. (13) and replace the trigonomet-
ric expressions by complex exponentials (again applying the
binomial law):

sin?t L Gint =K ot = : an_ZZk (2k>
2 T Qi) = \a
— 2%k .
. (n ) >(_])a+b pi(n—k—a=2byort (20)

(®") is described now by a very long expression which can
be found in Sect. S2.

Magn. Reson., 2, 589-606, 2021



594

2.3.3 Step 3 (assembling the FID and Fourier analysis)

After inserting (®") into Eq. (8) and comparing with Eq. (9),
we obtain for the Fourier coefficients

I wo 8 nln/2ln—-2k
L=y ()Y
k=0 b=0

(_1)n7k7m7b

.(n —k —m —2b)!3k —n+m+2b)!(n — 2k — b)!b!

k k n—=2k k! n—2k
NI

p=0g=0 r=0 p q
24k+r+p .
(D
(p+r—DWg+n—2k—r—1
% (p+qg+n-2k)"
1+ (=1)"P 14 (=1)2tn—2%k=r
' 2 ' 2

q (k—g—p) (n—2k-r)

>
5=0 1=0  u=0

k—p—q n—2k—r
u
(2k)” (p+r+2s+2t+2u—1

QCk+p+r+2s+2t+2u+ 1!
(p+2s+2t+u) (n—2k—r—u)

<X

v=0 w=0

p+2s+2t+u n—2k—r—u
v w

.nv+w+2k—p—2s—21+r
8 wW+w—-DN2k—p—2s =2t+r—1!
W4+w+2k—p—2s =2t +r)!!
T4+ (=Dt 14 (=1"?
2 2 '

Sl

N

(_ 1 )U 3n72k+pfr+2x+217v7w

@

This is our first core result. Within the infinite limits, this is
an exact expression for the intensity of the SSB of mth or-
der, not an approximation. This claim is based on the fact
that all formulae, series, etc., which entered the derivation of
Eq. (21) are exact, assuming all sums are taken in the given
limits. In practice, this equation can be used for generating
terms of arbitrary order. Of course the finite number of terms
is a kind of approximation. However, it is possible to choose
as many terms as necessary to reach the desired accuracy. Im-
portantly, its numerical evaluation will be appreciably faster
than a numerical powder average of Eq. (8). However, it can-
not be applied immediately because of its complex structure.
However, using symbolic software it is easily possible to cre-
ate polynomials for I, to reach arbitrary precision; a Math-
ematica notebook is given in Sect. S3. Just for the purpose
of illustration, we here provide the expression for the center
band up to 12th order in wg/w; (abbreviations: K1 : =3+ n2
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and K» :=1—1n?):
P K_f<5w0>2+ 227 K? <5w0)4
20 \ o 181 440
49 471 K3 +4 428 K2 (50)0)6
2802 159 360
K1 (1466405 K; —709 776 K3) (5w0)8
9 146 248 151 040
K7 (286311 167 K{ —494 915 400 K3) ((Swo)m
281521518 089 011 200

998 271153509 K¢ — 2160 K7 (1 577 931 893 K} +218 222 883 K3 )
200789 835 279 931 146 240 000

s 12
o
. ( ) . (22)
Wy
Analogous formulae for all SSBs up to fourth order are pro-
vided in Sect. S4.
In comparison with numerical simulations of the SSB in-

tensity, the use of polynomials should be advantageous for
the following reasons.

Wr

Wr

Wy

+

— Powder averaging is already included in the polynomi-
als. For simulations, the double integration in Eq. (24)
from Herzfeld and Berger (1980) has to be replaced by
a sum over the integrand function of pairs of polar and
azimuth angles. In a numerical simulation even with ad-
vanced methods like REPULSION, some 1000 spatial
directions are needed usually.

— A single value for the integrand of Eq. (24) in the
Herzfeld—Berger paper has to be calculated as a triple
sum over products of Bessel functions (Eq. 25 ibid). Its
evaluation would take much more time than for a poly-
nomial of 12th order even by using Clenshaw recursion.
This leads to a further factor of 10...100 in the compar-
ison of processing times.

— The use of Bessel functions can be circumvented if | F |2
in Eq. (24) (Herzfeld and Berger, 1980) is replaced by
exp(i ®(1)), with ®(r) given by the long expression (10).
The result of subsequent powder averaging is the time-
domain signal for which a Fourier analysis is required to
get the sideband intensity. This is likewise not required
if the polynomial approach is used.

Considering that, the time of a polynomial SSB calculation
is expected to be shorter by a factor on the order of 10* com-
pared to a numerical simulation.

A further aspect concerns fitting of model functions.

— Searching minimum yx? can be performed analytically if
polynomials are used (see below), which is not possible
by applying a program or a subroutine.

— Furthermore, an symbolic expression can often be more
effectively embedded in a fitting routine than a pro-
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gram. For example, a Newton procedure or Levenberg—
Marquardt procedure requires calculation of first deriva-
tives which can be calculated symbolically for a polyno-
mial.

2.4 Properties of the polynomials

We consider it useful to discuss a few properties of the poly-
nomials. Terms with even powers of R are symmetric and
thus invariant with respect to change in the sign of the side-
band order, while the odd-power terms are skew-symmetric.
This can be written as

o 0
Iy = me;ZnRzn + KoR- me;2n+1R2n' (23)
n=0 n=0

This property can be used for constructing polynomials
which might possess better convergence behavior, namely,
sums and differences:

00
Im + I—m =2 meﬂnRznv
n=0

o0
Iy —I_y =2 K2R - me;2n+1R2”. (24)
n=0

The meaning of this substitution is that the properties of
anisotropy and asymmetry can be separated almost com-
pletely into one of the combinations. A physical rationale is
that the difference between the two SSBs of first order is the
larger; the more asymmetric the static powder pattern is, i.e.,
for n =1 and hence for K; = 0 (symmetric static line) we
expect I, = I_,,. The axially symmetric tensor (n =0, i.e.,
K> maximum) yields the most asymmetric shape, so the dif-
ference between these two SSBs should be large. Contrarily,
the average (or sum) of both is expected to be the larger, and
the larger is the anisotropy 6. This almost complete separa-
tion of the dependencies on § and 7, respectively, is of course
not a consequence of this kind of mathematical treatment, but
the polynomial formalism enables us to treat and recognize
this property very easily.

Specifically, to combine the SSBs of first order, we define
the quantities Iy = (/1 +1-1)/lp and I = (I} —I-1)/Io. By
polynomial division we obtain in decimal notation

Iy = 0.044 444 44 w* +0.000 723 104 0 w*
+ (4.900 449 x 107% — 2.127 502 x 10*5q2) w®
- (1.156 835 x 1077 + 4.384 854 x 10—7q2) w8

4.660 243 x 1072 — 2.669 296 x 10—9q2) w!?

—[8.035 180 x 107" — (3.397 989 x 10~"°
+3.261 380 x 107" ¢?)g*] w'? (25)
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Figure 2. SSB combination Iy vs. w = (wpd/wy)+/3 + n? for n =
1 and different degrees of approximation. The numbers in the legend
are the maximum powers of w considered. The curves correspond-
ing to successive orders are alternatively coming closer or farther
away from the second-order approximation (parabola) because of
alternating signs of terms of different powers. In any case the con-
vergence is very fast up to w = 5.

and
I-=—0.019047 62 g w* [1+0.020 959 6 w*
+0.000 181 331 w* — (2.592 966 x 10~°
—2.214 666 x 10~%¢%) w® — (1.296 641 x 1077
—2.065 980 x 10~ 7¢%) w® + O[w]"], (26)
where the two independent variables have the meaning

é 1)
W= dl Vv K =w0
w w

T T

3+7n% and

K 1-n? .
TR e -
The variable w represents the ratio between anisotropy and
spinning speed together with an additional n-dependent fac-
tor. g represents the tensor asymmetry in a way thatn =0 —
g=1/v27and n=1 — ¢ =0. In this representation, the
asymmetry (1) dependence resides almost completely in the
prefactor, while the terms in the rectangular brackets vary by
less than 7, if the asymmetry varies between its extremes,
which will be addressed below.

We thus summarize the advantages of such an approach.

1. These combinations depend on the two dimension-
less variables w and ¢, which enables an easy extrac-
tion of the tensor parameters (w expresses the ratio of
anisotropy and spinning frequency including an 1 com-
ponent).

2. Fitting a ratio removes the need for fitting an additional,
anyways arbitrary amplitude.
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Figure 3. (a) I+ and (b) /_ for different 5, normalized to their
values at n =1 and n = 0, respectively, as a function of w. Note
the smallness of the differences between the /4 curves in (a) of
different n; they are less than 1 %. Remarkably in (b) is the almost
independent ratio between the /_ of different 7.

3. The powers of R increase from term to term by 2 in-
stead of 1 as in the case of a single SSB, leading to
fewer terms needed for a sufficiently good approxima-
tion. I curves assuming n = 1 for different degrees of
approximation are shown in Fig. 2 and demonstrate the
relevance of higher-order terms for a given value of w.
We can conclude that the use of the first two terms only
(w*) is a very good approximation up to w = 4, while
terms up to 12th order are required to cover w < 5 even
if the coefficients of the last terms are rather small.

4. For not too small w;, w dominates in the coefficients
over ¢. Particularly, up to the fifth power in w, the sums
also of the other SSBs depend only on K7, and the dif-
ferences depend linearly on ¢ (the prefactor); i.e., even
for the maximum value w for which the 12th-order ap-
proximation is well justified (w & 5), we get [, = 1.518
for n =0 and I+ = 1.530 for n = 1, which makes a dif-
ference of only 0.8 %.
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Therefore, the two Egs. (24) provide a means of separating
the dependencies on the two invariants. To stress this point,
Fig. 3a shows I vs. w for a range of n values, normalized
to its dependence for n = 1. The variation range, somewhat
amplified by the narrow plotted interval, is less than 1 % and
thus very small, which confirms item 3. In contrast, /_ fea-
tures a strong variation with g as well as n. However, look-
ing again at the normalized dependence of /_ on w (where
we now need to distinguish between positive and negative
values) plotted in Fig. 3b, we prove that this dependence is
almost completely governed by the prefactor. In other words,
n is very sensitively encoded in /_ once w is rather precisely
determined from 7.

In summary, two different approaches lend themselves to
the analysis of actual data with the aim of extracting § and n:
(1) one can include as many SSBs as possible, trying to fit Ky
and K> by a fit to the SSB intensities including a normaliza-
tion factor as a fit parameter. The tensor invariants are readily
obtained by solving the given system of two nonlinear equa-
tions. (2) One can consider only first-order sidebands, check
the magnitude of I, decide which level of approximation
has to be used, and then calculate w and g, possibly itera-
tively until self-consistency.

2.5 Derivation of the sixth-order polynomials for the 2D
syncMAS sidebands

2.5.1 Step 1 (phase)

For this treatment, two additional frames are needed as com-
pared to the 1D MAS case of an isotropic sample; see
Sect. 2.1.2. As outlined there, we assume uniaxial symme-
try around the unique deformation axis (director). Note that
the rotor should be packed in such a way that the director is
perpendicular to the spinning axis, i.e., f2 = 90°. We employ
our tensor-based approach to performing the rotation trans-
formations; see also Sect. 2.1.2. Taking 81 and dy as the col-
umn vectors representing the CST in the lab frame and in its
main frame, respectively, we arrive at the following series of
transformations:

BL=R,(wa) - R:y) - R, (3) - Re9) - Ry(B)
CRe(e) - Ry(@) - R(P) - by 8)
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The instantaneous frequency can now be calculated:

1 . .
w=wy b —{ - 251n2y([cosﬂ(E1 cose+ E; s1n8)

3v2
— sinB(E3cos2¢ + E4sin2¢)]cosg
+ [cosZﬂ(Ez cose — Ey sine)
+ %sinZ,B(\/gEs — E4cos2¢e
+ E3 sin28)] sin(p)
+2+/2cosy ([cos2B(E2cose — Ejsine)
+ % sinZ,B(\/gE5 — E4c0s2¢ + E3sin2¢)|cos¢
+ [—cos,B(Elcoss + Ezsins)
+ sin,B(E3 cos2e+ Ey sinZS)] sin<p)
— Zﬁsiny([sinﬁ(El cose+ E; sins)
+ cos,B(E3 cos2e+ Ey sin2£))] cos2¢
+ [—ll[ZsinZ,B(Eg cose — Ey sina)
+ (3 ~+ cos 2,3) (E4 cos2e — E3 sin25)
+2+/3Essin® 8] sin2¢)
+ cos2y(%[(3 + cos2B) (E4cos2e — E3sin2e)
+ ZSinZ,B(Eg cosée
— Ejsing) + 2x/§E5sin2,3] cos2¢

— [sinB(Eicose + E;sine)
+ cos,B(E3 cos2¢e + Ey sin28)] sin2¢

+ ?E5 (3cos?B — 1)

+ =[sin2B(— Ezcose + E| sine)

[NSY oM

+sin’B (E4cos2e — E3sin2e)]) } (29)

We obtain the phase accumulated from the end of signal
excitation (¢ = 0) to time ¢ by time integration:

o= m[(aDl —i—ng) cos @ + (bD1 —aDz) sing
Wy

+ (CD3 + dD4) cos2¢ + (dD3 — CD4) sin2¢

V. 04]. (30)
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This is again a sum of products of solely #-dependent and
solely orientation-dependent terms. The former are

D =— Tz sinorty sin (wrty + 20111 + 2y00),
2

D> =§[sin (oxt2 + @it1 + yo0) — sin (@rt1 + 100)],
2

Ds =3 [cos ((,()1-[2 + oty + J/oo) —cos (a)rtl + )/00)],

1
D4 =——sinw,t; cos (a)rl‘z + 2wt + 2)/0()). 31D

NG

The latter can be separated further into factors which depend
on the three angles ¢, B and ¢ describing the orientation of
the molecular segments:

a :=cosB(Ejcose+ Ersing) —sin 8 (E3cos2¢e + E4sin2e),
1
b:=cos2B(E>cose — Eysing) + EsinZ,B

(«/§E5 — E4cos2¢e + E3 sin28) ,
¢ :=sinB(E|cose + Epsine) + cos B (E3cos2e + E4sin2e),

d:= i[ZsinZﬂ (Eycose — Epsine) + (3 +cos28)
(E4cos2e — E3sin2e) + 2\/§E5sin2ﬂ],

f:= ?Es(Scoszﬂ — 1) + %[sin2,3(— E)cose
+ Ejsing) + sin’B (E4cos2e — E3 sin2¢) ]. (32)

Here, the E; (i € {1...5}) (“geometry factors”) contain all in-
formation about the orientation of the CST PAF in the molec-
ular frame:

Ei=— 4 sina sin2,

V2

1
E) =——sin2a[3 —n cos2vy],
2 Wil n 14

E; :i cosa sin2yr,

V2
E4 =L [n(l + cosza)cos21// + 3sin2a]
272 ’
V3 2 2
Es =——|(Bcos“a — 1)+ nsin“acos2y |. 33
s=075 ¢ )+ v] (33)

2.5.2 Step 2 (orientational averaging, here up to n = 6)
Orientation averaging of the powers of ® reads as

2

b4 2
1
(®")o =53 / dg f U () sinp dp f de @"(p.f.e). (34)
0 0

0

which now includes the non-isotropic, symmetric ODF (as-
suming equal probability of all ¢). The 8 dependence of ®"
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after ¢ and ¢ integration consists of coszﬁ to powers < 6,
which can be written as linear combinations of the Legendre
polynomials P,(cos 8) with even n < 12. Hence, the result of
the powder-averaging procedure will be a linear combination
of the orientational moments (P;), (Py4), (Pgs), (Pg), (Pio)
and (Pp2); see also Eq. (4). Due to the small values which
are expected for (Pjp) and (Pp2), the coefficients assigned
to these orientational moments are neglected in the follow-
ing. The phase powers contain powers and mixed products of
the time-dependent terms Dj...D4. Transforming again the
trigonometric forms into exponential ones, we obtain linear
combinations of /@2 gikertt

2.5.3 Step 3 (assembling the FID and Fourier analysis)

Summing up the phase powers to obtain the FID expression
corresponding to Eq. (8) and separating the I,,x following
Eq. (9) gives the complex 2D SSB intensities. All coeffi-
cients with odd k actually vanish, which is the mathematical
reflection of the fact that MAS rotation by 180° provides an
invariant situation when the director is perpendicular to the
spinning axis, i.e., B2 = 90°. In other words, a full rotation
replicates each arrangement twice if the director is perpen-
dicular to the rotor axis (for other sample packing schemes,
odd-order sidebands will appear, requiring somewhat length-
ier calculations).

Instead of the complex representation of the SSB intensi-
ties, we use the trigonometric representation because here the
phase problems can be eliminated in a more efficient way.
This will be discussed in detail in the application section.
Fourier analysis along #; gives

4

IMOEDY [Cm;zk cos (2kawxt1 + yo0)
k=0

+ Sm:2k sin Ckwty + )/00)]~ (35)

The trigonometric SSB intensities Cy,x and S, can be trans-
formed to the complex ones and vice versa as follows.

Inp:ok + Lok = Cppo(k > 0),
Lo = Cpo = Iy ok

1
=3 (Coot FiSmx) (k> 0), (36)

iIm;Zk - ilm;—Zk = Sm;2k-

Both kinds of coefficients contain the same information;
however, the trigonometric coefficients include fewer terms.
This arises from the £ sign which leads to a cancellation
of some terms upon addition. This could have the advantage
that the intervals between powers are larger and the error in
neglecting higher powers above a certain value might be re-
duced.
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The linear dependence of the SSB intensities on the orien-
tational moments mentioned above has the consequence that
Cpur and S, are also linear in the orientational moments:

Couk = Zcm,k,2p<P2p>; Smk = ZSm,k,Zp <P2p)~ (37)
p 4

Cik2p and Sy, k2p depend on §, n and the two angles «
and ¥ (which are the spherical coordinates of the molecular
vector in the CST PAF; see above). Analytical expressions
for them are listed for some low m and k in Sect. S5.

3 Experiments

All NMR experiments were performed on a Bruker AVANCE
IIT spectrometer with a magnetic flux density of 9.35T, i.e.,
resonance frequencies of 400 and 100 MHz for protons and
13 spins, respectively. We used a cross-polarization time of
2 ms; the spinning speed was varied between 2 and 11 kHz
for the 1D experiments and set to 5500 Hz in the 2D ex-
periments. The 7 /2 pulses had a duration of 3.12 us corre-
sponding to a nutation frequency of 80 kHz at both channels.
For proton decoupling, rf power has been chosen likewise
to 80kHz. As explained above, weak variations of the SSB
intensities can lead to appreciable changes in the tensor pa-
rameter values calculated from that. Therefore, for an excel-
lent signal-to-noise ratio of the 1D spectra of polycarbonate,
20000 scans were recorded. Recycling delays of 2 and 5
were used in the case of polycarbonate and glycine, respec-
tively.

A sample of polycarbonate (PC) (Makrolon GP clear 099
from Bayer) was stretched in the glassy state to an elongation
factor of 1.45. In this process, the segments of the chains
are expected to align. The sample was placed into a 4 mm
Bruker MAS rotor in such way that the stretching direction
was perpendicular to the rotor axis. For the 2D syncMAS ex-
periments, #; was incremented in steps of 7;:/16 over a full
period T;. Even though the interval between 0 and 7;/2 con-
tains all the information, the use of a full period improves
the signal at a level which corresponds to twice the number
of scans in a half period. For each #; increment, 2200 scans
were accumulated.

4 Applications of the polynomial approach

4.1 Tensor parameters from MAS SSB

Next, we describe a practical test of the polynomial expan-
sion of SSB intensities to extract actual tensor parameters
and illustrate an effective procedure to reach this aim. We
use glycine as an example and focus on the normalized sum
and difference of the first-order SSB intensities relative to
that of the center band, I and I_, respectively. Figure 4
shows the variation of I with the rotor period T, i.e., the
inverse of the variable spinning frequency. The largest value
amounts to about 1.2. As shown in Fig. 2, this corresponds to
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Figure 4. I vs. rotation period 7; for the COO resonance of
glycine; triangles: data from experiments with different spinning
speeds; red curve: best fit of the /4 polynomial to the experimental
data.

Table 1. CS tensor parameters of glycine obtained by the polyno-
mial procedure and comparison with literature values (Griffin et al.,
1975; Haberkorn et al., 1981).

Group 8/ppm n
COO-measured —74.1£0.8 0.98+0.02
literature value —70.65+1 0.97
CHjp-measured  23.46+0.25 0.60+£0.03
literature value 20t 1 0.94

w < 4.5, and hence the 12th-order approximation can be ap-
plied without compromise in accuracy from the theory side.
With the given Larmor frequency of 100.6 MHz we obtain
823 +n%) =(2.165+0.01) x 1078,

The corresponding /_ values give g = (—6.1£2) x 1073,
The apparently large relative uncertainty should be judged in
proportion to the possible range 0 < ¢ < 1/27 =37 x 1073,
The negative sign of ¢ means that § is negative, i.e., that an
eigenvalue with the largest deviation from &;s, is at lower CS
(upfield-shifted, towards the right end of the spectrum).

Results for both carbon resonances of glycine are com-
piled in Table 1. For COO the agreement with the literature
values is very satisfactory, in particular for 5. The values for
CH, deviate more on a relative scale; possible reasons are
(i) that the spinning speed was optimized for investigation of
COQO, leading to small SSB intensities for CH, with its much
narrower tensor, and (ii) that the dipolar coupling to '*N is
not completely averaged by MAS because of the quadrupolar
interaction, the contribution of which could be separated in
the static single-crystal experiments of Griffin et al. (1975).
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4.2 Segmental orientation from syncMAS

We now turn to a demonstration of our approach in ana-
lyzing syncMAS data to extract molecular orientations in a
uniaxially oriented sample. We first address the chosen sam-
ple and the polymer-physical background shortly and present
13C spectra together with the signal assignment in Sect. 3.2.1
and address the CST parameters in Sect. 3.2.2. The actual
processing and analyses of 2D syncMAS data are covered in
the following sections, where Sect. 3.2.3 addresses phase dis-
tortions in the 2D experiment, Sect. 3.2.4 summarizes the re-
sult of Fourier analysis in the indirect dimension, Sect. 3.2.5
discusses the ambiguities related to PAF vs. molecular-frame
orientations, and Sect. 3.2.6 finally provides the orientational
moments and a discussion.

4.2.1 Background and '3C CP MAS spectra

To illustrate the use of our approach to estimate orientational
order in a practically relevant case, we turn to the stretched
polycarbonate (PC) sample. In an early application of 2D
syncMAS to a similar sample polymer (Vogt et al., 1990),
an order parameter (P,) of about 0.15 was reported for the
methyl resonance at elongation. In more detailed work focus-
ing on static 2D experiments of '3C-labeled PC (Utz et al.,
1999), a different deformation geometry and a different angle
convention for the director reference frame was used, render-
ing a comparison not straightforward. Here, we do not elabo-
rate on the polymer physics details and merely use this sam-
ple for a proof of principle of the method.

In the earlier work (Vogt et al., 1990), only results for the
methyl resonance were reported, and no compelling reason
was given with regards to why the other resonances were
not evaluated. This was probably due to the limited spinning
speed and a corresponding lack of resolution. Moreover, the
data analysis approach employing a fit using precalculated
subspectra to extract the orientation degree (Harbison et al.,
1987) implies fixed assumptions about the relation of the
CST PAF and the director frame, which were probably not
available for the other resonances. One key advantage of our
approach is its flexibility to change the CSA principal values
and the related angles at no additional expense in calculation
efficiency.

As to experimental details (Djukic et al., 2020), we care-
fully avoided orientation effects from the injection molding
procedure of the specimen by machining off the surface layer
and using precise video control of the true strain. A cylindri-
cal piece of 3 mm outer diameter was cut with a dissecting
knife from the center of the stretched specimen and inserted
into a 4mm MAS rotor such that the stretching direction
was placed along the radius of the rotor. For the determi-
nation of the CSA principal values, an unstretched sample
was powdered in order to fully remove possible anisotropy
from the molding process and compressed into a rotor. The
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Figure 5. 13¢ cP MAS spectra of an isotropic PC sample with
(a) 11kHz and (b) 5.5 kHz spinning; for the resonance assignment,
see Williams et al. (1977). SSBs are marked by asterisks. The spec-
trum in (b) was taken with 20 000 scans.

cross-polarization (CP) MAS spectrum at 11 kHz spinning is
shown in Fig. 5a.

For syncMAS, resolved spectral lines with unique assign-
ments are needed. This is the case for the aromatic CH groups
(C3 and C4 in Fig. 5a), but the carbonate (CO3, C1) and
both Quaternary aromatic carbons (Cq, C2 and C5) are al-
most fully superimposed. Here only an approximate analysis
of the combined signal is possible. As to the methyl group
(CHj3, C7), we have sufficient SSB intensity only when the
spinning speed is rather low, then leading to potential over-
lap with the more numerous aromatic SSBs. This can be seen
even in Fig. 5 of Vogt et al. (1990), which shows the PC
spectrum at a spinning speed which is sufficient to have both
CH3 and C4 SSBs; however, the separation between the SSBs
seems insufficient for truly precise analysis. In our hands, a
spinning frequency of 5.5 kHz was the best compromise for
a joint analysis; see Fig. 5b.
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X1

Figure 6. Orientation of the 3C CST PAFs in the benzene ring
(C3,4 are C-H and C2,5 are the para-substituted Cq). The orienta-
tion of the C5 PAF corresponds to the convention mentioned above;
for the alternative orientation, x| axis and x3 axis had to be ex-
changed.

4.2.2 Tensor parameters in PC

The availability of precise CST components and their orien-
tation of the resonances of PC is not optimal; only for the
COj3 and one of the Cy (C2) are data available (Robyr et al.,
1998; Utz et al., 1999). In Table 2 we summarize all CST data
which were used for the calculation of orientational moments
below.

The orientation of the PAF in the molecular frame can-
not be deduced from the methods discussed in this work. We
assume that the eigenvalues follow the usual assignment for
aromatic carbons; i.e., the axis related to the largest eigen-
value (lowest shielding) is parallel to the C—H bond, the axis
related to the intermediate eigenvalue is perpendicular to C—
H and in the ring plane, and the axis related to the lowest
eigenvalue (largest shielding) is perpendicular to the ring
plane. Possible deviations from these orientations are com-
monly reported to be in the range of a few degrees only and
are thus neglected. The numbering of the axes, however, de-
pends on the sign of § corresponding to the convention men-
tioned above: for § < 0, x3 is related to the lowest eigenvalue
and x is related to the largest eigenvalue, i.e., x3 L ring and
x1 || C=H. For § > 0, these axes have to be exchanged; see
Fig. 6.

Unfortunately, the resonances of C1, C2, and C5 are not
resolved but rather almost fully overlapped. These positions,
however, play an important role in the data analysis of the
syncMAS experiments. If the CSTs of all three positions
were known, the syncMAS signals could be calculated as
a superposition of the three curves. For both C1 and C2,
the CST eigenvalues are known from experiments on selec-
tively '>C-labeled samples: § = 89 ppm, = 0.39 for C1 and
8 =92ppm, n = 0.54 for C2 (Utz et al., 1999). Hence, the
missing CST of C5 (one of the Cy) can be estimated if the
SSB pattern of the line at 150 ppm is considered to be a lin-
ear combination of the SSB patterns of one C1, two C2 and
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Table 2. CST parameters of all 3¢ positions in PC. The data for C1 and C2 are from Robyr et al. (1998). Those for C3, C4, C5 and C7 were
obtained by the polynomial procedure. For C5, a decomposition procedure was applied (see text). Column C5’ contains CST data of C5 but
obtained by mutual exchange of the x; and x3 axes. In all cases the eigenvalues are calculated from §jy,, § and 7.

Parameter Cl C2 C3 C4 C5 Ccs' C7
iso 147.1 1483 120.5 127.7 1493415 149.3+1.54 31+£2
8/ppm 89 92 -93.7+1 —103.8+1 —106.4+3.6 78.5+1.4 —34+£5
n 0.39 0.54 0.367+£0.04 0.407+£0.025 0.47+£0.08 1.73+£1.5 0.5+0.2
811/ppm 84.9 779 184.54+2 200.6 1.5 227.5+£3.5 429 56.5+4.5
820/ppm 120.1 1272 150.2+£1.9 158.44+1.3 177.5+£3.5 177.5 39.5+4.5
833/ppm 2364 2399 26.8+1 23.8+1 42.9+4.5 227.5 —3455

0.8
0.6 0.008
N - 0.006

0.4
0.004
02 0.002

0 - - A
-2.0 -1.9 -1.8
6

Figure 7. x2 vs. anisotropy and asymmetry parameters of C5 for
p =0.5. The cross marks the minimum position; the solid line
shows the confidence region.

two C5 per monomer unit:

_p IS 28t 4218
p+4

L (38)
This equation permits the calculation of the SSB pattern of
C5, where p describes the relative CP efficiency of 13CO3,
which is expected to be lower than that of C2 and C5 be-
cause of a larger distance of C1 to any protons as compared
with C2 and CS5 (thus, 0 < p < 1). For C2 and C5, the next
protons are those directly bound to C3 and C4, respectively,
which are two bonds apart from C2 and C5. Therefore the
CP efficiencies of C2 and C5 were assumed to be equal. The
summed square deviation x2 between measured and best-fit
SSB intensities has a minimum at p =~ (0.5. Figure 7 shows a
2D x? map vs. anisotropy and asymmetry parameters using
the p = 0.5 estimated thus. With the polynomial method we
obtained for carbon position C5 § = (—106.6 +4) ppm and
n = 0.48 £0.08. These values depend only weakly on p; the
error intervals include this already.

https://doi.org/10.5194/mr-2-589-2021

Returning to the PAF orientations (see again Fig. 6), x3 de-
notes the most-shielded direction (along the ring normal) and
x1 the least-shielded one (along the C—H bond). This num-
bering is in agreement with the definitions from Sect. 2.1.1
as long as the anisotropy is positive. In the case of C5,
however, § < 0. This means that the most-shielded direc-
tion is now that direction which belongs to that CST eigen-
value which deviates mostly from §;js,. Following the defi-
nition from above, x; and x3 had to exchange their direc-
tions. For the evaluation of the syncMAS data, however, it
would be advantageous if both C2 and C5 were placed in
a common frame. Then, for roughly 4/5 of the intensity of
this valuable signal, we have reliable CST values and ori-
entations, and small uncertainties related to the CO3 reso-
nance will not matter much. If the PAF of C2 is used also for
CS5, anisotropy and asymmetry parameters of C5 change to
8 =(78.2+t1)ppm and n = 1.71£0.15. We use these values
in the following. The unusual value of 7 is a consequence of
the exchange of axes. One can of course easily check that the
CST invariants as well as the eigenvalues are not influenced.

4.2.3 Fourier transform and 2D phase distortion

The relevant practical problem that is only partially described
in the leading reference (Harbison et al., 1987) is the linear
phase distortion along the indirect frequency dimension w;
arising from the unknown angle yno between the sample di-
rector and the rotor position that triggers the start of the pulse
sequence in the case of #{ = 0. This phase distortion superim-
poses with the “normal” phase shifts arising from quadrature
detection and the pre-acquisition delay. Utmost stability of
the spectrometer over the long-lasting experiment is required
to resolve the related issues. This concerns in particular the
signal excitation (CP conditions). It is thus advisable to run a
series of identical 2D syncMAS spectra and sum them up to
reduce the effects of spectrometer drift along 1. In addition,
one can check the stability via a combination of SSB which
is almost independent of #1. We tried to find such a combi-
nation for C4 by variation of prefactors of the corresponding
polynomials. The best possibility is

0.8819-1,+1.0121-1; +1p+0.5609-1_140.8761-1_>. (39)
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Figure 8. SSB oscillations along 71 of carbon C3.

This quantity should be constant within 0.1 % across the dif-
ferent #; increments. No change in intensity could be detected
within the limits of experimental uncertainty.

Referring to Eq. (35), the SSB intensities oscillate with #1.
This is valid for the real as well as imaginary parts of the
spectra. For the special case of the director being perpendic-
ular to the rotor axis, the 2D FID can be written as

FID(11,12) = Y _ Ik exp[2keor (11 — 10)]
m,k

-expli (mawxt2) + ¢ (02)] - R(t2), (40)

where ¢ (w) is the phase distortion (constant, linear, etc.)
in the direct dimension, R(#;) denotes signal damping dur-
ing acquisition and fy is the unknown delay corresponding to
y00- The term —2kaw;ty corresponds to a linear phase distor-
tion along w;. Both distortions sum up to a total phase distor-
tion of ¢ (w2) — 2kw,ty. They were separated via a procedure
described in the following.

Performing only an FT along a direct dimension, we ob-
tain spectra Sp(#1,w2) with absorptive (A) and dispersive
(D) spectral components of the center band and the SSBs,
whose overall intensities oscillate along an indirect dimen-
sion:

Sp(t1, w2)
— eiw(wz)Z{A - Cink €08 2k, (11 — to)
k

—D - Sy sin 2k (11 — 10)i[ D - Copx c0s 2k (1) — to)
A - Sy sin 2k (11 —to)]}. (41)

This means that for a general value of #; an apparent phase
distortion is detected because of an inevitable mixing of sin
and cos terms already without ¢(w;). Because of variations
of the C,x and S,,x, we will have different phase distortions
already from signal to signal within each 1D spectrum. An
exception is t; —ty =n - T;/2, because here the sine terms
vanish.
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Figure 9. Spectra along wy (in ppm) encoding the #; Fourier coef-
ficients as indicated. The lowest spectrum is the sum of all slices in
1.

A simple if not simplistic and laborious solution is to phase
each signal of each slice separately and thus evaluate its in-
tensity as a function of #;. This procedure is only possible
for sufficiently resolved spectral peaks and when neighbor-
ing peaks do not differ strongly in their phase. Results of
such analyses are exemplarily shown in Fig. 8. The oscilla-
tions can then be fitted with a combination of sine and cosine
dependencies to determine the prefactors of the different har-
monics, but a close look at Eq. (41) reveals that an extraction
of the C,,x and S, is nearly impossible, because the absorp-
tive and dispersive components of the spectra along w, have
been mixed. Therefore, the shown oscillations merely give a
qualitative impression of the orientation degree in the sam-
ple, and a quantitative analysis is possibly only via a brute-
force numerical approach.

A separation of both phase contributions is possible pro-
vided that the #; incrementation is equidistant with N val-
ues over one rotation period 7; (t] =i T;/2" withi =0...2";
2" =16 in our case). Upon summation of all spectra, only
terms without trigonometric functions survive:

N—1

T, .

Go(w)=Y_ Sp (”7 wz) — ¢ ¥@) (A4 D)Cpo. (42)
n=0

Equation (42) represents a 1D spectrum that is distorted
solely by phase shifts along the direct dimension; hence, the
appropriate parameters needed for phase correction can be
determined on this basis only. This spectrum is shown as the
bottom trace of Fig. 9. Subsequently all individual spectra
obtained by the first FT can be corrected by these parameters,
and phase distortions left in the spectra are only those arising
from 7. It is important to stress that this sum is not identi-
cal to the spectrum of the isotropic sample. Instead, it also
depends on the orientational moments; see the correspond-
ing equations in Sect. S5. The reason is that the summation
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is an azimuthal average over the rotor positions upon signal
excitation; for an isotropic powder average, some sample ori-
entations would be needed, which cannot be reached by this
uniaxial sample rotation.

4.2.4 Obtaining Cnk and Sy by Fourier analysis in the
indirect dimension

Conventional 2D FT is possible after applying the phase cor-
rection from the sum spectrum to all w» slices along #; (Har-
bison et al., 1987). However, then only two slices will be
close to having only absorptive line shapes, one of which can
be taken as the #; = 0 slice via a roll-over of the time axis.
However, identifying this one may be ambiguous with lim-
ited data quality, and one may not have a spectrum at ex-
actly that condition. Only then would a purely first-order
(frequency-dependent) phase correction along w; provide
absorptive spectral lines. Still, then, an additional ambiguity
with regards to the sign of the higher-order sidebands arises,
requiring the testing of different possibilities. In our hands,
an alternative approach proved more feasible.

We suggest performing Fourier analysis separately for the
real and imaginary parts of the result of the first FT along
t>. Under the given conditions, only even-numbered Fourier
coefficients do not vanish. The w;-dependent Fourier coeffi-
cients of order 2k (k € N) of the intermediate spectra are

2
1
Gre ok (w2) =— [ Re{S (11, w2)} exp{2ikwit1} d(ewrty)
T
0
= [A(@2)Cnk — i D(@2) Syl e* ™0,
27

1
Gim,2k(¢¢>2):;/Im{s(tl,w2)} exp{2ikerti} d(wity)
0
= [D(@2)Conk +i A(@2)Sprl ¥ 0. (43)

The new set of spectra Gre:im, 2k (@2) can be phased now; the
correction angle of —2kw, 1ty for G 2k (w2) is constant with
respect to wy, so one can apply the usual criterion of an as-
absorptive-as-possible spectrum. The real part of a corrected
spectrum contains the C,, as prefactors of A (w>). Phasing
of Gim 2k (w2) by the same angle yields an absorptive signal
in the imaginary part with S,,x as prefactors. This is demon-
strated for the higher Fourier coefficient spectra for k = 0, 2
and 4 shown in Fig. 9. As already noted by Harbison et al.
(1987), appearance of significant intensities in the spectra
on order k implies the relevance of orientational moments
of similar order.

The peak intensities (integrals, heights) in these spectra
can be identified with our exact solution for the sideband in-
tensities; specifically, they can be used to estimate the C,x
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and S,
% N Re{Gre,Zk (Biso +mar)}
Coo Re{Go (8is0)} '
M _ Irn{Gim,2k (Biso +mar)} (44)
Coo Re{Go (8is0)} '

The best values are those for 2k = 2 (C,,0 have better S/N,
but for the estimation of the orientational moments their dif-
ferences from the isotropic SSB intensities have to be used,
which are rather small). The possibility of extracting higher
orientational moments from the C,,; and S,,x by fitting de-
pends on their accuracy and the availability of higher side-
band orders. The full set of Fourier coefficients extracted
from our syncMAS experiment on oriented PC is provided
in Sect. S6.

4.2.5 Segment vector and CS tensor orientation

The theoretical considerations above are based on the as-
sumption that all structural elements and therefore also all
CST PAFs have a uniaxial distribution around the axis of the
director frame; we used an isotropic average for the angle €.
Therefore, we have to be careful with regards to its definition
on the segmental (monomer) level. Vogt et al. (1990) define
the direction of the segment vector as being perpendicular to
the H3C—C—CH3; plane. This will be used here only for the
description of the orientation of this moiety, i.e., for the anal-
ysis of the results measured for the CH3 resonance. For the
other parts of the monomer this is of little benefit, because the
intramolecular angles between this direction and other bonds
are not known with sufficient accuracy.

Instead, for the other groups we use the connection line
of the two ester oxygens of the carbonate group (C1). For the
chemical environment of this position, reliable structural data
were published by Utz et al. (1999). These authors indeed de-
tected a distribution of tilt and torsion angles, so we used the
averages for our purpose. These agree well with the results of
SAXS experiments on crystalline diphenyl carbonate (King
and Bryant, 1993). We considered also the latter results be-
cause they can be assumed to deviate only little from PC in
the vicinity of the CO3 group. From the data of both papers
we estimated values for the relevant bond angles. For our data
evaluation we used the following values. The ring is tilted by
17.6° against the segmental vector (defining the “ring long
axis”, i.e., the connection line of the para-substituted car-
bons); the torsional angle around this axis is 53.2°.

4.2.6 Orientational moments

Following Eq. (37), the multilinear dependence of the oscil-
lation coefficients on the orientational moments is used for a
multilinear regression procedure. All used experimental data
are collected in the vector Y, the orientational moments (P»),
(P4), {Pg), and (Pg) form the vector P and the coefficients
Cin.k,2p and Sy, k 2p are elements of a matrix X with as many
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Table 3. Orientational moments of PC stretched by a factor of 1.45 as obtained from our analyses and indicators of fitting quality.

Position (Py) (Py) (AY)? x2
Cl+C2+C5 02344004 —0.187+0.12 1.0x107>  45x1073
C3 0.21 £0.05 - 12x1075 89x107°°
Cc4 0.27+0.1 - 12x107% 11.1x107°
CT: ¢y =0 0.22+0.08 —0.76+0.4 1.8x1077 25x107
C7:4 =90°  0.100£0.024 —0.065+0.01 1.8x107> 14x107>

columns as orientational moments included and rows deter-
mined by the available data. Equation (37) then reads as

Y=X.P. (45)

The target quantity for optimization, i.e., the minimized sum
square deviation (x?), is given by

-1

Prin = argmin[Y = X-PP? = [X"-X]" - X".Y. (46)

PeRN

In order to avoid the situation where a good fit is achieved
by too large a number of physically irrelevant fitting param-
eters, we proceeded as follows. In the first step, only (P)
was used. If the variance of this result x2 =Y — X - PJ% ex-
ceeded the sum of squared experimental uncertainties (AY)?,
(P4) was added to the result vector P, and so on. The re-
sults can be found in Table 3. The confidence intervals are
determined as the variation of P which doubles the vari-
ance. The second to last column in Table 3 is the noise-
related sum squared uncertainty of the C,,» and S,,» con-
sidered (m € {—2,—1,0, 1,2}). Only for the C1 +C2+C5
combined signal does x2 from the best fit exceed this value
significantly. This may be an indication of our incomplete
knowledge on the geometric parameters of the involved res-
onances.

The I,,; or alternatively the C,,; and S, suffer from the
ambiguity that the addition of 7;/2 to #y and sign inversion of
all Ik, S and C,,r with odd k lead to the same FID. This
is related to the unknown linear phase correction along wj.
Within this experiment, there is no possibility of distinguish-
ing between the two situations. This means that one has to
do two final fits, one with all C,;; and S, inverted for odd
k. If one of these two cases leads to a physically implausible
result, then this can be used to identify the incorrect alterna-
tive. We have chosen the possibility which yields a positive
orientational moment (P,) for the C1 4+ C2 + C5 combined
signal.

The results for the protonated carbons have a somewhat
larger uncertainty. This might arise from their sensitivity to
small changes in the angle of rotation of rings around their
long axis. Even though the angle was varied during data eval-
uation, x> remained at a level which is appreciably higher
than the noise-related uncertainty. Moreover, (P4) variations
led to a rather small increase in Xz; hence, these values are
not shown in Table 3.

Magn. Reson., 2, 589-606, 2021

We observe a rather gratifying correspondence of the re-
sults obtained for the aromatic resonances, including the ones
that overlap with the C1 (the CO3 group). For an interpreta-
tion of these results, we remind the reader that these orien-
tation degrees correspond to a hypothetical segmental long
axis, with respect to which we have positioned the CST PAFs
(see the preceding subsection). This axis is defined as the
connection vector of the ester oxygens of the CO3 group.
Our values for (P,) are on average even somewhat higher
than the value of about 0.15 published by Vogt et al. (1990),
but a detailed comparison is difficult because of the potential
methodological issues of this work (see also below) and be-
cause of the different director frames used. In all, we note that
our result is on the same order of magnitude, thus providing
good confirmation of our efficient and (we hope) transparent
approach to the data analysis. A notable and robust result is
the comparably large and negative value of (P4) for two of
our resonances. Our approach thus allows us to extract more
information than achieved previously.

The state of the art concerning orientation effects in
strained glassy PC was presented by Utz et al. (1999), as
they have extracted the full ODF expanded in terms of up to
20 expansion coefficients from dedicated '3C static 2D ex-
periments combined with isotope labeling. As already noted,
a direct comparison with their results is difficult because of
the different deformation geometry and the different angle
conventions (essentially a rotation by 90°). Details will be
deferred to a future publication. We can merely note that if
we just consider a factor of —2 applied to their data to ac-
count for the 90° rotation of the reference frame, their results
for the second- and fourth-order expansion coefficients are of
the same sign and magnitude as our (P,) and (Py). As shown
in their ODF, the negative (P4) may be related to a popula-
tion of main-chain segments oriented almost perpendicularly
to the stretching axis. Further systematic studies, enabled by
our more efficient approach applicable to non-labeled sam-
ples, are planned.

For the CH3 group we note a rather large uncertainty,
which arises naturally from the comparably small SSB inten-
sities; only (P») could be estimated with sufficient accuracy.
It is not possible to use a smaller spinning speed because of
inevitable superpositions with SSBs of other resonances. The
accuracy of the oscillation coefficients must be high; other-
wise, the uncertainties of the orientational moments become
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unacceptable. We wonder at this point how spectra like the
ones published by Vogt et al. (1990) could be analyzed at
all. A precise evaluation would require a rather involved al-
gorithm performing the separation of the many overlapping,
differently phased signals, but no comments along this line
can be taken from that paper. One straightforward ambigu-
ity relates to the unknown orientations of the §1; and &2
eigenvalues, one of which points along the segmental direc-
tion. Results for both options are provided. In all, smaller and
more ambiguous CH3-based values suggest that the segment
vector definition used here is more convenient than the one
using the normal of the dimethyl plane; the latter seems to
exhibit more disorder.

5 Conclusions

In summary, we could show that our polynomial approxima-
tion of MAS spinning-sideband intensities provides an effi-
cient approach to extracting chemical-shift tensor elements,
with an accuracy that can match dedicated single-crystal ex-
periments or the measurement of static powder line shapes in
single-site isotope-labeled compounds. It is stressed that the
approach provides in principle arbitrary accuracy and no spe-
cific numerical procedures (such as finite-step integrations).
We have provided so far unreported tensor parameters for se-
lected aromatic '3C resonances of polycarbonate.

The approach is particularly suited for the determination
of orientation degrees in anisotropic samples from spinning
sidebands taken from 2D syncMAS spectra. Here, a num-
ber of so far underestimated fundamental problems were ad-
dressed, on the one hand related to phase distortions inherent
to the syncMAS method and on the other hand related to the
tensor orientations in the studied sample, i.e., stretched poly-
carbonate. Based on our polynomial approximation consider-
ing terms up to the sixth power in dwg /@y, we could confirm
the results from previous studies of chain orientation in this
polymer but could also provide a critical perspective and the
need for further studies, possibly using isotope-labeled sam-
ples to confirm some of the necessary assumptions.
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