

Supplement of

Solid-state ¹H spin polarimetry by ¹³CH₃ nuclear magnetic resonance

Stuart J. Elliott et al.

Correspondence to: Stuart J. Elliott (stuart.elliott@liverpool.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

Contents

1	¹³ C NMR Spectra	3
2	¹³ C NMR Peak Normalized CoG Deviation vs. ¹ H Polarization	4

1. ¹³C NMR Spectra

Figure S1: Relevant portions of the experimental ¹³C NMR spectra belonging to the ¹³C-labelled methyl group ($^{13}CH_3$) of [2- ^{13}C]sodium acetate acquired at 7.05 T (¹H nuclear Larmor frequency = 300.13 MHz, ¹³C nuclear Larmor frequency = 75.47 MHz) and 1.2 K with a single transient (*rf*-pulse flip angle = 3.5°) as a function of ¹H DNP time. (a) Positive microwave irradiation; and (b) Negative microwave irradiation. The labels indicate the ¹H DNP time at which the spectra were recorded.

Figure S1 shows the relevant part of the experimental ¹³C NMR spectra acquired with a small flip angle *rf*-pulse ($\beta = 3.5^{\circ}$) as a function of ¹H DNP time. The ¹³C NMR spectra in Figure S1 were acquired by using the *rf*-pulse sequence shown in Figure 1 of the main text. The timings coincide with those shown in Figure 2 of the main text.

Figure S2: Experimental ¹H polarization $P_{\rm H}$ DNP build-up curve (black filled squares) and ¹³C NMR peak normalized CoG deviation δ_{ω_0} (grey empty circles) as a function of ¹H DNP time acquired at 7.05 T (¹H nuclear Larmor frequency = 300.13 MHz, ¹³C nuclear Larmor frequency = 75.47 MHz) and 1.2 K with a single transient per data point for the case of negative microwave irradiation. The timings coincide with those shown in Figure 2 of the main text. The black solid line indicates the best fit of the experimental data points for the ¹H polarization $P_{\rm H}$ DNP build-up curve, and has the corresponding fitting function: A(1-exp{-(t/ $\tau_{\rm DNP}$)^{β}}). Mean ¹H DNP build-up time constant: $\langle \tau_{\rm DNP} \rangle = 122.0 \pm 0.4$ s.

Figure S2 shows the DNP build-up curve for the ¹H polarization $P_{\rm H}$ as a function of ¹H DNP time for negative microwave irradiation. Figure S2 also displays the ¹³C NMR peak normalized CoG deviation δ_{ω_0} as a function of ¹H DNP time.

Figure S3: Experimental ¹H polarizations $P_{\rm H}$ as a function of the ¹³C NMR peak CoG normalized deviation δ_{ω_0} acquired at 7.05 T (¹H nuclear Larmor frequency = 300.13 MHz, ¹³C nuclear Larmor frequency = 75.47 MHz) and 1.2 K with a single transient per data point. The absolute ¹H polarizations $P_{\rm H}$ were measured by comparison with a thermal equilibrium ¹H NMR signal.

Figure S3 shows the ¹³C NMR peak CoG normalized deviation δ_{ω_0} for sample I as a function of the ¹H polarization $P_{\rm H}$. An overall trend could be gleamed from this data set by fitting the experimental curve with an $n^{\rm th}$ order spline function.