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Abstract. Diffusion-ordered NMR spectroscopy (DOSY) constructs multidimensional spectra displaying sig-
nal strength as a function of Larmor frequency and of diffusion coefficient from experimental measurements
using pulsed field gradient spin or stimulated echoes. Peak positions in the diffusion domain are determined by
diffusion coefficients estimated by fitting experimental data to some variant of the Stejskal–Tanner equation, with
the peak widths determined by the standard error estimated in the fitting process. The accuracy and reliability
of the diffusion domain in DOSY spectra are therefore determined by the uncertainties in the experimental data
and thus in part by the signal-to-noise ratio of the experimental spectra measured. Here the Cramér–Rao lower
bound, Monte Carlo methods, and experimental data are used to investigate the relationship between signal-to-
noise ratio, experimental parameters, and diffusion domain accuracy in 2D DOSY experiments. Experimental
results confirm that sources of error other than noise put an upper limit on the improvement in diffusion domain
accuracy obtainable by time averaging.

1 Introduction

The utility of pulsed field gradient spin or stimulated echo
(PFGSE) experiments for distinguishing between the NMR
signals of different species was first pointed out by Stilbs
(Stilbs, 1981), but practical applications of this principle only
became common with the introduction of diffusion-ordered
spectroscopy (DOSY) by Morris and Johnson (1992). In
DOSY (Johnson, 1999; Morris, 2007), a pseudo-2D (or
higher-dimensional) spectrum is synthesized in which the
signals of an NMR spectrum are dispersed into an extra di-
mension according to the estimated diffusion coefficient D.
This is obtained by fitting experimental measurements of sig-
nal attenuation as a function of pulsed field gradient ampli-
tude to a theoretical model, usually some variation on the
Stejskal–Tanner equation (Stejskal and Tanner, 1965; Sin-
naeve, 2012). The value added by the DOSY approach over
simple PFGSE measurements is that since all signals from
spins within a given species should show the same diffu-
sion, in favourable cases cross sections through the DOSY

spectrum at different D values give separate spectra – which
can be interpreted just as normal 1D spectra – for each of
the components of a mixture. This paper examines the im-
pact of one crucial determinant of the success or failure of
a DOSY experiment, the signal-to-noise ratio (SNR) of the
experimental data.

One common analogy is that DOSY is akin to perform-
ing chromatography within an NMR tube, separating spectra
rather than physically separating analytes. The name DOSY
is, however, misleading in some respects. In conventional
2D NMR methods such as COSY, NOESY, and TOCSY,
the 2D spectrum can be obtained by direct Fourier trans-
formation of signals that are phase or amplitude modulated
as a function of an evolution period t1. The frequency F1
at which a given signal appears is determined directly by
the frequency of evolution in t1: while the phase or ampli-
tude of a signal may behave unexpectedly, the frequency is
determined directly by the quantum mechanics, so signals
should always appear at the “correct” frequency. In pseudo-
2D methods such as DOSY (and relaxation-based analogues,
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often referred to as relaxation-ordered spectroscopy, ROSY;
Lupulescu et al., 2003; Gilard et al., 2008; Nishiyama et al.,
2010; Dal Poggetto et al., 2017), this is not the case: the dif-
fusion dimension is a statistical construct, and the positions
of signals in the diffusion dimension are scattered about the
trueD values. When a DOSY spectrum is constructed, peaks
in the diffusion domain are conventionally given Gaussian
shapes with widths that reflect the uncertainty inD estimated
from the fitting statistics. Thus, in COSY spectra, peaks with
the same chemical shift are exactly aligned; in DOSY spec-
tra, peaks with the same diffusion coefficient have Gaussian
shapes that should overlap but are not coincident. This is just
one reason why the interpretation of DOSY spectra demands
more of the spectroscopist’s skill and judgment than most
other types of NMR spectrum; others include the effects of
signal overlap and of systematic errors introduced by imper-
fect experiments.

In simple mixtures in which the NMR signals are well re-
solved and the individual species have very different diffu-
sion coefficients, even a crude DOSY experiment will work
well. Where species of similar size, and hence similar D,
are to be resolved, however, high-quality experimental data
are essential. One of the key determinants of the utility of
a DOSY spectrum is its diffusion resolution, the minimum
difference in D that can safely be distinguished. In an ideal
experiment, this is determined by the signal-to-noise ratio of
the experimental data. Here we use theory, empiricism and
simulated and experimental data to answer some key ques-
tions. How good do our experimental data need to be to re-
solve a given difference in D? How is the uncertainty in D
related to the signal-to-noise ratio (SNR) of raw experimental
data, and can this relationship be expressed in a simple form?
At what point do improvements in SNR stop translating into
improved resolution in the diffusion domain?

While it is to be hoped that a clearer understanding of the
role that signal-to-noise ratio plays in limiting the quality of
DOSY spectra will prove useful, it should be stressed that
SNR is just one of many factors involved. In particular, the
analysis presented here takes no account of the effects of the
systematic and reproducible experimental imperfections that
all DOSY experiments are affected by. These include for ex-
ample the spatial non-uniformity of pulsed magnetic field
gradients (Damberg et al., 2001; Connell et al., 2009) and
the effects of peak overlap (Botana et al., 2011). Questions
such as choosing the optimum balance between time averag-
ing and the number of different field gradient values to be
used require many different factors to be taken into account,
of which SNR is just one.

2 Methods

In its commonest (“high-resolution”) form, DOSY uses least
squares fitting of the amplitudes of peaks in pulsed field gra-
dient echo spectra to determine diffusion coefficients D. A

series of N otherwise identical experiments is carried out in
which the amplitudes G of diffusion-encoding field gradient
pulses are varied to map out the decay of signal amplitude
as a function of G. In the great majority of experiments, a
simple fit to a single exponential is used; multiexponential
fitting is possible but is extremely demanding of SNR (Nils-
son et al., 2006) and is not considered here. The diffusional
attenuation Si/S0 in successive measurements takes the form

Si/S0 = exp(−biD), (1)

where the form of bi is determined by the pulse sequence
used (Sinnaeve, 2012). In the simple case of a pulsed field
gradient spin or stimulated echo in which spatial encoding
and decoding are performed by two gradient pulses of dura-
tion δ a time 1− δ apart,

bi = γ
2G2

i δ
2(1− δ/3), (2)

if the gradient pulses are rectangular in shape, or

bi = γ
2G2

i δ
2(1− δ/4), (3)

if half-sine-shaped gradient pulses are used. In the former
case the effective gradient Gi is equal to the peak gradient
applied in a given pulse; in the latter Gi is equal to the peak
gradient multiplied by 2/π . These expressions assume that
the field gradient is constant across the sample, which is not
always a good approximation; the effects of field gradient
non-uniformity can be taken into account by replacing the
term G2 by an appropriate power series in G2 (Connell et
al., 2009).

Experimental data are imperfect, most notably because of
the presence of a background of random electronic noise. In
a well-conducted experiment the effect of this on the mea-
surement of the amplitude S of a signal, whether in terms of
peak height or of signal integral, is well described by the ad-
dition of a Gaussian distribution of standard deviation σS . In
the case of peak height, the SNR is by convention defined as
S/(2σS) in NMR spectroscopy. In a DOSY dataset using N
different gradient strengths Gi , each of the N measurements
Si of the amplitude of a given peak will have the same stan-
dard deviation σS . The effect of this uncertainty on the value
of D determined by nonlinear least squares fitting can easily
be found by brute force Monte Carlo simulation or directly
from the Cramér–Rao lower bound (CRLB). The latter has
been extensively used in NMR, notably for selecting “opti-
mum” sampling patterns Gi for the simultaneous determi-
nation of the diffusion coefficients of species of different D
or for the estimation of diffusion distributions S(D) (see e.g.
Brihuega-Moreno et al., 2003; Franconi et al., 2018; Reci et
al., 2019; note that the derivations given in the first two ref-
erences contain some minor typographical errors). The ques-
tion of optimum sampling is considerably complicated by the
presence of multiple sources of systematic error in diffusion
NMR experiments and the need to allow for the likelihood of
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signal overlap, and is largely avoided here; rather, we use the
CRLB for the much more pedestrian purpose of quantifying
limiting diffusion resolution in DOSY.

A convenient measure of resolution RD in the diffusion
dimension of the DOSY spectrum is the inverse of the coeffi-
cient of variation of D, that is the ratio of the estimated D to
its estimated standard deviation σD . Using the conventional
definition of SNR given above, expression (10) of Franconi
et al. (2018) becomes

RD =

(
D

σD

)
= 2SNR

√
AC−B2

A
, (4)

where

A=
∑N

i=1
e−2εi , B =

N∑
i=1

εie
−2εi ,

C =

N∑
i=1

ε2
i e
−2εi ,

and

εi = biD. (5)

For a given diffusion coefficient D and choice of N gradient
valuesGi , therefore, the dependence of the resolution RD on
the signal-to-noise ratio of a given signal can be calculated.
Here RD was evaluated as a function of the number N of
gradient values sampled, the maximum exponent εmax, and
the form of the sampling scheme.

Expressions (4) and (5) allow direct calculation of RD .
Equivalent results can be obtained easily by Monte Carlo
methods, constructing an attenuation table e−εi and then
repeatedly adding Gaussian noise n of standard deviation
σS = 1/(2SNR) to each point of the table and fitting it to a
function of the form α e−βεi . The standard deviation σβ of
the parameter β is then the inverse of RD . Again, RD was
evaluated as a function of the number N of gradient values
sampled, the maximum exponent εmax, and the form of the
sampling scheme.

Experimental 1H DOSY data were acquired for a 100 mM
solution of quinine in DMSO-d6, with 50 mM sodium
trimethylsilylpropionate (TSP) as a reference, using the
Oneshot pulse sequence (Pelta et al., 2002) on a 500 MHz
Varian VNMRS spectrometer equipped with a 5 mm triax-
ial gradient probe at 25 ◦C nominal temperature. Twelve
quadratically spaced (equally spaced in gradient squared)
nominal gradient amplitudes from 12.5 to 52.8 G cm−1 were
used, with a net gradient-encoding rectangular pulse width
of 1 ms and a diffusion delay 1 of 0.16 s. Eight transients of
16 384 complex points were acquired for each gradient value
in a total experiment time of 5 min. The data were subjected
to standard DOSY processing in VnmrJ, consisting of zero-
filling, reference deconvolution (Morris et al., 1997) with a
target Lorentzian linewidth of 1.3 Hz, baseline correction,

peak picking, fitting to a Stejskal–Tanner equation modified
to compensate for the measured gradient non-uniformity of
the probe used (Damberg et al., 2001; Connell et al., 2009),
and construction of the DOSY spectrum using the fitted sig-
nal amplitude, diffusion coefficientD, and standard error σD .
The signal decay for the quinine methoxy peak at 3.9 ppm,
which had a SNR of 14 400 : 1 at the lowest gradient used,
was extracted, and the Stejskal–Tanner fit repeated with dif-
ferent additions of synthetic Gaussian noise to investigate the
influence of SNR on RD .

3 Results and discussion

Equation (4) shows that, as is intuitively reasonable, the dif-
fusion resolution is directly proportional to SNR (provided
that systematic sources of error are negligible). The propor-
tionality constant is, however, a complicated function of the
choice of sampling function and its relation to the diffusion
coefficient: the more data points are measured, the better RD
will be, but just how good depends on what parts of the at-
tenuation curve those points sample. If only the early part
of the curve is sampled (εmax< 1, where εmax is the maxi-
mum value of ε), then the effect of diffusion on the measured
points will be small, or if too wide a range of gradients G is
sampled (εmax� 1), then many of the measured points will
contain very little signal, and in both cases RD will suffer.
In a typical high-resolution DOSY experiment, the sample
will contain species of different sizes with a range of diffu-
sion coefficients D. Where the range is not too wide, it is
common practice to use a simple sampling scheme in which
the field gradient pulse amplitude is incremented either lin-
early, from some minimum value Gmin to a maximum Gmax
in equal steps of G:

Gi =Gmin+ (i− 1)(Gmax−Gmin)/(N − 1), (6)

or, quadratically, from Gmin to Gmax in equal steps of G2:

Gi =

√
G2

min+ (i− 1)
(
G2

max−G
2
min
)
/(N − 1). (7)

Because the diffusion-encoding gradient pulses G also play
a part in determining coherence transfer pathways in many
NMR methods for measuring diffusion and complementing
and reinforcing the effects of phase cycling, it is important in
practice that small values of Gmin be avoided. This is partic-
ularly important if experiments such as Oneshot (Pelta et al.,
2002) that employ unbalanced bipolar gradient pulse pairs
are used with low numbers of transients (and hence incom-
plete phase cycling). Common practice is therefore to use a
constant ratioGmin/Gmax = κ , where κ = 0.05–0.25, so that
G varies from κGmax to Gmax. Linear and quadratic sam-
pling give similar diffusion resolution, as is shown below.
Quadratic sampling can make it easier to detect systematic
deviations from exponential decay as a function of gradient
squared, and hence to identify peaks in which the signals of
species of different D overlap.
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For a given set of experimental delays and pulse dura-
tions, linear and quadratic spacing in G will give different
sets of Stejskal–Tanner exponents εi . Different diffusion co-
efficientsD will give different maxima εmax, and because the
attenuation caused by the minimum gradient Gmin depends
on D, the minimum Stejskal–Tanner exponent εmin will vary
slightly with εmax. Thus for linear sampling the Stejskal–
Tanner exponents are

εi =

[
κ +

(i− 1)(1− κ)
(N − 1)

]2

εmax (8)

and for quadratic sampling

εi =

[
κ2
+

(i− 1)
(
1− κ2)

(N − 1)

]
εmax. (9)

Figure 1 compares the results of Monte Carlo simulations
(small filled circles) of exponential fits for the two sampling
schemes, with SNR= 100 and κ = 0.05 in both cases, as a
function of N and εmax with the Cramér–Rao upper bounds
(open circles) for RD . As expected, there is excellent agree-
ment between the Monte Carlo and analytical results. The
lines for linear regression confirm that there is a direct pro-
portionality with

√
(N − 1) for low εmax but that for higher

εmax, where the signal is strongly attenuated for greater εi
values, the line of best fit is displaced. The slope of the line
of best fit for RD as a function of

√
(N − 1) rises as εmax

increases until it reaches a maximum at around εmax = 2.1,
after which it decreases again. This is again as expected: for
low εmax the data are dominated by points that have high pre-
cision but low attenuation, while for high εmax the converse
is true.

The predicted diffusion resolution RD is a function of
the sampling scheme, SNR, maximum Stejskal–Tanner ex-
ponent εmax, and number of gradient values used N . Given
the nature of Eqs. (4) and (5), it is clear that no simple analyt-
ical form exists for RD(SNR,εmax,N ). Equally, it is known
that RD is directly proportional to SNR, and it is reasonable
to expect RD to be proportional to the square root of N − 1,
since (a) increasingN will decrease the effects of random er-
rors in proportion to the square root of the effective number
of independent measures of D and (b) that number will be
dependent on N − 1, since it is the change in signal ampli-
tude that provides information onD, reducing the number of
degrees of freedom by 1. In general the effective number will
be less than N−1 for all but low values of εmax, because sig-
nal attenuation will reduce the information content for higher
values εi . It is thus reasonable to seek an approximate ana-
lytical representation of the form

RD (SNR,εmax,N )≈ SNR
√

(N − 1)f (εmax) . (10)

Figure 2 shows the variation of f as a function of εmax, cal-
culated numerically using Eqs. (4), (5), (8), and (9) for values

Table 1. Fitted parameters for Eq. (11) obtained from the data of
Fig. 2. No error estimates are given as the data fitted are not nor-
mally distributed.

Linear sampling Quadratic sampling

a 0.72 0.66
b 0.71 0.61
c 0.77 0.86

of N between 10 and 200 for linear and quadratic sampling,
together with fits to a three-parameter function of the form

f (εmax)= aεmaxe
−b(εmax)c . (11)

The quality of fit is more than adequate for practical use,
establishing a simple relationship between diffusion resolu-
tion, signal-to-noise ratio, and experimental parameters; fit
parameters are given in Table 1.

In principle, diffusion accuracy should increase indefi-
nitely as the signal-to-noise ratio of the experimental data
increases. (“Accuracy” is used here in the sense of the re-
liance that can be placed on the positions of peaks in the dif-
fusion dimension of a DOSY spectrum, i.e. the “trueness”
of the diffusion dimension.) In practice diffusion accuracy
does not increase indefinitely, because spectral noise is far
from the only source of uncertainty in the signal attenuations
measured in DOSY experiments. Radio-frequency pulse irre-
producibility, field-frequency ratio instability, gradient noise,
temperature variation, and a range of other sources all limit
the reliability of signal intensity measurements in NMR, lim-
iting resolution in DOSY and causing t1 noise in multidi-
mensional spectra (Mehlkopf et al., 1984; Morris, 1992). In
general, the accuracy and reproducibility of NMR data tend
to deteriorate as the number of pulses used in a sequence in-
creases (because of pulse phase and amplitude jitter caused
by limited radio-frequency spectral purity), as the durations
of the delays used increase (because of the cumulative effect
of field-frequency fluctuations), and as the overall duration
of an experiment increases (because of slow changes in en-
vironmental factors such as room temperature and air pres-
sure). Most such perturbations are at least semi-systematic in
nature, but many (particularly pulse-phase instability) have
effects that can appear random and can therefore decrease, at
least to some extent, with time averaging. Other sources of
distortion in the measured signal decay are both systematic
and reproducible and therefore do not decrease with time av-
eraging. These include changes in signal attenuation caused
by convection (never wholly absent in practical NMR experi-
ments on liquids; Swan et al., 2015; Barbosa et al., 2016) and
by the presence of signals from unwanted coherence trans-
fer pathways. Distortions caused by spatial non-uniformity
of the field gradient can be corrected for if appropriate cal-
ibration is performed (Damberg et al., 2001; Connell et al.,
2009).
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Figure 1. Diffusion resolution RD as a function of
√

(N − 1), whereN is the number of gradient values used, for (a) linear and (b) quadratic
sampling in the gradient domain, determined by Monte Carlo simulation (small filled circles) and Cramér–Rao least bounds analysis (open
circles), for SNR= 100 and maximum Stejskal–Tanner exponents εmax of 0.25 (black), 0.5 (grey), 1 (blue), 2 (green), and 3 (orange). Solid
lines show the results of linear regression of the Cramér–Rao data.

Figure 2. Relative diffusion resolution f (εmax) determined Cramér–Rao least bounds analysis (open circles) as a function of maximum
Stejskal–Tanner exponent εmax, for (a) linear and (b) quadratic sampling in the gradient domain with 10 (black), 17 (grey), 37 (blue), 65
(green), 101 (yellow), and 197 (red) gradient values. Solid lines show the results of nonlinear regression of the data points shown to the
three-parameter function Eq. (11).

There is thus a practical limit to the benefits to be gained
by increasing SNR, whether by time averaging, increasing
the signal strength (e.g. by increasing sample concentration),
or reducing the noise (e.g. by using a cold probe and preamp).
This is illustrated here with experimental data obtained as de-
scribed earlier for the methoxy signal from a sample of qui-
nine. The starting SNR of the quinine methoxy peak in the
lowest gradient spectrum was 14 400 : 1; successively greater
amounts of synthetic Gaussian noise were added and fitting
repeated, averaging the results of 100 additions, to show the
influence of SNR on the diffusion resolution RD . If the con-
tributions from sources other than noise to the errors in the
experimental peak height as a function of gradient strength
are normally distributed and have a root mean square de-
viation which is a fraction 1/(2SNRlim) of the initial peak
amplitude, then the effect on fitting, and hence on diffusion
resolution, of adding uncorrelated noise is to degrade the ef-
fective signal-to-noise ratio SNR in Eq. (10) to

SNReff = SNR

√
SNR2

lim

SNR2
lim+SNR2 . (12)

This gives a final predicted diffusion resolution for given ex-
perimental conditions of

RD (SNR,εmax,N )≈
SNR√

1+
(

SNR
SNRlim

)2

√
(N − 1)

× f (εmax) , (13)

where f (εmax) can be approximated by Eq. (11). Thus, if the
noise contribution to the experimental uncertainty is domi-
nant, the effective signal-to-noise ratio is the actual SNR, but
at high SNR the effective signal-to-noise ratio for the pur-
poses of Stejskal–Tanner fitting is the limit SNRlim imposed
by other error sources.

To investigate the effect of signal-to-noise ratio on diffu-
sion resolution, synthetic noise was added to the experimen-
tal data used to construct the 1H DOSY spectrum of quinine
shown in Fig. 3. Figure 4 shows the effect of SNR on the
measured RD for experimental data for the quinine methoxy
peak, found by titrating in extra noise as described above.
The experimental signal-to-noise ratio of the first gradient

https://doi.org/10.5194/mr-2-733-2021 Magn. Reson., 2, 733–739, 2021



738 J. Guest et al.: Signal-to-noise ratio in diffusion-ordered spectroscopy

Figure 3. 500 MHz Oneshot 1H DOSY spectrum of 100 mM qui-
nine in DMSO-d6 with 50 mM sodium trimethylsilylpropionate as
a reference, acquired as described in the text.

increment was 14 400 : 1, but the diffusion resolution RD
found when the raw experimental data were fitted was only
420, a small fraction of the predicted value of almost 15 000.
As Fig. 4 shows, at low SNR the observed diffusion reso-
lution follows the line expected for the unmodified Cramér–
Rao limit of Eq. (11), but as SNR increases the improvement
in RD levels off, slowly approaching the limit seen for the
data with no noise added. Fitting of Eq. (13) to the noise-
supplemented experimental data gave a value of just over 300
for SNRlim. To put this value in context, it corresponds to a
respectably small root mean square uncertainty in the signal
amplitudes measured of 1/600∼ 0.17 % of the original peak
intensity, typical of good-quality results obtained with mul-
tiple pulse sequences on a modern spectrometer. With ex-
tended time averaging and appropriate precautions and in-
strumental interventions, it is possible to obtain data with
significantly smaller uncertainties than this (see e.g. Power
et al., 2016), but the cost in time and effort can be consider-
able.

4 Conclusions

It is well known that the signal-to-noise ratio of diffusion-
weighted experimental NMR data plays a critical role in de-
termining the diffusion resolution of a DOSY spectrum con-
structed from it. There is thus a temptation to conduct very
long experiments with extensive time averaging in order to
obtain the best possible results. Conversely, in dilute sys-
tems the temptation is to conduct equally long experiments
in the hope of obtaining results with sufficient diffusion res-
olution to shed light on speciation, etc. In both cases it is
possible, and indeed common, to waste a great deal of instru-
ment time for no good result, either because sources of error
other than noise dominate the fitting statistics, or because the

Figure 4. Diffusion resolution RD as a function of signal-to-noise
ratio for the methoxy signal of quinine in a Oneshot experiment on
a 100 mM solution of quinine in DMSO-d6. Open circles show the
average of 100 values of RD by fitting of the experimental data with
the addition of synthetic Gaussian noise for each value of SNR, the
dashed line shows the predicted Cramér–Rao limit, Eq. (11), for the
experimental parameters used (N = 12, εmax = 0.76), and the solid
line the result of nonlinear least squares fitting of the Cramér–Rao
limit modified to take into account the presence of other errors in
the signal intensity, Eq. (12), with SNRlim = 305.

final signal-to-noise ratio is insufficient. Here it is shown that
a trivial calculation with Eq. (11) will show both whether or
not such experiments may be worth attempting in the first
place, and what limiting diffusion resolution is achievable.

Code and data availability. Raw experimental data for Fig. 3
and the Mathematica code used to generate Figs. 1, 2, and 4 can
be downloaded from DOI https://doi.org/10.17632/d7bdxz9hsk.1
(Morris, 2021).
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