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Abstract. In this work we derive conditions under which a level-crossing line in a magnetic field effect curve
for a recombining radical pair will be equivalent to the electron spin resonance (ESR) spectrum and discuss three
simple rules for qualitative prediction of the level-crossing spectra.

1 Introduction

The spin-correlated nature of radical (ion) pairs arising as
intermediates in many natural or induced chemical transfor-
mations gives rise to a host of “magnetic and spin effects”
in chemical reactions. It all started with observing (Bargon,
1967; Ward and Lawler, 1967) and understanding (Closs,
1969; Kaptein and Oosterhoff, 1969) strange-looking “po-
larized” nuclear magnetic resonance (NMR) spectra and has
evolved into a mature field in itself with a wide range of
powerful experimental and theoretical techniques relying on
magnetically manipulating spins in chemical processes (Sa-
likhov et al., 1984; Steiner and Ulrich, 1989; Hayashi, 2004),
culminating in the modern high-tech finesse of advanced hy-
perpolarized NMR (Ivanov et al., 2014).

This paper deals with a curious bridge between the most
humble magnetic field effect (MFE) curves, i.e., dependence
of reaction yield on applied static magnetic field, and hyper-
polarized NMR: additional sharp resonance-like lines that
may occur against the smooth background of MFE due to
genuine level crossings in the spin system of the radical
pair. The lines were first discovered in a zero magnetic field
(Anisimov et al., 1983; Fischer, 1983) and attributed to in-
terference of pair states in the higher, spherical, symmetry
conditions of a zero external field similar to the Hanle ef-
fect in atomic spectroscopy (Hanle, 1924). The zero field
line, or low-field effect, was then put to the front as the pos-
sible physical mechanism of magnetoreception, and the re-

search that followed was plenty. However, this completely
overshadowed the other, spectroscopic, aspect of the level-
crossing lines possible in fields other than zero.

Level crossing (Dupont-Roc et al., 1969; Silvers et
al., 1970; Levy, 1972; Astilean et al. 1994) and avoided
crossing, or anticrossing (Eck et al., 1963; Wieder and Eck,
1967; Veeman and Van der Waals, 1970; Baranov and Ro-
manov, 2001; Yago et al., 2007; Kothe et al., 2010; Anishchik
and Ivanov, 2017, 2019), spectroscopy has long been an es-
tablished tool in atomic and molecular spectroscopy as well
as solid-state physics, providing structural information from
specific (anti)crossing lines in nonzero fields, whose posi-
tions are determined by interactions shaping the energy lev-
els of the system. For radical pairs purely spin level crossings
at nonzero fields in MFE first appeared in calculations in an
already cited paper (Anisimov et al., 1983), although they
were not discussed as they were not observed in the accom-
panying experiments on radiolytically generated radical ion
pairs. However, a year later this group published a theoret-
ical work (Sukhenko et. al, 1985) that specifically explored
level crossings in nonzero fields for radical pairs with equiv-
alent nuclei in only one pair partner and gave explicit ex-
pression for their position determined by the hyperfine cou-
pling (HFC) constant. Such lines were later indeed experi-
mentally observed in several systems by two teams (Stass et
al., 1995b; Saik et al., 1995; Grigoryants et al., 1998; Kalneus
et al., 2006a). Furthermore, in a subsequent paper (Tadjikov
et al., 1996) it was suggested and demonstrated in numeri-
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cal simulations for several systems of simple structure, and
confirmed in a proof-of-principle experiment, that hyperfine
structure of the second pair partner may be revealed at the
level-crossing lines. The earliest mention of the very possi-
bility of observing a resolved structure on a level-crossing
line for a radical pair was probably the paper on MFE in a
Ge-containing pair induced by a large difference in g values
of the pair partners (Shokhirev et al., 1991), where a level-
crossing line appeared in modeling. Later the 1g−induced
level-crossing spectra were theoretically explored in detail in
a paper (Brocklehurst, 1999).

In this work we develop the ideas of Sukhenko et
al. (1985), Tadjikov et al. (1996), and Brocklehurst (1999) to
explore how a resolved structure may appear in MFE curves
containing lines due to level crossing, referred to as magnet-
ically affected reaction yield (MARY) spectra. The discus-
sion is based on the properties of radiation-induced radical
ion pairs, created by continuous wave (CW) X-irradiation of
nonpolar solutions of suitable electron donor and acceptor
molecules and detected by luminescence produced by pair
recombination from an electron spin singlet state. To avoid a
lengthy introduction to the properties of such pairs, the reader
is referred to a review book chapter (Stass et al., 2011) where
a detailed discussion of such pairs, as well as an introduc-
tory discussion of conventional MFE curves in terms of level
(anti)crossings, can be found. For the purposes of this work
it will suffice to assume that the pair starts from and recom-
bines to a spin-correlated singlet state, its spin evolution is
governed by a Hamiltonian including only isotropic Zeeman
and hyperfine interactions in independent pair partners, the
recombination itself is not spin-selective, the relaxation can
be neglected, and the theoretical counterpart to experimental
observables is the Laplace transform of a singlet state popu-
lation ρss taken in the time domain, as a function of applied
static magnetic field. We will first show analytically that for
a pair containing a spin-I nucleus with a large HFC constant
and spin I > 1 at one partner and a compact arbitrary hyper-
fine structure at the other partner a resolved electron spin res-
onance (ESR) spectrum of the “narrow” partner is expected
at the level-crossing line due to the “driving” partner with
large HFC, and then we will use this result to derive and
discuss several simple rules for the possible resolved level-
crossing spectra.

2 Derivation of resolved level-crossing spectra

We start by quoting the key result of the original paper
(Sukhenko et al., 1985) and recasting it in the form that is
convenient for further generalization. Given a radical pair
having a single spin-I nucleus with HFC a in only one
of the partners described by a Hamiltonian (setting = 1,
ω0 = gβB),

Ĥ = ω0 (S1z+ S2z)+ aS1I , (1)

its eigenstates are divided into non-overlapping sets indexed
by the total angular momentum projection 6z = S1z+ S2z+

Iz, and spin evolution proceeds independently in state sub-
spaces with different values m of 6z with maximum dimen-
sion 4. For a pair with a singlet initial state and observable re-
combination into a singlet state, the needed time-dependent
probability ρss(t) is a sum of partial probabilities over sub-
spaces:

ρss(t)=
I∑

m=−I

ρss(t;m). (2)

For a sub-ensemble of pairs with 6z =m, |m|< I , the sub-
space includes four states with eigenvalues

E1(m)=−
a

4
−
ω0

2
+Rm,

E2(m)=−
a

4
−
ω0

2
−Rm,

E3(m)=−
a

4
+
ω0

2
+Rm−1,

E4(m)=−
a

4
+
ω0

2
−Rm−1, (3)

where

2Rm =

√
ω2

0 + aω0 (2m+ 1)+ a2
(
I +

1
2

)2

. (4)

The states with maximum possible6z =± (I + 1), i.e., elec-
tron spin-triplet states with maximum nuclear spin projec-
tion, are isolated eigenstates and are completely excluded
from pair spin evolution. For the outermost blocks involved
in spin evolution with 6z =±I there are only three states
with eigenvalues

E1(m=±I )=
aI

2
,

E2(m=±I )=±
ω0∓ a

2
+R,

E3(m=±I )=±
ω0∓ a

2
−R, (5)

where

2R =

√{
ω0± a

(
I −

1
2

)}2

+ 2a2I . (6)

For each value of m from the range −I < m < I the levels
are degenerate in pairs in the zero field (E1 = E3, E2 = E4),
which gives rise to the ubiquitous zero field line. In addition,
for the inner blocks |m|< I the levels E1 and E4 may be-
come degenerate in non-zero fields as well, crossing in the
sub-ensemble m< 0 for a > 0 and vice versa, occurring in
the fields

ω∗0 =−
aI (I + 1)

2m
. (7)
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For the outermost blocks the levels become degenerate only
at zero field. Thus, for a pair with a single spin-I nucleus
there should be a zero field line and, provided I > 1, addi-
tional level-crossing extrema of Eq. (7) in “multiple” fields
may be expected.

Picking up at this point, we take a different view of this
problem. Taking advantage of results from works (Brockle-
hurst, 1976; Salikhov et al., 1984; Stass et al., 1995c), the
sought singlet state population for an initially singlet radical
pair with single spin-I nucleus in an arbitrary magnetic field
can be written as

ρss(t)=
1
4
+

1
4
p(t)+

1
2

Re
(
e−iω0th(t)

)
, (8)

where

p(t)=1−
a2

2I + 1

I∑
m=−I

I (I + 1)−m(m+ 1)

(2Rm)2

[1− cos(2Rmt)] , (9)

h(t)=
1

4(2I + 1)

I∑
m=−I[

(1+Dm)eiRmt + (1−Dm)e−iRmt
]

[
(1+Dm−1)eiRm−1t + (1−Dm−1)e−iRm−1t

]
, (10)

Dm =
ω0+ a

(
m+ 1

2

)
2Rm

. (11)

Assuming the simplest possible exponential recombina-
tion kinetics, the theoretical counterpart of the MARY spec-
trum is given by the Laplace transform of Eq. (8):

M (s,ω0)=

∞∫
0

e−stρss(t)dt, (12)

where the Laplace variable s has the meaning of recombina-
tion rate, or, more generally, the inverse lifetime of the spin-
correlated state of the radical pair (Stass et al., 1995a). Direct
evaluation of Eq. (12) with the substituted Eqs. (8)–(11) pro-
duces

sM (ω0, s)=
1
4
+

1
4

{
1−

a2

2I + 1

I∑
m=−I

I (I + 1)−m (m+ 1)

ω2
0 + aω0 (2m+ 1)+ a2

(
I + 1

2

)2
1

s2+ (2Rm)2


+

1
8(2I + 1)

I∑
m=−I

[
(1+Dm) (1+Dm−1)

s2

s2+ (Rm+Rm−1−ω0)2

]

+
1

8(2I + 1)

I∑
m=−I

[
(1+Dm) (1−Dm−1)

s2

s2+ (Rm−Rm−1−ω0)2

]

+
1

8(2I + 1)

I∑
m=−I

[
(1−Dm) (1+Dm−1)

s2

s2+ (Rm−Rm−1+ω0)2

]

+
1

8(2I + 1)

I∑
m=−I

[
(1−Dm) (1−Dm−1)

s2

s2+ (Rm+Rm−1+ω0)2

]
. (13)

A numerical experiment demonstrates that for positive ω0
resonance-like peaks in M (ω0) are produced only by the
terms

(1+Dm) (1+Dm−1)
s2

s2+ (Rm+Rm−1−ω0)2 (14)

at fields satisfying the condition

Rm+Rm−1−ω0 = 0, (15)

which is immediately seen to reproduce the level-crossing
condition E1 = E4 of Eq. (7). All the other terms in Eq. (13)
produce the smoothly varying background of the conven-
tional magnetic field effect curve, related to gradual change
in the eigenbasis with variation of the applied magnetic field.

However, having now an explicit expression for MARY
spectrum Eq. (13), we can be more quantitative in character-
izing the level-crossing lines at “multiple fields” of Eq. (7).
Evaluation of the prefactor (1+Dm) (1+Dm−1) in Eq. (14)
at the crossing point of Eq. (7) produces the amplitude of the
corresponding peak as

A (I,m)= 4

(
I (I + 1)−m2)2

−m2

I 2(I + 1)2
−m2

, (16)
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while developing Eq. (15) into Taylor series for a small
deviation from the crossing point of Eq. (7) produces its
Lorentzian width as

W (I,m)=
s

2

(
I (I + 1)
m2 −

1
I (I + 1)

)
, (17)

where the Laplace variable s = τ−1 is the inverse of the gen-
uine exponential lifetime of the pair.

The formalism of Eq. (8) makes it very convenient to in-
troduce a spin-I2 nucleus at the other partner of the pair. The
corresponding counterpart to Eq. (8) would read as

ρss(t)=
1
4
+

1
4
p1(t)p2(t)+

1
2

Re
(
h1(t)h∗2(t)

)
, (18)

where subscripts 1 and 2 relate the corresponding functions
in Eqs. (9) and (10) to the first and second pair partners, with
their respective nuclear spins I1,2 and coupling constants a1,2
introduced as appropriate, and “∗” stands for the complex
conjugation. The summations in functions of Eqs. (9) and
(10) run over all 2I1,2+ 1 values of the respective nuclear
spin projections.

The last term in Eq. (18) containing Re
(
h1(t)h∗2(t)

)
now

produces for each pair (m,n) 16 terms in ρss of the form(
1±D1,m

)(
1±D1,m−1

)(
1±D2,n

)(
1±D2,n−1

)
exp

[
i
(
±R1,m±R1,m−1∓R2,n∓R2,n−1

)
t
]
, (19)

and again numerical experiment demonstrates that for pos-
itive fields the only resonance-like contributions to the
Laplace transform M (ω0) come from the terms(

1+D1,m
)(

1+D1,m−1
)(

1+D2,n
)(

1+D2,n−1
)

s2

s2+
(
R1,m+R1,m−1−R2,n−R2,n−1

)2 , (20)

with positions of the maxima determined by the equation

R1,m+R1,m−1−R2,n−R2,n−1 = 0, (21)

while all other terms only contribute to the smooth back-
ground.

Equation (21) is equivalent to an eighth-order algebraic
equation and does not lend itself to an exact analytic solu-
tion. To advance further, we shall now impose the assump-
tion a2� a1 and focus on the vicinity of one of the crossing
points of Eq. (7) for the “dominant” partner with the larger
HFC. Proceeding in two steps now, we first note that these
assumptions automatically place the second partner in the
high-field limit a2� ω0, which lets us develop the square
roots R2,x in Eq. (21) into linear forms in the small parame-
ter a2/ω0, similarly to a high-field approximation in conven-
tional magnetic resonance, and convert Eq. (21) to a much
simpler expression

R1,m+R1,m−1 = R2,n+R2,n−1 = ω0+ na2. (22)

This is equivalent to a cubic equation, which is linearized fur-
ther by introducing a second small parameter a2/a1 to obtain
the sought solution:

ω∗0 =−a1
I1 (I1+ 1)

2m
− a2n

(
I1 (I1+ 1)

2m2 −
1

2I1 (I1+ 1)

)
. (23)

This is valid for each pair of nuclear spin projections (m,n),
but since we consider the crossings in positive fields, as in
Eq. (7), we should formally restrictm to be in the range−I <
m < 0,, while n can assume any of its 2I2+1 possible values.

Tracing the two-step linearizing high-field assumption for
the second partner back to the starting expression of Eq. (18),
it is readily seen that if the second partner contains an arbi-
trary set of magnetic nuclei with HFC so small that the high-
field limit is valid at fields of Eq. (7) for its entire ESR spec-
trum in a conventional sense, we can set from the beginning

p2(t)= 1, h2(t)= exp
[
i
(
ω0+

∑
k,nk

aknk

)
t
]
, (24)

which in the same order produces

R1,m+R1,m−1 = R2,n+R2,n−1 = ω0+
∑

k,nk
aknk, (25)

where ak and nk are the HFC constants and spin projec-
tions for the kth nucleus. By the same token, an inhomo-
geneous spectrum, like a “semiclassical” Gaussian shape
(Schulten and Wolynes, 1978), can be used in place of the
sum

∑
k,nk

aknk . Substituting Eq. (25) into Eq. (21) as a re-
sult of the first step of linearization, we obtain Eq. (22) with
the term na2 changed for the sum

∑
k,nk

aknk . Solving it by
the second step of linearization, we arrive at the result similar
to Eq. (23):

ω∗0 =− a1
I1 (I1+ 1)

2m
−

(
I1 (I1+ 1)

2m2 −
1

2I1 (I1+ 1)

)
∑

k,nk
aknk. (26)

This is the central result of this work, and its interpretation
is as follows: provided the entire ESR spectrum of the sec-
ond partner is compact enough in comparison to the hyper-
fine coupling in the dominant first partner, each characteristic
level-crossing “line at multiple field” of Eq. (7) spells out the
ESR spectrum of the second partner, scaled in field by a con-
stant factor, which depends on the specific crossing and is
given in parentheses in Eq. (26), with intensity of Eq. (16)
borrowed from the original crossing and distributed over the
spectrum as in the conventional ESR. We also note that the
field-scaling factor in Eq. (26) is identical to the scaling fac-
tor for the homogeneous width in Eq. (17), as both are ul-
timately determined by the relative slopes of the linearized
crossing levels, so the scaling is uniform from both homoge-
neous and inhomogeneous perspectives. The sum

∑
k,nk

aknk
can be substituted for any spectral shape function F (ω0),
provided that it is restricted to a linear, first-order spectrum
in terms of conventional ESR. Second-order conventional
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ESR spectra (Fessenden, 1962) would not carry transparently
through the double-step linearization procedure and would
have required a more careful treatment to second order at
both steps.

We finally note that the same formalism can be used to an-
alyze the level crossings driven by substantial difference in
g values of the pair partners together with HFC, mentioned in
the introduction and studied in detail in Brocklehurst (1999).
Assuming that the first partner has one spin-I nucleus with
HFC a1 and g value g1, while the second partner has no mag-
netic nuclei, but a shifted g value g2, and introducing relative
shift of g values δ = g2−g1

g1
� 1, we should set for the second

partner

p2(t)= 1, h2(t)= exp[iω0 (1+ δ) t] , (27)

yielding

R2,n+R2,n−1 = ω0 (1+ δ) (28)

and two sets of solutions:

ω∗01 =−a1
I1 (I1+ 1)

2m
, ω∗02 = a1

I1 (I1+ 1)
2m

+ a1
m

δ
. (29)

While the first set coincides with Eq. (7) or Eq. (26) with
a2 set to zero and with the lines at ω∗01 understood as lines
in weak fields where the difference in g values is not yet
consequential, the second set has a small parameter δ in
the denominator and gives the same lines translated to high
fields. Expressions of Eq. (29) were first derived in Brockle-
hurst (1999) and are re-derived here only to show the equiva-
lence of the employed approach, and the reader is referred to
Brocklehurst (1999) for a more in-depth discussion of 1g-
induced level crossings.

3 Even number of equivalent spin- 1
2 nuclei to drive

spin evolution in the pair

Several comments regarding the results of the previous sec-
tion are now in order. First of all, the “driving” crossings
of Eq. (7) require a nucleus with spin I > 1 and substantial
HFC that would furthermore not compromise the relaxation
properties of the recombining pair. Although nuclei with
spins 3

2 and higher, like 35,37Cl( 3
2 ) (Bagryansky et al., 1998),

27Al( 5
2 ), 69,71Ga( 3

2 ), 113,115In( 9
2 ) (Sergey et al., 2012), and

73Ge( 9
2 ) (Shokhirev et al., 1991; Borovkov et al., 2003), oc-

casionally occur in magnetic field effect experiments, so far
the only resolved lines in multiple fields of Eq. (7) have been
reported for systems containing sets of equivalent spin- 1

2 nu-
clei, either protons or fluorines (Stass et al., 1995b; Saik et
al., 1995; Grigoryants et al., 1998; Kalneus et al., 2006a).
The best results making them promising for such applications
were obtained for radical anions of either hexafluoroben-
zene (six fluorines with a = 13.7 mT) or octafluorocyclobu-
tane (eight fluorines with a = 15.1 mT) paired with a narrow

partner radical cation. This means that the single spin-I nu-
cleus would in most cases be an effective spin equal to one
of the possible values of the total spin for a set of equiva-
lent spin- 1

2 nuclei, with the corresponding statistical distri-
bution, and thus there would be a corresponding composite
level-crossing spectrum with contributions from all possible
values of the total nuclear spin.

It is a fluke that in the most common case of an even num-
ber of spin- 1

2 nuclei the crossings of Eq. (7) occur at simple
integer multiples of the HFC constant a and mostly overlap
to reinforce each other, but the downside is that the overlap-
ping spectra have different field-scaling factors. However, in
reality the latter does not create that much of a problem. Let
us take hexafluorobenzene with its six equivalent fluorines
as a typical example. The possible values of pairs (I, |m|)
to produce crossings of Eq. (7) would be (3,2), (3,1), and
(2,1), producing the lines of Eq. (7) in the fields 3a, 6a,
and 3a, respectively. The corresponding field-scaling factors
from Eq. (26) would be 12

8 −
1

24 , 12
2 −

1
24 , and 6

2−
1

12 , respec-
tively. It can be seen that the two overlapping lines at 3a have
different scaling factors, reflecting the different slopes of the
intersecting energy levels. Now let us estimate their relative
contributions. The statistical weights of sub-ensembles with
total spin I for a set of an even number n of spin- 1

2 nuclei
W (I ;n) can be taken from Bagryansky et al. (2000),

W (I ;n)=
(2I + 1)2n!

2n
(
n
2 − I

)
!
(
n
2 + I + 1

)
!
, (30)

and in our example evaluate to W (3;6)= 7
64 and W (2;6)=

25
64 . It can be seen that the overlapping crossing at 3a is sta-
tistically dominated by the smaller total spin I = 2, while the
higher total spin I = 3 is responsible for the crossing at 6a.
Omitting the small corrections of 1

24 and 1
12 , the field-scaling

factors for the crossings at 3a and 6a are 3 and 6, respec-
tively, with the crossing at 3a being nearly 4 times stronger
and twice narrower, which is critical in field modulation ex-
periments.

For our second example of eight equivalent fluorines we
would get the weights of W (4;8)= 9

256 , W (3;8)= 49
256 , and

W (2;8)= 100
256 and lines at 10a, 5a, and 10a/3 from I = 4

in addition to already described lines at 3a and 6a. Again the
strongest line at 3a is dominated by the contribution from the
I = 2 sub-ensemble with field-scaling factor 3 and swamps
the much weaker nearby line at 10a/3 coming from I = 4.
The line at 6a is dominated by I = 3 with the scaling factor
of 6 and swamps the nearby line at 5a from I = 4, and the
only genuinely new line from I = 4 is the line at 10a with
the scaling factor of 10. To generalize this, we note that the
“dominant” lines come from pairs (I, |m|) with all possible
values of I in the range 1< I ≤ n/2 and |m| = 1. Comparing
the expressions for the positions ω∗0 of the crossing peaks and
the field-scaling factors f in Eqs. (26) and (17) and omitting
the small correction (2I1 (I1+ 1))−1 in the scaling factors,
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we see that

for |m| = 1
{
ω∗0
a1
=
I1 (I1+ 1)

2|m|

}
=

{
f =

I1 (I1+ 1)
2m2

}
=
I1 (I1+ 1)

2
. (31)

From this we derive our “Simple” rule of structure:
Given a radical pair with n= 2k equivalent spin- 1

2 nuclei
with a large HFC constant a in one partner to drive spin evo-
lution and a compact relative to the HFC constant ESR spec-
trum in the other partner, expect in the magnetic field effect
curve k−1 progressively weaker copies of the ESR spectrum
of the narrow partner at fields ω∗0 = fqa scaled in the field
by fq , fq = q(q+1)/2, q = 2, . . .k. The strongest copy is the
lowest of them, for f = 3; i.e., it is at “triple field” and is
“triply scaled”.

Although so far the only experimental observations of the
ESR structure using this approach have been the “spectrum”
at 3a for an unresolved inhomogeneous spectrum as a proof
of principle in Tadjikov et al. (1996) and arguments based
on the lack of the inhomogeneous spectrum at 3a in sev-
eral works on radiation chemistry (Tadjikov et al., 1997;
Usov et al., 1997; Sviridenko et al., 1998) from just one
group, we hope that the current surge of interest to the level
(anti)crossing interpretation of magnetic resonance will draw
attention to this aspect of the humble magnetic field effect
experiments.

4 Other possible configurations of the driving spins

Although the case of an even number of driving spins- 1
2 is the

most convenient, it is not the only possible one. Still stay-
ing with equivalent nuclei, one experimental case of three
spins- 1

2 has been reported, for the radical anion of 1,3,5-
trifluorobenzene complemented with a partner with a nar-
row ESR spectrum (Kalneus et al., 2006a). The only level-
crossing line here comes from the effective total spin I = 3

2
for three fluorines, as expected, and could in principle be
used as a vehicle to obtain the ESR spectrum of the partner.
Furthermore, tracing back how the structure-bearing partner
was introduced after linearization in Eqs. (24) and (25), we
see that there is nothing special in the single spin-I or equiv-
alent spin- 1

2 nuclei other than the possibility of treating them
analytically and obtaining a well-defined level-crossing line
if the HFC coupling is sufficiently strong. Of course, this is a
rather substantial “other than”, but it does not exclude other
possible spin systems as the driving partner if they appear.

Such systems do indeed exist. Several experimental re-
ports of the resolved MARY spectra for systems with non-
equivalent nuclei with large HFC constants, in all cases flu-
orines, have been published. These include radical anions
of 1,2,3-trifluorobenzene (Kalneus et al., 2007), pentafluo-
robenzene (Kalneus et al., 2006b), and recently several flu-
orosubstituted diphenylacetylenes (Sannikova et al., 2019),

again complemented with a radical cation with a narrow ESR
spectrum. The spectra featured well-defined lines that were
reproduced in simulations and were traced to clusters of level
crossings in the spin system of the pair. Although the “mul-
tiplication of the ESR spectrum” of the possible pair partner
would in this case not be very informative due to high con-
centration of close and overlapping level crossings, it would
be rather important to at least keep in mind the inhomoge-
neous broadening of these lines due to hyperfine couplings
in the second partner.

Analysis of the level-crossing spectra for systems with
non-equivalent nuclei also helped develop the concept of “ac-
tive crossings” (Pichugina and Stass, 2010) as a substitute
for traditional selection rules for transitions in conventional
magnetic resonance. To put it simply, of all the energy-level
crossings present in the spin system of the pair, only those
between levels reachable from the same initial (singlet) state
of the pair may produce observable lines due to interference
of coherently populated eigenstates. In terms of the discus-
sion of this work, the active crossings would be the crossings
of levels from the same four-dimensional blocks with ener-
gies of Eq. (3), to which correspond the terms with fixed m
in the sums of Eq. (13).

5 Introducing nuclei into the driving partner:
crossings vs. anticrossings

The transparency of translating the ESR spectrum of the nar-
row partner to the level-crossing line due to the partner with
strong HFC is rather amazing and is a consequence of sep-
arating these two roles and adding the new nuclei to the
partner that originally just complements the pair. This can
be more easily understood using the language of wave func-
tions rather than the density matrix as follows. Suppose we
have an active level crossing of Eq. (7) from a subspace of
pair eigenstates of Eq. (3) spanning four functions of the
product basis |S1z,Iz〉1|S2z〉2 with projections |α,m〉1|β〉2,
|α,m− 1〉1|α〉2, |β,m〉1|α〉2, and |β,m+ 1〉1|β〉2. The only
non-secular interaction in the pair is hyperfine coupling in
the first partner, which means that the eigenstates of the pair
will be of the form |ξi〉1|S2z〉2, still remaining the products of
functions for the two partners. The energies of the eigenstates
will be the sums of energies for the two partners, and the non-
trivial spin evolution leading to level-crossing lines is due to
simultaneously projecting the starting singlet state onto sev-
eral eigenstates at the moment of pair creation and back at the
moment of recombination and beating due to different ener-
gies of the populated eigenstates that partially stops when
some energies become equal; i.e., some levels cross.

Now let us introduce nuclei to the second partner, i.e., aug-
ment its eigenstate |S2z〉2 to include the indices of the newly
introduced nuclear spin projections to |S2z,n1z, . . .,nkz〉2.
Since we are in the conditions of the high-field limit for
the second partner, as in conventional ESR, the augmented

Magn. Reson., 2, 77–91, 2021 https://doi.org/10.5194/mr-2-77-2021



D. V. Stass et al.: Simple rules for level crossing spectra 83

eigenfunctions will in fact be products of electron and nu-
clear functions |Skz〉2|n1z, . . .,nkz〉 splitting in energy by
the corresponding secular contribution ± 1

2
∑
k,nk

aknk . The
states of the newly introduced nuclei in this approximation
are not affected by spin evolution in the pair, and thus the nu-
clear function |n1z, . . .,nkz〉 effectively becomes a new con-
served multi-index, by which the state space for the pair
augmented with new nuclei is partitioned. The original four-
dimensional subspaces housing the active crossings are mul-
tiplied into copies differing only by the new multi-index,
each giving the same active crossing, but at a correspond-
ingly shifted energy and with a proportionally reduced inten-
sity borrowed from the original crossing. The varying scal-
ing with the field comes from the different relative slopes
of the linearized crossing levels, which now differ from the
±ω0/2 of conventional ESR and become progressively more
shallow with an increasing external field, spreading the same
vertical shift in energy to a progressively wider horizontal
scaling with the field. The same can be said about the scaling
of the homogeneous contribution to the linewidth of Eq. (17),
which converts the same width of the energy levels due to the
finite lifetime into the width along the field axis. Since this
multiplication of state subspaces is entirely due to the sec-
ond partner, this discussion applies to any hyperfine structure
of the driving partner, provided its HFC constants are suffi-
ciently high.

The situation with adding the new nuclei to the first, driv-
ing, partner is quite different. Now the function augmented
with additional nuclear spins is not of the high-field limit
case, and effectively a new interaction is added into a cou-
pled spin system. Let us again turn to the wavefunction il-
lustration, first for single nuclear spin- 1

2 and just one added
spin- 1

2 nucleus with a small HFC constant a2� a1. The orig-
inal functions |S1z,Iz〉1 for the first partner are now aug-
mented to functions |S1z,Iz,n〉1, which do not factor into
a simple product, and the newly introduced index n is not
just an external conserved quantity. Instead we have the in-
troduction of (weak) additional interactions into a system of
crossing levels, which leads to anticrossings. Since the total
spin projection is conserved for each radical, e.g., functions
|α,α,β〉1, |α,β,α〉1, |β,α,α〉1 now fall into one sub-block
of the Hamiltonian and are mixed together, and we note that
without the added nucleus the first of them and the two other
were in different blocks and would have contributed to dif-
ferent active crossings. Now addition of a weak new cou-
pling introduces an anticrossing, possibly between different
blocks, instead. The key questions are now what anticross-
ings are being introduced and whether the original crossings
turn into anticrossings upon addition of the new interaction.
This situation must be familiar to experts in hyperpolarized
NMR in the form of level anticrossings in three-spin systems,
where one nucleus is J coupled to two other nuclei (Miesel
et al., 2006; Pravdivtsev et al., 2013). Another close example
is a three-spin system biradical ion/radical ion with an ex-

change interaction within the biradical and hyperfine inter-
action with a nucleus in either partner (Lukzen et al., 2002;
Verkhovlyuk et al., 2007), where a nucleus in the biradical
ion produces an anticrossing near the main line of J reso-
nance in the biradical, while a nucleus in the radical partner
produces a crossing. A similar dichotomy is also observed
in magnetic effects in a biradical/stable radical complex with
different distributions of inter- and intra-partner exchange in-
teractions (Magin et al., 2004, 2005, 2009).

To analyze the resulting changes in eigenstructure, let us
review Eq. (3). The expressions for energies are clearly of
the form

(
−
a
4 ±Rm

)
±
ω0
2 and are the sums of the energies of

two independent partners. One of them has coupled electron
and nuclear spins and corresponds to the first term, which is
the familiar Breit–Rabi expression (Breit and Rabi, 1931) for
arbitrary nuclear spin I . The other partner has just electron
spin. We also require that the states of Eq. (3) be reachable
from the same electron spin singlet state. To obtain the pair
state subspace with total spin projection 6z =m, we thus
need to combine two states of the first partner with total pro-
jectionMz =m+

1
2 spanning the product basis states |α,m〉1,

|β,m+ 1〉1 with the |β〉2 state of the second partner and two
states of the first partner with total projection Mz =m−

1
2

spanning the product basis states |α,m− 1〉1, |β,m〉1 with
the |α〉2 state of the second partner. So, the energies of Eq. (3)
correspond to the following functions:

E1(m)=
(
−
a

4
+Rm

)
−
ω0

2
, |ψ1(m)〉

= (cosm|α,m〉1+ sinm|β,m+ 1〉1) |β〉2,

E2(m)=
(
−
a

4
−Rm

)
−
ω0

2
, |ψ2(m)〉

= (−sinm|α,m〉1+ cosm|β,m+ 1〉1) |β〉2,

E3(m)=
(
−
a

4
+Rm−1

)
+
ω0

2
, |ψ3(m)〉

= (cosm−1|α,m− 1〉1+ sinm−1|β,m〉1) |α〉2,

E4(m)=
(
−
a

4
−Rm−1

)
+
ω0

2
, |ψ4(m)〉

= (−sinm−1|α,m− 1〉1+ cosm−1|β,m〉1) |α〉2, (32)

where trig notation was adopted for the mixing coefficients
in the Breit–Rabi functions.

Now let us introduce an additional nucleus with spin K
with a weak hyperfine coupling into the first partner by build-
ing product functions of the form |ψi(m)〉|n〉 and treating the
new hyperfine interaction as perturbation V̂ = bS1K . We re-
call that the original active crossings were the ones within the
blocks of Eq. (32) forE1 = E3,E2 = E4 in the zero field and
E1 = E4 in the fields of Eq. (7). Now we note that the per-
turbation is diagonal with respect to the second electron spin
and thus has zero matrix elements V13, V24, and V14 between
the required functions and conclude that the original active
crossings all survive and do not turn into anticrossings.

Non-vanishing matrix elements can be obtained between
functions of adjacent blocks of Eq. (32), e.g., |ψ1,2(m)〉 and
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|ψ1,2(m− 1)〉:

〈ψ1(m);n|V̂ |ψ1(m− 1);n+ 1〉

= cosmsinm−1〈α,m;n

∣∣∣∣b2S1+K−

∣∣∣∣β,m;n+ 1〉1

= cosmsinm−1
b

2

√
(K + n+ 1)(K − n), (33)

with similar results for all four combinations of indices 1 and
2 for the two functions and all four combinations for indices
3 and 4 of the other two functions. This implies anticross-
ings if the original functions corresponded to crossing en-
ergy levels. Looking at expressions for energies of Eq. (32),
this in turn implies Rm =±Rm−1, which is indeed possi-
ble in the zero field in the variant Rm = Rm−1. Thus, for
each pair of adjacent four-dimensional blocks of Eq. (32)
with 6z =m and 6z =m− 1, we had four crossings in the
zero field for Ei(m)= Ei(m− 1), i = 1, . . .,4 that turn into
the respective anticrossings. Furthermore, these anticrossings
stitch together all the subspaces of the initially partitioned
state space. Note that the original crossings were not ac-
tive: they corresponded to different subspaces, and thus their
states would not be populated simultaneously and interfere.
However, as opposed to the interference effects of genuine
level crossings, the anticrossings just reshape the energy-
level layout and do not require the simultaneous population
of the contributing states, and thus the added weak hyperfine
interaction in the first partner turns dormant crossings into
acting anticrossings in the zero field. We further note that the
specific hyperfine structure for the added nuclei is not impor-
tant: it just suffices that they provide the nonzero couplings of
Eq. (33) between the zero-field states of the adjacent blocks.

Since the newly introduced weak interaction does not af-
fect the original active crossings, we may evaluate its ef-
fect on energy levels to first order by evaluating the aver-
age values of the perturbing interaction for product func-
tions |ψ1(m)〉|n〉, and for the interesting case of the crossing
E1 = E4, we obtain

V11 = b
n

2

(
2cos2

m− 1
)
, V44 =−b

n

2

(
2cos2

m−1− 1
)
. (34)

This moves the surviving active crossing in energy by

1E1,4 = V11−V44 = bn
(

cos2
m+ cos2

m−1− 1
)

(35)

evaluated at the crossing field of Eq. (7), which is then con-
verted to shift in the field by the field-scaling factor due
to differential slopes taken from Eq. (26). Such evaluation
yields some unwieldy expression, hardly qualifying for a
“simple rule” and of little practical utility, but note that the
shift in the field is simply proportional to bn, with the scal-
ing factor depending only on the properties of the “driving”
spins and particular crossing, and again this linearity means
that the spectrum corresponding to the added weaker hyper-
fine structure will be spelled out at the original crossing point

of Eq. (7), as was the case for Eq. (26). In practice this means
that additional nuclei with smaller HFC constants in the driv-
ing partner at least contribute an inhomogeneous broaden-
ing to the level-crossing line, complicating its experimental
observation, as is the case for the radical anion of 1,2,4,5-
tetrafluorobenzene containing two protons with smaller cou-
plings in addition to four equivalent fluorines (Kalneus et
al., 2006a). The reason for the noted linearity is of course
the applicability of first-order perturbation theory due to sur-
vival of the active crossings. Such simple considerations can
sometime help advance in a problem that seems otherwise
overwhelming (Stass, 2019).

Similar issues of “localization of interaction” in pair part-
ners also arise in the discussion of 1g-induced resonances
(Brocklehurst, 1999) and in the discussion of the zero field
line in the magnetic field effect curve, where it was men-
tioned several times that distribution of HFC over both part-
ners as opposed to their concentration in one partner de-
creases the magnitude of the effect (Timmel et al., 1998;
Kalneus et al., 2005; Woodward et al., 2008). In our pic-
ture it appears as arising of anticrossings at the zero field
that spreads and counteracts the active crossings originally
present there, additionally washing away the well-defined
partitioning into state subspaces with pronounced state in-
terference. Another place where the crossing vs. anticross-
ing discussion is very relevant is the so-called J resonance
in radical pairs (Hamilton et al., 1989; Shkrob et al., 1991)
or linked donor–acceptor dyads (Weller et al., 1984; Ito et
al., 2003; Wakasa et al., 2015; Steiner et al., 2018), where
exchange coupling between the two partners shifts the triplet
electron spin manifold relative to the singlet, and at a certain
magnetic field the singlet term crosses with one of the triplet
sublevels. In many cases these crossings turn into an anti-
crossing due to additional weaker interactions, such as HFC
with magnetic nuclei, but traditionally the situation is often
still referred to as “ST− crossing”, even though the technical
discussion clearly identifies it as anticrossing.

From the practical viewpoint the important difference be-
tween crossings and anticrossings is that the former par-
tially block spin evolution due to state interference and thus
lock the pair in its initial state, while the latter accelerate
spin evolution and assist in leaving the initial state. Further-
more, using the settings of this work as an example, while
the crossings produce sharp lines with widths of the order
of inverse lifetime τ−1 separated by intervals of the order
of introduced interaction V , the anticrossings produce much
broader lines of the opposite phase with widths on the order
of
√
τ−2+V 2. If we introduce three parities, to indicate the

initial state 0i =+1 for singlet and −1 for triplet, the obser-
vation state 0o =+1 for singlet and −1 for triplet, and the
type of crossing 0c =+1 for crossing and −1 for anticross-
ing, then we can derive our even simpler Rule of signs:

The sign of a feature in a level-crossing spectrum is given
by 0 = 0i ·0o ·0c.
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6 Level-crossing lines as flip-flop resonance in pair
partners

Creation of a spin-correlated radical (ion) pair is a shock ex-
citation for a radical pair Hamiltonian, and, as any shock-
excited quantum system, the pair “rings” at its eigenfrequen-
cies (Salikhov, 1993). Since for the pairs of this work the
Hamiltonian of the pair is a sum of independent Hamiltoni-
ans for the two partners, the ring frequencies must be some
linear combinations of the eigenfrequencies for the pair part-
ners. It is clear that creating the pair in a singlet state with
a given nuclear configuration must select some subset of the
possible ring frequencies, and the examples discussed in this
work provide some very useful insight regarding this selec-
tion.

Let us again review the expressions of Eq. (32) for ener-
gies/functions of the typical subspace of a radical pair spin
system. The condition E1 = E4 for the level-crossing line
can be trivially rearranged as(
−
a

4
+Rm

)
−

(
−
a

4
−Rm−1

)
= ω0, (36)

where on the left-hand side we have the difference of ener-
gies of two eigenstates of the first pair partner and on the
right-hand side an equivalent difference for the second part-
ner. Now we look at the corresponding functions ψ1,4 and
recall that our pair starts from and recombines to a singlet
state with nuclear spin projection m, which is the function
(|α,m〉1|β〉2− |β,m〉1|α〉2)/

√
2. We note the following cor-

relation between “transitions” between functions ψ1,4 and
changes in the spin states of the individual radicals:

ψ1↔ ψ4 means |α,m〉1↔ |β,m〉1
and |β〉2↔ |α〉2. (37)

The two latter relations mean an allowed ESR transition in
the first radical and simultaneously an opposing allowed ESR
transition in the second radical, at the same frequency given
by the differences in the energies of the corresponding true
eigenstates of each of the pair partners. The statement about
“allowed ESR transition” should be understood as transition
induced by nonzero matrix element of electron spin opera-
tor, e.g., S1x (for the first partner), between the factors of the
functions pertaining to this partner, and for functions ψ1,4
this is reduced to nonzero matrix element between the func-
tions of Eq. (37). Therefore in this case the level-crossing line
appears in the field where such a flip-flop energy conserving
transition in the pair partners can occur. Inspection of func-
tions in Eq. (32) demonstrates that the same also turns out
to be true for the two level crossings in the zero field that
correspond to conditions E1 = E3 and E2 = E4.

Now let us consider the case of compact ESR structure at
the second partner, for which the level-crossing condition of
Eq. (25) can again be slightly rearranged to give(
−
a

4
+Rm

)
−

(
−
a

4
−Rm−1

)
= ω0+

∑
k,nk

aknk. (38)

The functions for the subspace with the conserving nuclear
configuration of the narrow partner are now given by ex-
pressions of Eq. (32) with all functions multiplied by the
conserved multi-index |n1z, . . .,nkz〉. The previous paragraph
can be repeated nearly word for word with the conclusion
that the level-crossing lines appear in the field where simulta-
neous flip-flop energy conserving allowed ESR transitions in
the pair partners can occur, between the entangled electron-
nuclear energy levels of the first partner and between the con-
ventional high-field limit decoupled energy levels in the sec-
ond radical.

Finally, let us consider the case of both partners containing
a single nucleus with arbitrary spin without any assumptions
on the relative sizes of their HFC constants a1,2. The level-
crossing condition for this case is given by Eq. (21), which
can again be rearranged into(
−
a1

4
+R1,m

)
−

(
−
a1

4
−R1,m−1

)
=

(
−
a2

4
+R2,n

)
−

(
−
a2

4
−R2,n−1

)
, (39)

expressing the equality of transition frequencies for the
two partners. To build the functions for a sub-ensemble
with 6z =m+ n reachable from the same singlet state
(|α,m〉1|β,n〉2− |β,m〉1|α,n〉2)/

√
2 similar to Eq. (32), we

need to combine the Breit–Rabi functions for the first partner
with total projection Mz =m+

1
2 with the Breit–Rabi func-

tions for the second partner with total projection Nz = n− 1
2

and, vice versa, functions with Mz =m−
1
2 with functions

with Nz = n+ 1
2 , to obtain function sets{

cosm|α,m〉1+ sinm|β,m+ 1〉1
−sinm|α,m〉1+ cosm|β,m+ 1〉1

}
×

{
cosn−1|α,n− 1〉2+ sinn−1|β,n〉2
−sinn−1|α,n− 1〉2+ cosn−1|β,n〉2

}
,{

cosm−1|α,m− 1〉1+ sinm−1|β,m〉1
−sinm−1|α,m− 1〉1+ cosm−1|β,m〉1

}
×

{
cosn|α,n〉2+ sinn|β,n+ 1〉2
−sinn|α,n〉2+ cosn|β,n+ 1〉2

}
. (40)

The energy matching condition of Eq. (39) corresponds to
the following functions:(
cosm|α,m〉1+ sinm|β,m+ 1〉1

)
×
(
− sinn−1|α,n− 1〉2+ cosn−1|β,n〉2

)
,(

− sinm−1|α,m− 1〉1+ cosm−1|β,m〉1
)

×
(
cosn|α,n〉2+ sinn|β,n+ 1〉2

)
. (41)

We see that again the level-crossing line corresponds to a
simultaneous energy-conserving flip-flop transition

|α,m〉1↔ |β,m〉1 and |β,n〉2↔ |α,n〉2 (42)

in the two pair partners that correspond to allowed ESR tran-
sitions in the opposite directions.
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Figure 1. The review MFE curve for a pair with six equivalent spin-
1
2 nuclei with HFC constant A in one partner and two equivalent
spin- 1

2 nuclei with HFC constant A/10 in the second partner, re-
combination parameter s = A/100.

We should not try to generalize these observations beyond
what can be established from results derived in this work, but
the pattern is quite obvious, and therefore we suggest for fur-
ther consideration and discussion a provisional Rule of reso-
nances:

The level-crossing lines appear in the fields where simul-
taneous energy-conserving ESR allowed flip-flop transitions
can proceed in the pair partners.

The idea that simultaneous transitions in spin systems of
pair partners can lead to level-crossing lines probably goes
back to work (Brocklehurst, 1999), and a similar result was
also obtained for interference of ESR transitions in the ESR
(RYDMR) spectra of radical pairs in Salikhov et al. (1997),
Tadjikov et al. (1998).

7 Compendium of typical resolved spectra

In this section we present several figures illustrating typi-
cal resolved level-crossing spectra that could be reasonably
expected in experiment. For all figures the driving partner
with large HFC constants mimics hexafluorobenzene radical
anion and has six equivalent spin- 1

2 nuclei with HFC con-
stant A, while the second partner contains two equivalent
or nonequivalent spin- 1

2 nuclei, as indicated. All parameters,
i.e., the external magnetic field, the smaller couplings in the
second partner, and the recombination parameter s, are mea-
sured in the units of A.

Figure 1 shows a review spectrum for a pair with equiva-
lent nuclei in both partners that can be calculated analytically
in the full field range from zero to well past the level-crossing
lines. In this case the smaller couplings are taken as one-tenth
of the large ones, and the spectrum fully conforms to expec-
tations as discussed in this work.

Figure 2. Closeup of the spectrum from Fig. 1 in the vicinity of
B0 = 3A for two values of the recombination parameter s = A/100,
s = A/400.

Figure 3. Closeup of the spectrum from Fig. 1 in the vicinity of
B0 = 6A for two values of the recombination parameter s = A/100,
s = A/400.

Figures 2 and 3 show in more details the regions of the
level-crossing lines at 3A and 6A for the parameters used in
Fig. 1, as well as for a 4-fold reduced recombination param-
eter, i.e., for a longer lived pair, to increase resolution. Note
the familiar 1-2-1 pattern for two equivalent spin- 1

2 nuclei
with splittings equal to 3A/10 and 6A/10, as expected. Also
note a pair of lower-intensity lines with half the splitting in
Fig. 2, corresponding to the minor contribution of the sub-
ensemble with total nuclei spin of the “driving” partner I = 3
with the scaling factor 12/8 instead of 3 to the level-crossing
line at triple HFC constant.

When non-equivalent nuclei need to be introduced into the
second partner the full MFE curve can no longer be calcu-
lated analytically, and only the regions of the level-crossing
lines can be described assuming compactness of the ESR
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Figure 4. Region in the vicinity of B0 = 3A for a pair with six
equivalent spin- 1

2 nuclei with HFC constant A in one partner and
two non-equivalent spin- 1

2 nuclei with HFC constant A/10 and
A/40 in the second partner, recombination parameter s = A/100,
s = A/400.

Figure 5. Region in the vicinity of B0 = 6A for a pair with six
equivalent spin- 1

2 nuclei with HFC constant A in one partner and
two non-equivalent spin- 1

2 nuclei with HFC constant A/10 and
A/40 in the second partner, recombination parameter s = A/100,
s = A/400.

structure of the second partner. Figures 4 and 5 show these
regions for a pair that has two spin- 1

2 nuclei with different
HFC constants, equal to A/10 and A/40, in the second part-
ner. Again the familiar “doublet of doublets” pattern with the
expected splittings is clearly seen in both figures. More busy
spectra for systems with a more complicated hyperfine struc-
ture could have been readily generated, but they bring no new
insight and would hardly ever be obtained in experiment, and
thus are not included here.

Figure 6. Region in the vicinity of B0 = 3A for a pair with six
equivalent spin- 1

2 nuclei with HFC constant A in one partner and
two equivalent spin- 1

2 nuclei with a relatively large HFC constant
A/5 in the second partner, recombination parameter s = A/100,
s = A/400.

Finally, Fig. 6 shows what happens if the smaller HFC
constant becomes not that small and the linearizing assump-
tions of this work are pushed too far. The figure, which was
obtained by analytic calculation of the full MFE curve, il-
lustrates the region in the vicinity of the level-crossing line
at triple HFC constant for a pair that has two spin- 1

2 nuclei
with HFC constant A/5 in the second partner. The 1-2-1 pat-
tern becomes distorted, the lines are no longer equidistant,
and the spectrum for a longer-lived pair demonstrates that
the central line of the triplet is split. All these features are of
course familiar from conventional second-order ESR spectra
and are due to violation of the high-field approximation. It
can be reasonably claimed that to stay within the linearized
paradigm of this work the upper limit for the HFC constants
in the second partner is about one-tenth of the HFC con-
stant of the driving partner. Given the couplings in the actual
available experimental systems of 13.7 mT (hexafluoroben-
zene radical anion) and 15.1 mT (octafluorocyclobutane rad-
ical anion), there is hope in resolving couplings of the order
of milliTesla, which is quite typical for organic radical ions.

8 Conclusions

In this work we have provided a full justification for the term
“MARY ESR” introduced in Tadjikov et al. (1996) by show-
ing that under the claimed conditions the level-crossing lines
will indeed recover an arbitrary ESR spectrum without limi-
tation to the simple cases discussed originally in Tadjikov et
al. (1996). We also hope that the discussed parallels between
level-crossing spectroscopy and conventional magnetic reso-
nance spectroscopy can help bridge the existing conceptual
and perceptional gap between the two fields. Although the
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discussion relied on the properties of a specific class of sys-
tems, radiation-induced radical ion pairs in nonpolar solu-
tions, it may well be that similar approaches could be more
easily realized on other correlated spin systems. Given that
the language of level (anti)crossings also becomes a unifying
language in hyperpolarized magnetic resonance (Sosnovsky
et al., 2016), the suggested approaches may come more nat-
urally to experts in spin chemistry and magnetic resonance
today than they were 20 years ago and thus may be more
useful now rather than alien as they looked originally.

On the more sober side, though, it is clear that many
real experimental systems will be more complicated than
discussed here. In particular this will be true for photoin-
duced radical pairs, for which pair partners often cannot be
treated as independent electron spins, and additional elec-
tron spin-spin interactions like dipolar and exchange must
be accounted for. Furthermore, the longer lifetimes of the
pairs one is often interested in bring such factors as relax-
ation and chemical reactivity of the radicals into picture,
which also complicates the matters considerably. These fac-
tors have received significant attention in the context of the
level-crossing line in the zero field, related to tentative mag-
netoreception (see, e.g., Efimova and Hore, 2008, 2009; Lau
et al., 2010; Kattnig et al., 2016a, b; Worster et al., 2016; Kat-
tnig and Hore, 2017; Keens et al., 2018; Babcock and Kat-
tnig, 2020), and so far the feeling is that their due account
is anything but “simple”. Additional interactions destroy the
neat partitioning of state space into manageable subspaces
similar to introduction of additional nuclei in the “crossing
vs. anticrossing” section above, and relaxation further adds to
this complexity. There is no reason to expect that things will
become much easier when moving from zero field crossings
to level-crossing lines in non-zero fields, and probably com-
parable effort would be needed to analyze the consequences
and implications of such additional complications. The more
valuable then seem the simple and comprehensible insights
elaborated in this work for a more sterile but still realistic
model of a radiation-induced radical ion pair.
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