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Supplementary Figure 1: 3D homology model of a complex between the MpSR model peptide and the SH3.3 domain of 
Vinexin β. The structure of the SH3.3 domain was built using the structure of the homologous SH3.1 domain from the same 25 
protein (PDBID 2CT3) using MODELLER. The position of the ligand peptide was infered from the structure 1PRL with 
sequence AFAPPLPRR. The polyproline segments were built assuming a PPII conformation with dihedral angles of -75° 
and 145° for phi and psi, respectively. The figure was made using Pymol. The residues displaying the largest chemical shift 
perturbations are colored from light orange to red according the importance of the perturbation. 
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Supplementary Figure 2: Comparison of chemical shifts measured for MpRS and MpSR peptides in water at 298K at 600 

MHz. A: 13C Chemical shift difference between MpRS and MpSR at positions alpha (left) and delta (right). B: 1H Chemical 

shift difference between MpRS and MpSR at two positions alpha (left) and delta (right). 35 

 

 

 
Supplementary Figure 3: Comparison of delta geminal protons chemical shifts differences measured for the MpRS and 

MpSR peptides in water at 298K at 600 MHz. Fluoroprolines at positions 4 and 8 are shown by gray bars. 40 
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Supplementary Figure 4:  Left: 1H, 15N composite chemical shift measured in the 1H-15N HSQC spectra during the titration 

of the Vinexin β SH3.3 domain with a non-fluorinated model peptide. The fit of the values with a Langmuir model is shown 

by a solid line and resulted into a dissociation equilibrium constant of 75 ± 5 µM. Right: Position of the Trp 37 Hn-Nε cross 

peak during the titration. The MpSR and MpRS fluorinated peptides are indicated by discs and stars, respectively while the 45 

cross peaks corresponding to the non-fluorinated peptide are show by triangles. 

 

Supplementary Figure 5:  Fit of the signals corresponding to (4S)-FPro (left) and (4R)-FPro (right) residues in the MpRS 

(top) and MpSR (bottom) peptides at the first titration point. Concentrations are 55.6µM and 50 µM of of MpRS and MpSR 

respectively. The spectra were recorded at 298K, on a 600 MHz in a 3 mm tube with 2048 scans. Measured signal to noise 50 

ratios are 71 for MpRS and 20 for MpSR, after applied apodization of 16 Hz. The fitted linewidhts of (4S)-FPro are 12.95 Hz 

and 12.66 Hz in MpRS and MpSR respectively leading to R2 values of 40.7 s-1  and 39.8 s-1. For (4R)-FPro, the linewdiths  

are 15.6 Hz and 20.24 Hz and the corresponding R2 are 49.3 s-1 and 63.6 s-1 in MpRS and MpSR respectively. 
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                        Kd (µM) 
 MpRS MpSR Non-fluorinated 

peptide 

Gln 14 223 ± 5 
 

76 ± 2 
 

119 ± 30 

Asn 15 219 ± 2 
 

80 ± 2 
 

61 ± 2 

Asp 17 219 ± 5 
 

73 ± 2 
 

71 ± 2 

Leu 21 209 ± 7 73 ± 2 
 

70 ± 4 

Trp 37 216 ± 2 
 

73 ± 2 
 

70 ± 3 

Val 39 219 ± 4 
 

75 ± 2 
 

69 ± 2 

Gly 49 223 ± 8 
 

70 ± 4 
 

53 ± 3 

Thr 50 227 ± 4 
 

73 ± 2 
 

72 ± 3 

Val 56 218 ± 2 
 

80 ± 5 
 

56 ± 3 

 

 Supplementary Table 1: Dissociation equilibrium constants measured for the MpRS, MpSR and non-fluorinated peptide at 

298 K in 40 mM phosphate buffer at pH 7. These constants have been obtained by fitting the variations of individual 60 

HN-15N cross-peaks positions upon addition of peptide with a 1:1 equilibrium model. The uncertainties are obtained 

from the covariance matrix of the fit and do not take in consideration uncertainties on peptide and protein concentra-

tions. 
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 MpRS MpSR Non-fluorinated 

peptide 

Gln 14 1.863 1.927 1.949 

Asn 15 1.079 1.126 1.093 

Asp 17 2.220 2.286 2.276 

Leu 21 1.002 0.983 0.988 

Trp 37 1.870 2.012 2.011 

Val 39 3.094 3.198 3.214 

Gly 49 0.800 0.788 0.812 

Thr 50 1.841 1.807 1.881 

Val 56 1.319 1.310 1.319 

Supplementary Table 2: 1H-15N Composite chemical shift perturbation measured for Vinexin β residues that the most af-

fected by the addition of polyproline model peptides. 


