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1 Simulations of spin-noise gradient echo

To assess the effect of SNGE, we perform simulations using Mathematica (Wolfram Research Inc., 2012) based on the Bloch
equations (Bloch, 1946), and neglecting any effect of radiation damping. This last assumption corresponds to the used
experimental conditions where the inhomogeneous broadening by the gradients exceeds the radiation-damping rate. In these
simulations, spin noise originates from a series of random excitation events of random timing, random phase and a random
small flip angle supposed to be below 0.01°. For a single noise event, the evolution of magnetization in the rotating reference
frame is simulated by assuming a weak randomized initial transverse magnetization M,, starting at a random time 7 within the
first gradient G,. Using z as the position coordinate along the gradient axis, we get for a single isochromat with offset 0 at the
end of G;:
1(Gy) = Moe_iy26181 (S1)

In the case of a distribution of components along z, it is necessary to integrate:

1W(Gy) = [17,1(6)dz (S2)

For the sample with length [, it results in:

sin(0.5yG1811)

1(Gy) = My =0 (83)
Then, the evolution during the second gradient leads further to:
I(Gz) — Moe—iyz(6151+6252) (S4)

Here we assume the delays A and ¢ (Fig. 1) to be negligibly short. After integration over the sample, we get the expression:

12

L(Gy) = f—l/z 1(Gy)dz = M, 5in[0.5y(G181+6G252)1]

0.5y(G181+G282)

(85)

By numeric summation over 100 uniformly random distributed (with respect to starting times, phases, and amplitudes) initial

magnetizations M, we obtain the curves shown in Fig. S1. The case including T, relaxation is described by Eq. (S6):

. _ 51482
WGy, T) = [117, 1(6)dz = My TSVt 0200l =, (36)

0.5Y(G181+G282)
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Figure S1. Numerical simulation of the time course of refocused spin noise during the second gradient of a gradient echo sequence,
using Eq. S6; (a) neglecting transverse relaxation and diffusion, (b) including transverse relaxation T, = 100 ms. Experimental

parameters corresponding to Fig 1(b) are used in the simulation: G; = —3.2“%; G, = 3.2%[; ¥ =26.75x 107 T—:; Me=1;1=
2 cm. No additional non-spin random noise was added. It would exceed the echo amplitude without extensive averaging.

These simulations assume that for small radiation damping contribution (gradient broadening of the linewidth larger than the
initial linewidth due to transverse relaxation and radiation damping), spin noise can be envisaged as a series of spontaneous
excitation events of random phase. Because of creating a series of random coherences, they cannot be applied to the cases with
weaker gradients or for strong polarization situations, as it was the case in (Desvaux, 2013; Pdschko et al., 2017). After these
excitations, the individual coherences can be defocused and refocused by field-gradient pulses, as usual. Fig. S1 only shows

the contribution from the refocused noise initiated during 6;. The signal envelope indicates an echo center at the point where

6, < %81 in the presence of transverse relaxation (Fig. S1(b)). The location of the maximum gradient echo is typically that
observed with coherent excitation (2—2 ~ 0.5).
1

As a consequence of these simulations, the noise power amplitude of the I(+) experiments (Fig. 1) is due to transverse
coherences excited during the second gradient only. However, the additional contributions observed in the I(-) experiments
originate from events during first gradient with length of 6, refocused by the second gradient during §,. A quantum mechanical
description of spin-noise dynamics, based on the random pure states model in the work of Field and Bain (Field and Bain 2010

and Field and Bain 2013) would be a promising next step in understanding the dynamics of SNGE experiments.
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2 Molecular diffusion characterization

Figure S2 presents the results of SNGE attenuation vs gradient values for a mixture composed of acetone and benzene in 1:1

concentration. The associated spectra are reported in Fig. 4.
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45  Figure S2. SNGE attenuations vs gradient increase for separate signals of acetone (top) and benzene (bottom) in a 1:1 mixture of

acetone and benzene (with 10% of acetone-d6 for locking) recorded according to the scheme of Fig. 3. Experimental spectra are
reported in Fig. 4.
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As in Fig. 5, Fig. S2 reveals a correct linear behaviour for not too small G# values. This is particularly true for acetone, while
for benzene which molecular diffusion coefficient is smaller, more scattered measurements are observed. From this SNGE
attenuation vs G2 experiment (Fig. S2), an estimation of ratio of slope for acetone component in this mixture to that for benzene
component results can be determined. This ratio is comparable to the independent determination of diffusion coefficients in

pure solvents (acetone and benzene) measured with a SNGE NMR-diffusion experiment (Fig. 3) with a small RF pulse of
2 2
0.2ps added (2.4 - 10_9% for benzene and 4.58 - 10‘9% for acetone). These self-diffusion coefficients agree well with

literature values of benzene and acetone as obtained by canonical RF NMR spin-echo experiments. (Ertl, and Dullien, 1973)

This experiment (Fig. S2) illustrates that in two-component mixture with different chemical shifts it is possible to acquire
SNGE attenuation data (Fig. 4) and to extract SNGE attenuation curves separately for each diffusion component. So, qualitative
comparison of how SNGE signal is attenuated in diffusion experiment in mixtures with differently diffusing (and chemically
shifted) molecules. The issue resides in obtaining enough measurements in the range of gradient values (i.e., in such linear

range of G?) where mostly diffusion effect should result in measurable decrease in echo intensity (Fig. 4 and S2). However,
experimental points (at the largest gradient values) have been measured at 70 %T to 75 %T (Fig. 5 and Fig. S2). This is still not
enough to get data set for calculation of diffusion coefficient according to Eq. (3). We could not increase measurable gradient
values to carry out reliable SNGE experiment at gradients higher than 75 %T So, implementation of diffusion experiment

limited by the fast gradient duty cycle — this is too fast for our high-resolution probe. Therefore, a search of additional

experimental facilities can result in new advantages for realization of spin-noise gradient echo measurements.

3 Molecular diffusion and relaxation measurements

Figure S3 illustrates how 3 gradient pulses scheme (Fig. 3) produces SNGE data sets in 1:1 acetone-benzene mixture vs A.
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Figure S3. SNGE experiments as a function of A between G, and G, with a triple gradient sequence (Fig. 3) on a 1:1 mixture of
acetone and benzene (with 10% of acetone-d6 for locking). The respective lower traces correspond to the I(4) sub-experiment, the
higher ones are to the I(—) measurements. SNGE spectra are presented for 2 values of delay increasing from top to bottom: 8 ms,
20 ms. Chemical shifts: 2. 1 ppm (acetone); 7.2 ppm (benzene). (Experimental conditions as in Fig. 6)

Data presented show that in the mixture of two pure solvents with different chemical shifts of their molecules (for instance,
benzene and acetone) SNGE attenuation (i.e., normalized difference between z-profile signals in I(—) and /(+) spin-noise
experiments vs gradient history) can be presented separately with measurable relaxation constants. An estimation of relaxation
constant for separate component (benzene) in mixture appears similar to that measured in SNGE experiment on pure solvent

(benzene) (Fig. 6 and Fig. S4).
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Figure S4. The I(+) and I(-) 'H SNGE experiments on pure benzene for different delays A between G, and G, with triple gradient
sequence. Relaxation constant for benzene T; = 87ms to 93 ms. (G = 63 m;T, G, =123 m;T, G; =1. 6%, 81 =2ms, §; = 1 ms,

gradient stabilization delay € = 0.05 ms, acquisition time t,, = 3.69 ms).

For comparison we have determined the apparent T>* in a continuously recorded spin-noise spectrum without any gradients
or pulses (by the usual protocol of ref (Nausner et al., 2009), which is shown in Fig. S5. From these data T, values of 8.5 ms
and 8.0 ms have been determined by a Lorentzian line-shape fit.

The difference in the relaxation times (T,) determined from the spin noise line shape and the one from spin noise amplitude
decay in the inter-gradient delay is ascribed to different radiation damping times which are subject to influence of preamplifier

feedback (see main text) (Poschko et al., 2017)
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Figure S5. (blue) Spin noise spectrum of a 1:1 mixture of benzene and acetone (as in Figure 6), but recorded without any gradients
or pulses. (red) Lorentzian best fit of experimental peaks amounting to FWHM = 37.6Hz / 39.8Hz and hence T5=1/(m- FWHM) =
8.5ms / 8.0ms for benzene / acetone respectively. (black) Simulated Lorentzian resonance peaks assuming T3’s as determined from
three-gradient experiments (c.f. Fig. 3) (92ms / 62.5ms for benzene/acetone respectively). The asterisks (*) indicate signals of 3C
satellites as described in (Poschko et al., 2017)
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