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Abstract. Spin relaxation has been at the core of many studies since the early days of nuclear magnetic res-
onance (NMR) and the underlying theory worked out by its founding fathers. This Bloch–Redfield–Abraham
relaxation theory has been recently reinvestigated (Bengs and Levitt, 2020) in the perspective of Lindblad theory
of quantum Markovian master equations in order to account for situations where the widely used semi-classical
relaxation theory breaks down. In this article, we review the conventional approach of quantum mechanical the-
ory of NMR relaxation and show that, under the usual assumptions, it is equivalent to the Lindblad formulation.
We also comment on the debate on semi-classical versus quantum versions of spectral density functions involved
in relaxation.

1 Introduction

Relaxation is the process through which a system loses en-
ergy to its environment to eventually reach a state of thermal
equilibrium. Spin–lattice relaxation has been described as the
way spins transfer energy to orientation degrees of freedom.
Since the early days of nuclear magnetic resonance (NMR),
it has been the subject of numerous studies, both theoretical
and encompassing a wide range of domains of applications.
NMR relaxation theory really was contemporary in the early
days of NMR, and it was formalized by several of its found-
ing fathers (Bloembergen et al., 1948; Bloch, 1957, 1956;
Abragam, 1961; Redfield, 1957, 1965). This is a rather usual
approach to the theory of open systems, which has been
widely used in various domains of physics (VanKampen,
1981). From this perspective, relaxation is the result of the
dynamical coupling of a small ensemble of spins (the system)
coupled to a large ensemble of particles, or degrees of free-
dom (the lattice), that are at thermal (Boltzmann) equilibrium
and are endowed with an infinite heat capacity, thereby con-
stituting a thermal reservoir. This very general approach has
led to many theoretical predictions with far-reaching practi-

cal applications in the domain of magnetic resonance spec-
troscopy. In particular, the role played by molecular motions
has been put to good use to extract dynamical information on
complex molecular objects. Thus, with the development of
spin engineering techniques, it has become possible to mea-
sure selected relaxation rates with high accuracy in a broad
range of problems, with the prospect of relating such observ-
ables to models of molecular dynamics.

It has been shown recently by Bengs and Levitt (2020) that
the formulation of Redfield’s semi-classical theory of relax-
ation widely used by NMR spectroscopists may lead to erro-
neous predictions in the case of a two-spin system prepared
in high-order states, such as singlet spin states.

Such an unexpected behavior was ascribed to the fact that
some of the assumptions of the theory may not be fulfilled
in NMR systems, and the authors solved the problem by
making use of the Lindblad operator, which is commonly
used in the theory of open quantum systems to account for
dissipative Markovian phenomena, i.e., relaxation processes.
Among other properties, the structure of the Lindblad oper-
ator ensures that the fundamental properties of the density
operator ρ (ρ, which is hermitian and definite positive, and
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Tr(ρ)= 1) are preserved (Lindblad, 1976; Alicki and Lendi,
2007). This article has sparked renewed interest regarding the
general theory of relaxation, as first elaborated by Bloch, and
its connection with the Lindblad theory of quantum dissipa-
tive systems (Barbara, 2021). This approach has been gen-
eralized in several recent works (Nathan and Rudner, 2020;
Maimbourg et al., 2021).

The traditional description of NMR relaxation relies on
the description of both the spin system and the lattice as
quantum systems, an approach that leads to the celebrated
Redfield equation (Bloch, 1956; Redfield, 1965; Hubbard,
1961; see also Goldman, 2001, for a more recent account
on spin lattice relaxation). As far as the description of the
lattice is concerned, this approach is challenging, and actu-
ally untractable, as a quantized description of the degrees of
freedom involved in molecular motions (multiple bond rota-
tions, overall tumbling of a molecule, etc.) is not manage-
able in practice, even for small molecular systems. For this
reason, an alternative relaxation theory, where the spins are
treated as quantum objects and the lattice is described with
classical functions of the lattice degrees of freedom, was de-
veloped. This semi-classical approach has far-reaching prac-
tical consequences, as spin relaxation can then, in principle,
be described using classical models of dynamics for molecu-
lar motions, and it has been extensively used over the years to
describe and interpret spin relaxation experiments. However,
this semi-classical theory predicts a non-Boltzmann equilib-
rium density operator, which requires an ad hoc thermal cor-
rection to the relaxation equations (Redfield, 1965; Abragam,
1961). More elaborate attempts have been made to overcome
this limitation by modifying the relaxation operator itself and
to enforce a Boltzmann equilibrium of the density operator
(Jeener, 1982; Levitt and Bari, 1992). However, in the tradi-
tional semi-classical NMR relaxation approach and its later
modifications, the spin–lattice interactions are accounted for
by a stochastic, fluctuating Hamiltonian. This has important
consequences. First, in the conventional Abraham–Redfield
approach, the statistical properties of the (classical) lattice
are not constrained by a fluctuation–dissipation kind of the-
orem that would enforce a Boltzmann equilibrium distribu-
tion and, therefore, a lattice temperature. Such a constraint is
therefore not applied on the spins. Second, a major difference
between the quantum and classical theories of spin relaxation
is rooted in the non-commutation of quantum bath operators
of the spin–lattice coupling Hamiltonian, which confers par-
ticular properties to the spin correlation and spectral density
functions that are absent in the semi-classical theory. Both
aspects, quantum and statistical, are entangled, and the re-
lations between quantum and classical correlation functions
will therefore be discussed.

It is the purpose of this paper to re-investigate these old
questions in order to trace the roles and the consequences of
the various assumptions of the traditional approach to relax-
ation developed in the early days of NMR.

2 Theory of spin relaxation in a thermal bath: a
short review

2.1 Derivation of the master equation

The derivation follows the lines of Abragam (1961), Bloch
(1956), Redfield (1957), and Hubbard (1961). Consider a
spin system in its environment. The Hamiltonian of the spin
system HS accounts for the interaction of the spins with the
magnetic fields (Zeeman interaction and interaction with a
radio frequency (rf) field) and non-dissipative spin–spin in-
teractions (scalar J coupling and dipolar coupling). The dy-
namics of the lattice (the bath) are described by HB, and the
spin–bath interaction Hamiltonian is H1, as follows:

HT =HS+HB+H1, (1)

and the dynamics of the {spin–bath} system are described by
the Liouville equation as follows:

ρ̇(t)=−i[HS+HB+H1,ρ(t)]. (2)

Alternatively, it can be written as follows:

ρ̇(t)= LTρ(t), (3)

where the operator LT =−i[HT, ·] is the total Liouvillian.
Introducing the density operator in the interaction repre-
sentation of the density operator ρ∗(t)= e−L0tρ(t), where
L0 = LS+LB is the unperturbed Liouvillian, one has the fol-
lowing:

d
dt
ρ∗(t)=−i[H ∗1 (t),ρ∗(t)] = L∗1(t)ρ∗(t). (4)

The Liouville equation is integrated to the second order as
follows:

ρ∗(t)= ρ∗(0)+

t∫
0

dt1L∗1(t1)ρ∗(0)

+

t∫
0

dt1

t1∫
0

dt2L∗1(t1)L∗1(t2)ρ∗(0)+ . . . (5)

Taking the derivative, one obtains the following:

d
dt
ρ∗(t)= L∗1(t)ρ∗(0)+

t∫
0

dt ′L∗1(t)L∗1(t ′)ρ∗(0). (6)

Finally, by making the change in the variables τ = t− t ′, one
obtains the master equation for the total density operator as
follows:

d
dt
ρ∗(t)= L∗1(t)ρ∗(0)+

t∫
0

dτL∗1(t)L∗1(t − τ )ρ∗(0). (7)
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The dynamics restricted to the spin system are obtained
by eliminating the bath variables. This is achieved by per-
forming a partial trace over the bath degrees of freedom as
follows:

σ (t)= trB {ρ(t)} = trB

{
e−iHTtρ(0)eiHTt

}
= trB

{
eLTtρ(0)

}
. (8)

Hence, from Eq. (6), the spin density operator in the interac-
tion representation is as follows:

σ ∗(t)= trBρ
∗(t), (9)

which obeys the following:

d
dt
σ ∗(t)= trB

{
L∗1(t1)ρ∗(0)

}
+

t∫
0

dt ′trB
{
L∗1(t)L∗1(t ′)ρ∗(0)

}
. (10)

Initially, the system and the bath are assumed to be com-
pletely decorrelated, as follows:

ρ(0)= ρeB⊗ σ (0), (11)

where the exact ρeB denotes the bath density operator in ther-
mal equilibrium. With these assumptions, one has the follow-
ing:

d
dt
σ ∗(t)= trB

{
L∗1(t1)ρ∗(0)

}
+

t∫
0

dt ′trB
{
L∗1(t)L∗1(t ′)ρeB

}
σ ∗(0). (12)

In the latter expression, the term trB
{
L∗1(t1)ρ∗(0)

}
may be

assumed to be zero or can be incorporated in the main system
Liouvillian LS as follows (Abragam, 1961; Redfield, 1957):

d
dt
σ ∗(t)=

t∫
0

dt ′trB
{
L∗1(t)L∗1(t ′)ρeB

}
σ ∗(0). (13)

If the spin density operator is assumed to only moderately
depart from its initial state, then the following occurs:

σ (t)− σ (0)
σ (0)

� 1, (14)

where the density operator varies only slightly from its initial
state so that σ ∗(0) can be replaced by σ ∗(t) in Eq. (12), as
follows (Abragam, 1961; Redfield, 1957):

d
dt
σ ∗(t)=

t∫
0

dt ′trB
{
L∗1(t)L∗1(t ′)ρeB

}
σ ∗(t). (15)

The master equation in the Schrödinger representation can be
obtained from Eq. (15) as follows:

d
dt
σ ∗(t)

=
d
dt
e−LStσ (t)=−LSe

−LStσ (t)+ e−LSt
d
dt
σ (t)

=

t∫
0

dt ′trB
{
L∗1(t)L∗1(t ′)ρeB

}
σ ∗(t). (16)

Therefore, one has the following:

d
dt
σ (t)= LSσ (t)

+ eLSt

t∫
0

dt ′trB
{
L∗1(t)L∗1(t ′)ρeB

}
σ ∗(t). (17)

Reverting to the Schrödinger representation σ ∗(t)=
e−tLSσ (t), one obtains the following master equation in the
Schrödinger representation:

d
dt
σ (t)= LSσ (t)+

t∫
0

dt ′trB
{
L1L∗1(t ′− t)ρeB

}
σ (t). (18)

A derivation is given in Appendix A for reference. The term
trB
{
L1L∗1(t ′− t)ρeB

}
in Eq. (18) is a correlation operator act-

ing on the spin system. It projects the system–bath (spin–
lattice) coupling onto the bath degrees of freedom. This spin
operator therefore carries the statistical properties of the bath,
described by its equilibrium and stationary density operator.
Finally, assuming that the correlation operator decays to zero
in a time τc much shorter than the period over which the den-
sity matrix varies significantly, the upper limit of the integral
can be extended to +∞. As above, making the change in the
variables τ = t − t ′, one obtains the following:

d
dt
σ (t)= LSσ (t)+

+∞∫
0

dτ trB
{
L1L∗1(−τ )ρeB

}
σ (t), (19)

or, in the following Hamiltonian representation, the follow-
ing:

d
dt
σ (t)=−i[HS,σ (t)]

−

+∞∫
0

dτ trB
{
[H1, [H

∗

1 (−τ ),ρeBσ (t)]]
}
. (20)

One, therefore, obtains a master equation of the Redfield
kind, as follows:

d
dt
σ (t)=−i[HS,σ (t)] +Rσ (t), (21)

where R • = −
∫
+∞

0 dτ trB
{
[H1, [H

∗

1 (−τ ),ρeB •]]
}

is the
Redfield (relaxation) operator.
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2.2 Formulation of the master equation in operator form

In spin relaxation theory, it is customary to express the re-
laxation equation in the operator form, which often provides
a clearer representation of the spin–bath coupling dynamics.
Here, the coupling Hamiltonian is assumed to have the form
of a sum of terms, each of which factorizes into a product of
lattice Bq and spin Sq operators.

H1 =
∑
q

SqBq , (22)

with the interaction representation as follows:

Bq (t)= eiHBtBqe−iHBt (23)

Sq (t)= eiHStSqe−iHSt . (24)

Using results of the preceding section (Eqs. 16–18), the Red-
field equation becomes the following:

σ̇ ∗S (t)=−
∑
q,q ′

trB

+∞∫
0

dt ′
[
Sq (t)Bq (t),

[Sq
′

(t ′)Bq
′

(t ′),ρeBσ
∗

S (t)]
]
. (25)

Each term in the sum becomes the following:

trB

[
Sq (t)Bq (t),

[
Sq
′

(t ′)Bq
′

(t ′),ρeBσ
∗

S (t)
]]

=

[
Sq (t),Sq

′

(t ′)σ ∗S (t)
]
〈Bq (t)Bq

′

(t ′)〉e

+

[
σ ∗S (t)Sq

′

(t ′),Sq (t)
]
〈Bq

′

(t ′)Bq (t)〉e, (26)

where the notation, as in the following:

〈Bq (t)Bq
′

(t ′)〉e = trB

{
Bq (t)Bq

′

(t ′)ρeB
}
, (27)

has been introduced. The 〈Bq (t)Bq
′

(t ′)〉e are the bath (lat-
tice) correlation functions, and in contrast to Eq. (19), these
denote usual time correlation functions rather than operators.

σ̇ ∗S (t)=−
∑
q,q ′

+∞∫
0

dt ′[Sq (t),Sq
′

(t ′)σ ∗S (t)]〈Bq (t)Bq
′

(t ′)〉e

−

∑
q,q ′

+∞∫
0

dt ′[σ ∗S (t)Sq
′

(t ′),Sq (t)]〈Bq
′

(t ′)Bq (t)〉e. (28)

Using the conventional decomposition of the spin operators
into a sum of eigenoperators of the Liouvillian LS = [HS,•]

as follows:

[HS,S
q
p] = ω

q
pS

q
p, (29)

one has the following:

Sq (t)= eiHStSqe−iHSt =

∑
p

S
q
pe
iω
q
p t , (30)

which one obtains from Eq. (28), with the change in the in-
tegration variable τ = t − t ′ as follows:

σ̇ ∗S (t)=−
∑

q,q ′,p,p′

e
i(ωqp+ω

q′

p′
)t
+∞∫
0

dτ
[
S
q
p,S

q ′

p′
σ ∗S (t)

]

〈Bq (t)Bq
′

(t − τ )〉ee−iω
q′

p′
τ

−

∑
q,q ′,p,p′

e
i(ωqp+ω

q′

p′
)t
+∞∫
0

dτ
[
σ ∗S (t)Sq

′

p′
,S
q
p

]

〈Bq
′

(t − τ )Bq (t)〉ee−iω
q′

p′
τ
. (31)

Introducing the secular approximation ωqp +ω
q ′

p′
= 0, so that

p = p′,q =−q ′, and renaming the indices reduces to the fol-
lowing:

σ̇ ∗S (t)=−
∑
p,q

+∞∫
0

dτ
[
S
−q
p ,S

q
pσ
∗

S (t)
]

〈B−q (t)Bq (t − τ )〉ee−iω
q
pτ

−

∑
p,q

+∞∫
0

dτ
[
σ ∗S (t)Sqp,S

−q
p

]
〈Bq (t − τ )B−q (t)〉ee−iω

q
pτ . (32)

The assumption that the bath is in a stationary state,
[HB,ρ

e
B , ] = 0, confers some properties to the correlation

functions. Thus, the bath correlation functions are also sta-
tionary. Indeed, one has the following:

〈Bq (t)B−q (t + τ )〉e

= trB

{
eiHBtBqe−iHBteiHB(t+τ )B−qe−iHB(t+τ )ρeB

}
= trB

{
eiHB(t−τ )Bqe−iHB(t−τ )eiHBtB−qe−iHBtρeB

}
= 〈Bq (t − τ )B−q (t)〉e. (33)

In addition, because tr(AB)∗ = tr(B†A†), it is easy to show
the following:

〈Bq (t − τ )B−q (t)〉e∗ = 〈Bq (t)B−q (t − τ )〉e. (34)
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Besides, using the property that B−q = Bq†, as in the follow-
ing:

〈B−q (t)Bq (t − τ )〉e

=
1
L

∑
f,f ′

〈f |eiHBtB−qe−iHBt |f ′〉

〈f ′|eiHB(t−τ )Bqe−iHB(t−τ )e−βHB |f 〉

=
1
L

∑
f,f ′

〈f |B−q |f ′〉eif te−if
′t
〈f ′|Bq |f 〉

eif
′(t−τ )e−if (t−τ )e−βf

=
1
L

∑
f,f ′

〈f |B−q |f ′〉〈f ′|Bq |f 〉e−i(f
′
−f )τ e−βf

=
1
L

∑
f,f ′

|〈f ′|Bq |f 〉|2e−i(f
′
−f )τ e−βf , (35)

where the |f 〉 are the eigenstates of the bath Hamiltonian,
HB, and β = }

kT
, with the convention }= 1. In these equa-

tion, the notation L= trBe
βHB was introduced.

3 The Redfield equation is equivalent to the
Lindblad form of the relaxation equation

It is now straightforward to show that the conventional
Bloch–Redfield–Abraham perturbative approach of relax-
ation is equivalent to the Lindblad formulation of dissipative
systems. Indeed, by changing indices in the first term, using
the property ω−qp =−ω

q
p, and setting τ →−τ , one has, from

Eq. (32), the following:

σ̇ ∗S (t)=−
∑
p,q

0∫
−∞

dτ
[
S
q
p,S
−q
p σ ∗S (t)

]
〈Bq (t)B−q (t + τ )〉ee−iω

q
pτ

−

∑
p,q

+∞∫
0

dτ
[
σ ∗S (t)Sqp,S

−q
p

]
〈Bq (t − τ )B−q (t)〉ee−iω

q
pτ . (36)

Using the stationarity property (Eq. 33) of the bath correla-
tion functions leads to following:

σ̇ ∗S (t)=−
∑
p,q

0∫
−∞

dτ
[
S
q
p,S
−q
p σ ∗S (t)

]
〈Bq (t − τ )B−q (t)〉ee−iω

q
pτ

−

∑
p,q

+∞∫
0

dτ
[
σ ∗S (t)Sqp,S

−q
p

]
〈Bq (t − τ )B−q (t)〉ee−iω

q
pτ (37)

σ̇ ∗S (t)≈−
1
2

∑
p,q

+∞∫
−∞

dτ
[
S
q
p,S
−q
p σ ∗S (t)

]
〈Bq (t − τ )B−q (t)〉ee−iω

q
pτ

−
1
2

∑
p,q

+∞∫
−∞

dτ
[
σ ∗S (t)Sqp,S

−q
p

]
〈Bq (t − τ )B−q (t)〉ee−iω

q
pτ , (38)

so that, in the following:

σ̇ ∗S (t)≈−
1
2

∑
p,q

[
S
q
p,S
−q
p σ ∗S (t)

]
J
q,−q
R (ωqp)

−
1
2

∑
p,q

[
σ ∗S (t)Sqp,S

−q
p

]
J
q,−q
R (ωqp)

=

∑
p,q

J
q,−q
R (ωqp)

(
S
−q
p σ ∗S (t)Sqp

−
1
2

{
S
q
pS
−q
p ,σ ∗S (t)

})
, (39)

where the right spectral density J q,−qR (ωqp) of the bath is
given by the following:

J
q,−q
R (ωqp)=

+∞∫
−∞

dτ 〈BqB−q (τ )〉e−iω
q
pτ

=

+∞∫
−∞

dτCq,−qR (τ )e−iω
q
pτ , (40)

where {·, ·} denotes the anti-commutator. The operator ap-
pearing on the right-hand side of Eq. (39) is the Lindblad
dissipation super-operator, as follows:

L̂D[A,B] = A •B −
1
2

(BA •+•BA) , (41)

so that Eq. (39) becomes the following:

σ̇ ∗S (t)=
∑
p,q

J
q,−q
R (ωqp)L̂D

[
S
−q
p ,S

q
p

]
σ ∗S (t). (42)

Equation (42) (and Eq. 39) is a Lindblad equation (Lindblad,
1976; Alicki and Lendi, 2007), which is thus derived from
the usual quantized theory of relaxation (Bloch, 1957; Red-
field, 1957; Hubbard, 1961; Abragam, 1961).

The fact that this derivation leads to the Lindblad equation
is not obvious. In principle, one should not expect the pertur-
bative approach to yield an irreversible dissipative operator
equivalent to a Lindblad operator. In fact, this equivalence re-
quires the Markovian and the short correlation time assump-
tions that make the evolution equation depend on the density
operator at the present time t only and not in its previous
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history. Moreover, it also requires the secular approximation
that eliminates the time dependence of the spin operators of
the coupling Hamiltonian in Eq. (28), leading to Eq. (32).
The combination of these conditions lead to the semi-group
property and the Lindblad form of the relaxation operator.

Another point is worth mentioning. The properties of the
correlation functions that emerge through this procedure re-
flect the properties of the bath operators of the spin–bath cou-
pling Hamiltonian and, therefore, convey additional proper-
ties that are not implied by the structure of the Lindblad in
Eqs. (39) and (42). Such properties, arising from the non-
commutation of the bath operators and the fact that the lattice
is always in a stationary Boltzmann equilibrium (detailed in
Sect. 3.1 below and in Appendix B), ensure a detailed bal-
ance and that the stationary state of the spin system is com-
patible with the Boltzmann equilibrium of the lattice, that is,
the lattice temperature. In other words, the perturbative ap-
proach leads to a master equation of the Lindblad form, with
additional physical properties that bear constraints from the
lattice.

3.1 An alternative formulation (equivalent to Lindblad)

It is possible to obtain an alternative and completely equiva-
lent form of the Redfield equation. Expanding Eq. (32), one
obtains the following:

σ̇ ∗S (t)=−
∑
q

∞∫
0

dτS−qp S
q
pσ
∗

S (t)〈B−q (τ )Bq〉e−iω
q
pτ

+

∑
q

∞∫
0

dτS−qp σ ∗S (t)Sqp〈BqB−q (τ )〉e−iω
q
pτ

+

∑
q

∞∫
0

dτSqpσ ∗S (t)S−qp 〈B−q (τ )Bq〉e−iω
q
pτ

−

∑
q

∞∫
0

dτσ ∗S (t)SqpS
−q
p 〈B

qB−q (τ )〉e−iω
q
pτ . (43)

As above, the left-hand side spectral density function is de-
fined as follows:

J
−q,q
L (ω)=

∞∫
−∞

dτ 〈B−q (τ )Bq〉e−iωτ

=

∞∫
−∞

dτC−q,qL (τ )e−iωτ = e−βωJ q,−qR (ω), (44)

where β = }/kT (}= 1). The latter equations express a
Kubo kind of relation (Kubo, 1957), where J

−q,q
L (ω)=

e−βωJ
q,−q
R (ω). A proof thereof is given in the Appendix (see

Eqs. B1 and B3). After some straightforward manipulations,

one obtains the following:

σ̇ ∗S (t)=−
1
2

∑
q

S
−q
p S

q
pσ
∗

S (t)e−βω
q
pJ

q,−q
R (ωqp)

+
1
2

∑
q

S
−q
p σ ∗S (t)SqpJ

q,−q
R (ωqp)

+
1
2

∑
q

S
q
pσ
∗

S (t)S−qp e−βω
q
pJ

q,−q
R (ωqp)

−
1
2

∑
q

σ ∗S (t)SqpS
−q
p J

q,−q
R (ωqp). (45)

Thus, by collecting and rearranging terms, one obtains the
following:

σ̇ ∗S (t)=
1
2

∑
q

J
q,−q
R (ωqp)

([
S
−q
p ,σ ∗S (t)Sqp

]
−

[
S
−q
p ,S

q
pσ
∗

S (t)
]
e−βω

q
p

)
. (46)

The Boltzmann factor can be expanded in a series, as follows:

σ̇ ∗S (t)=−
1
2

∑
q

J
q,−q
R (ωqp)

[
S
−q
p ,

[
S
q
p,σ
∗

S (t)
]]

−
1
2

∑
q

J
q,−q
R (ωqp)[

S
−q
p ,S

q
pσ
∗

S (t)
∞∑
n=1

1
n!

(−βωqp)n
]
. (47)

The first term on the right-hand side of this equation is the
usual double commutator and the symmetry, while the sec-
ond term represents the thermal effect of the Boltzmann equi-
librium of the lattice. This term, equal to 1− exp(−βωqp),
vanishes for infinite temperature.

4 A pseudo-classical version of the Redfield
equation

A semi-classical version of the master equation can be ex-
tremely useful, allowing one to make use of models derived
from the framework of classical mechanics to calculate the
spectral density functions. In order to obtain such a theory
associated to Eqs. (39) and (42), additional adjustments are
necessary. Indeed, because the B−q (τ ) operators do not com-
mute, the correlation functions of the type 〈B−q (τ )Bq〉 do
not obey the general symmetry rules of classical correla-
tion functions. However, symmetrized correlation functions
do commute, and so these symmetrized (quantum mechani-
cal) correlation functions should be introduced in order to ob-
tain a semi-classical theory (which we call pseudo-classical
to distinguish it from the theory where the effect of the bath
is taken into account only through random functions). A gen-
eral definition of the classical correlation function of two dy-
namical variables A and B is as follows (Evans and Moriss,
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2008):

CAB (t)= 〈A(t)B∗〉, (48)

where the brackets indicate classical ensemble average. In
the case of stationary processes, the following properties of
a correlation function can be deduced. Its complex conjugate
C∗AB (t) is, therefore, as follows (Evans and Moriss, 2008):

C∗AB (t)= 〈A(t)B∗〉∗ = 〈A∗(t)B〉 = 〈A∗B(−t)〉

= CBA(−t). (49)

For an autocorrelation function of A and CAA(t), one has the
following:

CAA(t)∗ = CAA(−t). (50)

Equation (50) shows that, in the general case
where the autocorrelation function is complex,
CAA(t)= CrAA(t)+ iCiAA(t), with CrAA(t)= Re(CAA(t))
and CiAA(t)= Im(CAA(t)) are even and odd func-
tions of time, since C∗AA(t)= CrAA(t)− iCiAA(t)=
CrAA(−t)+ iCiAA(−t). This implies that the associated
spectral density, J (ω)=

∫
+∞

−∞
CAA(t)e−iωtdt is real and

J (ω)= J eAA(ω)+ J oAA(ω), J eAA(ω)=
∫
+∞

−∞
CrAA(t)e−iωtdt ,

and J oAA(ω)= i
∫
+∞

−∞
CiAA(t)e−iωtdt are real and, respec-

tively, even and odd functions.
A semi-classical relaxation theory should provide spectral

density functions obeying the general classical mechanics re-
quirements detailed above. It is clear, however, that in the
quantum case, where A and B are in general non-commuting
operators, the above symmetry relations do no apply. It is
nevertheless possible to define a symmetrized correlation
function as follows:

CAB (t)=
1
2

{
〈A†B(t)〉+ 〈B†A(−t)〉

}
, (51)

which is real when CAB (t) is stationary. Note also that the
bath operator correlation functions have the following prop-
erty:

〈BqBq
′

(τ )〉∗ = tr{BqeiHBτBq
′

e−iHBτρe}∗

= tr{ρeeiHBτBq
′†e−iHBτBq†

}

= 〈Bq
′†(τ )Bq†

〉 = 〈Bq
′†Bq†(−τ )〉, (52)

where correlation functions are assumed stationary, so that,
in the following:

〈BqB−q (τ )〉∗ = 〈Bq (τ )B−q〉 = 〈BqB−q (−τ )〉 (53)
〈B−qBq (τ )〉∗ = 〈B−q (τ )Bq〉 = 〈B−qBq (−τ )〉. (54)

Using the definitions C
−q,q
L (τ )= 〈B−q (τ )Bq〉 and

C
q,−q
R (τ )= 〈BqB−q (τ )〉, the relations in Eqs. (53) and (54)

show that the average Cq (τ )= 1
2 (C−q,qL (τ )+Cq,−qR (τ )) obey

the classical correlation function propertyCq∗(τ )= Cq (−τ ).

A semi-classical version of the Redfield equation is thus
obtained by using the spectral density function J q (ω) ob-
tained from the Fourier transform of the symmetrized cor-
relation function Cq (τ ), as follows:

J q (ω)=
1
2

(
J
q,−q
R (ω)+ J−q,qL (ω)

)
=

1
2

(
J
q,−q
R (ω)+ e−βωJ q,−qR (ω)

)
=

1+ e−βω

2
J
q,−q
R (ω). (55)

Using Eqs. (55) and (45), it is therefore possible to derive an
alternative expression of the master equation. This gives the
following:

σ̇ ∗S (t)=−
∑
q

S
−q
p S

q
pσ
∗

S (t)
e−βω

q
p

1+ e−βω
q
p

J q (ωqp)

+

∑
q

S
−q
p σ ∗S (t)Sqp

1

1+ e−βω
q
p

J q (ωqp)

+

∑
q

Sqσ ∗S (t)S−qp
e−βω

q
p

1+ e−βω
q
p

J q (ωqp)

−

∑
q

σ ∗S (t)SqpS
−q
p

1

1+ e−βω
q
p

J q (ωqp), (56)

or the following:

σ̇ ∗S (t)=−
∑
q

S
−q
p S

q
pσ
∗

S (t)
1

1+ eβω
q
p

J q (ωqp)

+

∑
q

S
−q
p σ ∗S (t)Sqp

1

1+ e−βω
q
p

J q (ωqp)

+

∑
q

S
q
pσ
∗

S (t)S−qp
1

1+ eβω
q
p

J q (ωqp)

−

∑
q

σ ∗S (t)SqpS
−q
p

1

1+ e−βω
q
p

J q (ωqp). (57)

Finally, from collecting and rearranging terms, one obtains
the following:

σ̇ ∗S (t)=
1
2

∑
q

J q (ωqp)
([
S
−q
p ,σ ∗S (t)Sqp

] 1

1+ e−βω
q
p

−

[
S
−q
p ,S

q
pσ
∗

S (t)
] 1

1+ eβω
q
p

)
. (58)

In view of clarifying the connection between the derivation
of the quantum mechanical master equation to further semi-
classical approximations, it is interesting to rewrite Eq. (58)
by expanding the temperature function in terms of the param-
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eters βωqp, as follows:

σ̇ ∗S (t)=
1
2

∑
q

J q (ωqp)([
S
−q
p ,σ ∗S (t)Sqp

](1
2
+
βω

q
p

4
−

(βωqp)3

48

)

−

[
S
−q
p ,S

q
pσ
∗

S (t)
](1

2
−
βω

q
p

4
+

(βωqp)3

48

))

=
1
4

∑
q

J q (ωqp)
[
S
−q
p ,

[
S
q
p,σ
∗

S (t)
]]

+
1
2

∑
q

J q (ωqp)

(
βω

q
p

4
−

(βωqp)3

48
+ ·· ·

)
[
S
−q
p ,

{
S
q
p,σ
∗

S (t)
}]
. (59)

Equation (59) contains a double commutator term weighted
by the spectral densities J q (ωqp), which are constructed so as
to obey the general symmetry properties of classical spectral
density functions (see Eq. 48 and below) and are therefore
adapted to a semi-classical version of the relaxation master
equation. Then, the J q (ω) are obtained from classical lat-
tice functions of a fluctuating Hamiltonian, whilst the semi-
classical master equation obeys detailed balance. The second
term of Eq. (59) introduces a lattice-temperature-dependent
contribution. However, this term vanishes when the bath
operators of the spin–bath coupling Hamiltonian commute,
[B−q ,Bq ] = 0. According to Eq. (B3), the latter condi-
tion also implies that one has the equality of J−q,qL (ω)=
J
q,−q
R (ω), meaning that the lattice temperature is infinite.

Stated otherwise, this means that a finite lattice temperature
is incompatible with commuting bath operators. However, in
general, [B−q ,Bq ] 6= 0, so that a detailed balance assump-
tion, or property, which is ensured by the model of a bath
in thermal Boltzmann equilibrium, is conveyed to the spin
system through the non-commutation of the bath operators
Bq . Each term in the series expansion on the right-hand side
of Eq. (59) explicitly gives the effect of non-commutation at
each order of the parameter βωqp. The first-order approxima-
tion provides the adequate expression in the high temperature
limit (see below).

The final relaxation super-operator, which defines the re-
laxation of the density matrix as σ̇ ∗S (t)= 0̂σ ∗(t), may be
written as follows:

0̂ =−
1
4

∑
q,p

J q (ωpq )D̂β (ωqp)
[
S
−q
p ,S

q
p

]
. (60)

Here, D̂β is the thermalized double commutator super-
operator that composes the super-operator from the two op-
erators A,B in the following way:

D̂β (ω) [A,B]=
[
A,fβ (ω)B •−•Bfβ (−ω)

]
, (61)

where fβ (ω)= 2
1+eβω , and the dot is the place for the op-

erator on which super-operator is applied. It is easy to see
that when T →∞, then fβ (ω)→ 1, and the D̂β (ω) becomes
a double commutator super-operator, and Eq. (60) becomes
a standard sum of the double commutator super-operators.
This equation is completely equivalent to Eqs. (42) and (47).
Nevertheless, the form of the Lindblad dissipator is still eas-
ily recognizable, as one may substitute Eq. (55) into Eq. (42)
and obtain the following:

σ̇ ∗S (t)=
∑
p,q

fβ (ωqp)J q,−q (ωqp)L̂D
[
S
−q
p ,S

q
p

]
σ ∗S (t).

Equation (58) partially decouples the statistical and dy-
namical properties of the heat reservoir. Statistical properties,
unrelated to the dynamics, which are functions of the tem-
perature, are contained in the temperature factors, whereas
the information about quantum mechanical bath dynamics is
contained in the Fourier transform of the symmetrized (here
1
2 (J q,−qR + J

−q,q
L )) correlation functions. However, the latter

still implicitly depend on the temperature through the trace
over the bath degrees of freedom.

The case of real correlation functions

The above form of the relaxation master equation (Eqs. 58–
60) is suitable for semi-classical approximations of relax-
ation where classical correlation functions can be used in-
stead of quantum ones that are, in general, impossible to cal-
culate or compute. It is often the case that the classical corre-
lation functions, calculated from classical models of dynam-
ics, such as diffusion, jumps, etc., are real functions of time.
The condition of Eq. (50) then implies that the spectral den-
sity function J q (ω) is even J q (−ω)= J q (ω).

5 Simplifications in the high temperature
approximation

When the largest eigenvalue of the operators Sqp is such that
max(βωqp)� 1, then Eq. (58) takes a simpler form, as fol-
lows:

σ̇ ∗S (t)=
1
4

∑
q

− J q (ωqp)
[
S
−q
p ,

[
S
q
p,σ (t)

]]
+
βω

q
p

2
J q (ωqp)

[
S
−q
p ,

{
S
q
p,σ (t)

}]
(62)

where {., .} denotes the anti-commutator.

5.1 The low-order approximation

The assumption that the density operator is always close
to the fully disordered state, ||σ − 1

A
|| � 1, where A is the

dimension of the density operator, was made by Redfield
(1957). Limiting the expansion to the zeroth order, Eq. (62)
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becomes the following (Hubbard, 1961):

σ̇ ∗S (t)=
1
4

∑
q

− J q (ωqp)
[
S
−q
p ,

[
S
q
p,σ (t)

]]
+
βω

q
p

A
J q (ωqp)

[
S
−q
p ,S

q
p

]
. (63)

Moreover, using the property, Eq. (29), and the Taylor ex-
pansion of the exponential, it is straightforward to show the
following:

e−βHSS
q
pe
βHS = e−βω

q
pS

q
p. (64)

Therefore, when the density operator is in the thermal
equilibrium determined by the Hamiltonian HS, σ eq

=

trB(exp−βHS )−1exp−βHS , one can show that Rσ eq
= 0,

where R is defined by Eq. (58). Then, discarding terms that
are second order or higher in max(βωqp)� 1, in Eq. (62), one
obtains the semi-classical formulation of the Redfield equa-
tion as follows (Abragam, 1961):

d
dt

(σ ∗S (t)− σ eq)=

−
1
2

∑
q,p

J q (ωqp)
[
S
−q
p ,

[
S
q
p,σ (t)− σ eq]] . (65)

The evolution of the expected value of an operator is given
by the alternative master equation as follows:

d
dt
〈O〉 =

1
4

∑
q

− J q (ωqp)
〈[
S
q
p,
[
S
−q
p ,O

]]〉
+βω

q
p

∑
q

J q (ωqp)
〈{
S
q
p,
[
O,S−qp

]}〉
. (66)

In this expression, the second term on the right-hand side
contains the thermal contributions to relaxation and can be
selectively neglected for terms that are higher than the first
order in βωqp. That is, each term in the development is such
that, in the following:

tr
({
S
q
p,
[
O,S−qp

]}
σ (t)

)
�min

(
tr
([
S
q
p,
[
S
−q
p ,O

]]
σ (t)

))
, (67)

which, at all times, can be discarded. Eq. (67) is, in principle,
a less stringent condition and may provide criteria for the
quasi- or pseudo-classical approximation, which is a test that
can be verified a posteriori. It may, thus, provide a way to
select which parts of the density operator can be discarded
(neglected) and which must be retained in order to obtain an
approximate analytical solution.

5.2 The simple case of a two-spin system

5.2.1 Double commutator versus thermal contributions

The differences in the contributions between the first (dou-
ble commutator) and the second (thermal) series of terms in

Figure 1. Expected values of the magnetization spin operator
O = Iz+ Sz, with the contributions of the double commutator (red
curves) and thermal (blue curves) parts of the Redfield relaxation
operator to the magnetization from the different operators Sqp (see
Table C1). Panels (a) and (b) correspond, respectively, to the dipolar
and random field relaxation of the spins inverted from a Boltzmann
equilibrium. Panels (c) and (d) correspond, respectively, to the dipo-
lar and random field relaxation of the spins initially prepared in a
singlet state. Simulations were performed using the Scilab software
(https://scilab.org, last access: 31 January 2022).

Eq. (66) are illustrated in Figs. 1 and 2 in the case of a pair
of like spins 1

2 subject to the relaxation caused by a mutual
dipolar (dipole–dipole – DD) interaction and the presence
of a randomly fluctuating field (ran). Simulations were per-
formed, assuming Lorentzian spectral density functions, as
follows:

J cl
DD, ran(ω)=

2τC,ran

1+ω2τ 2
C, ran

, (68)

with correlation times τran = 60 ps and τC = 8 ps for the ran-
dom field and dipolar interactions, respectively. The dipo-
lar coupling constant b12 =−(µ0/4π )γ 2

I }r
−3
12 refers to the

dipole–dipole coupling constant, where γI is the gyromag-
netic ratio, and r12 is the internuclear distance. In these simu-
lations, b12 = 35×103 Hz. These values were chosen to give
T1 ≈ 2 s and TS ≈ 20 s.

Contributions from both relaxation mechanisms to the ex-
pected values in Eq. (66) were computed for the spins pre-
pared either in a singlet state or inverted from thermal equi-
librium. The individual terms entering the first and second
sums on the right-hand side of Eq. (66) are depicted for the
case of the magnetization O = Iz+ Sz (Fig. 1) and singlet
state O = 1

4 1− I ·S (Fig. 2) operators. The time evolutions
of all the contributions to the rate of change of the expected
value of the operator O(t) are depicted. When the spins are
initially prepared in the state −(Iz+ Sz), the thermal contri-
bution (blue curve) to the rate of change of the magnetization
has no effect, and the only contribution to d〈O〉(t)

dt comes from
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Figure 2. Same as Fig. 1 for the expected value of the singlet oper-
ator O = 1

4 1− I ·S.

the double commutator (red curve). This is the case for both
relaxation mechanisms, i.e., dipolar and random field fluctu-
ations (Fig. 1a and b). Moreover, the values chosen for the
simulation imply that the dipolar contribution (of the double
commutator in this case) to the total relaxation rate 〈Ȯ〉(t) is
much larger than the one of the random field.

The situation is strikingly different when the spins are
initially prepared in a singlet order. Here, the thermal cor-
rection (blue) is negligible with respect to the double com-
mutator (red) contribution to the rate of change 〈Ȯ〉(t) for
the dipole–dipole mechanism only (Fig. 1c). In contrast, for
terms originating from the random field relaxation, both ther-
mal and dipolar terms are of comparable orders of magnitude
(Fig. 1c). These are the terms that cannot be neglected in an
approximate solution of Eq. (66). Figure 1c also shows that
the dipolar contribution to 〈Ȯ〉(t) increases with time, which
is consistent with the progressive depletion of the singlet or-
der (immune to dipolar relaxation). And, for random relax-
ation, which mainly affects the singlet order in this example,
Fig. 1d illustrates the fact that the weight of the thermal con-
tribution decays with time, with the concomitant increase in
the double commutator term, which is also due to the pro-
gressive depletion of the singlet order.

The situation depicted in Fig. 2 is different and shows
the rate of change of the expected value 〈O〉(t), where O =
1
4 (I ·S), for the same initial state conditions as above. In
this case, the dipole–dipole simply does not contribute to
〈Ȯ〉(t), as expected from symmetry considerations. This is,
of course, the case whatever the initial state (inverted magne-
tization; see Fig. 2a) or singlet order (Fig. 2c). This illustrates
the known fact that singlet state is immune to dipolar relax-
ation for symmetry reasons.

Alternatively, when the spins are prepared in the−(Iz+Sz)
state, both thermal and double commutators contribute, albeit

a negligible amount, showing that the spins evolve mostly
towards magnetization (compare the scales with Fig. 1b) and
that only a negligible part is transferred to a singlet order.

Interestingly, Fig. 2d shows that there is no thermal con-
tribution (blue) to the rate 〈Ȯ〉(t), and that, starting from a
singlet order, its evolution can be predicted by discarding the
thermal terms of Eq. (66) and, therefore, retaining the sim-
ple double commutator expression for the relaxation master
equation.

5.2.2 Singlet–triplet conversion

The recent achievement of the Lindblad approach was the de-
scription of the magnetization relaxation of a two-spin sys-
tem prepared in a singlet state (Bengs and Levitt, 2020).
In that paper, detailed balance was enforced through the
Schofield (1960) procedure, whereby spectral density func-
tions are built from classical ones through the following
transformation:

J (ω)L,R→ J cl(ω)e−
βω
2 , (69)

where J cl(ω) refers to the classical spectral density func-
tion. Equation (69) is one among several that have been
proposed to make classical spectral density functions asym-
metric so as to obey the detailed balance condition (White
et al., 1988; Egorov and Skinner, 1998; Egorov et al., 1999;
Ramirez and López-Ciudad, 2004; Frommhold, 1993). In
Bengs and Levitt (2020), J (ω) was assumed to be any kind of
spectral density function obtained through classical models,
such as diffusion jumps, etc. The distinction between the left
and right spectral densities that appear in the course of the
conventional perturbative derivation of the master equation
was not made there. Moreover, the detailed balance condi-
tion appears as an additional requirement, as this condition
is not implied by Lindblad’s approach that merely provides
the general mathematical structure of the evolution equa-
tion obeyed by the density operator that complies with the
requirements of quantum mechanics in the presence of a
Markovian dissipative process (Lindblad, 1976; Alicki and
Lendi, 2007).

In the following, we derive the evolution of the magne-
tization of a two-spin system, using the singlet–triplet pop-
ulation basis, and compare the results obtained by both ap-
proaches. As above (and in Bengs and Levitt, 2020) the relax-
ation super-operator 0̂ is the sum of contributions from mu-
tual dipole–dipole relaxation (0̂DD) and the interaction with
a partially correlated random field (0̂ran), as follows:

0̂ = 0̂DD+ 0̂ran. (70)

The irreducible tensor operator Tλµ representation is bet-
ter suited to deriving analytical solutions for the problem at
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hand, where 0̂ is expressed, according to Eq. (61), as follows:

0̂DD =
6
5
b2

12

µ=2∑
µ=−2

J cl
DD(µω0)D̂β (µω0)

[
T

(12)†
2µ ,T

(12)
2µ

]
,

0̂ran =

2∑
i,j=1

κijω
(i)
rmsω

(j )
rms

µ=1∑
µ=−1

J cl
ran(µω0)D̂β (µω0)

[
T

(i)†
1µ ,T

(j )
1µ

]
. (71)

The Tλµ are eigenoperators of the main Zeeman–
Hamiltonian, and their expressions are shown in Appendix C.
ω

(i)
rms is the root mean square fluctuation of the random field

acting on spin Ii , and in the isotropic case considered here,
it is identical for both nuclei, so that ω(1)

rms = ω
(2)
rms. The co-

efficient −1≤ κ12 ≤ 1 describes the degree of correlation of
the random field fluctuations on the 1 and 2 nuclei. By def-
inition, κ11 = κ22 = 1. In order to simplify the notations, we
will henceforth drop the subscript (κ12→ κ).

In the extreme narrowing regime, where ωτC, ran� 1, the
spectral densities become frequency independent and J (ω)≈
2τ . The dipole–dipole and random field contributions to the
longitudinal relaxation rate constant R1 = R

DD
1 +R

ran
1 are

given by, according to Eq. (61), the following:

RDD
1 =−

(Iz|0̂DD|Iz)
(Iz|Iz)

=
3

20
b2

12τC
(
4fβ (2ω0)+ 4fβ (−2ω0)

+fβ (ω0)+ fβ (−ω0)
)

=
3
2
b2

12τC,

Rran
1 =−

(Iz|0̂ran|Iz)
(Iz|Iz)

= ω2
rmsτran

(
fβ (ω0)+ fβ (−ω0)

)
= 2ω2

rmsτran, (72)

where fβ (ω)= 2
1+eβω . Equations (72)–(77) were obtained

using the SpinDynamica software (Bengs and Levitt, 2018).
It is interesting to note that, in this model, the relaxation rates
do not depend on the temperature, which is in contrast to
Bengs and Levitt (2020). This is not due to any approxima-
tion; rather, it arises from the fact that fβ (ω)+ fβ (−ω)= 2,
which is explicit in Eq. (72). Similarly, the singlet order re-
laxation rate is given by the following:

RS = R
ran
S =−

(I1I2|0̂ran|I1I2)
(I1I2|I1I2)

= 4ω2
rmsτran(1− κ), (73)

which does not depend on the temperature. For sake of com-
parison with the results of Bengs and Levitt (2020), we use
the singlet–triplet population basis, where the singlet and

triplet states are defined as follows:

|S0〉 = (|α1β2〉− |β1α2〉)/
√

2,

|T+1〉 = |α1α2〉,

|T0〉 = (|α1β2〉+ |β1α2〉)/
√

2,
|T−1〉 = |β1β2〉, (74)

where |α〉 and |β〉 denote the Zeeman spin states of an iso-
lated spin 1/2 (one-half) nucleus with z projection of +1/2
and −1/2. In this representation, the population block of re-
laxation super-operator Eq. (71) is given by Eq. (76).

In Eq. (76), 6i denotes the sum of the terms alongside
respective column. This matrix is very similar to one intro-
duced in Bengs and Levitt (2020) but with the substitution of
the term θ (ω)= exp(−βω/2) by fβ (ω).

In the high temperature limit, both terms become approxi-
mately equal, θ (ω)≈ fβ (ω)≈ 1− βω

2 , and the difference be-
tween θ (ω) and fβ (ω) becomes significant only in the case
of extremely low temperatures or very high frequencies. As
could be expected in this limit, the time evolution of the
zmagnetization is given by the same bi-exponential behavior
as in Bengs and Levitt (2020), as follows:

〈Iz(t)〉/〈I
eq
z 〉 ≈ 1+A1e

−R1t +ASe
−RSt , (77)

with the same coefficients A1 =
RS

2(R1−RS) and AS =
−2R1+RS
2(R1−RS) . The fact that A1 and AS are the ones found in
Bengs and Levitt (2020) is expected because, in this limit,R1
and RS do not depend on the temperature factor. In the usual
conditions of high but not infinite temperature, it is found
that the next nonzero terms in the expansions of A1(β) and
AS(β) are of the degree β2 and, therefore, do not contribute
in the regime where ωβ� 1. These expressions can be found
in Appendix D.

The foregoing discussion has shown that, in the high tem-
perature approximation, the exact thermalization procedure
of the spectral density function is irrelevant, as all mod-
els are equivalent in these conditions. Indeed, in a field of
23.5 T (1000 MHz resonance proton frequency), the temper-
ature at which }ωH ≈ kT , where both approaches may lead
to significant differences, is T ≈ 50 mK. These are unrealis-
tic experimental conditions. Alternatively, the master equa-
tion of Eqs. (58)–(61) may well be of use in the context of
dynamic nuclear polarization (DNP) to describe the electron
spin–lattice relaxation outside of the high temperature limit
through direct spin–phonon coupling at temperatures below
4 K and at high fields, where this process is predominant.

6 Conclusion: a remark on semi-classical theory

In the semi-classical viewpoint (as in Abragam, 1961, for in-
stance), the effect of the bath is taken into account through
a stochastic spin Hamiltonian, the spatial part of which is
a function of the lattice variables and is a random function
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of time. It is usually understood that this approach does not
comply with the Boltzmann equilibrium of the bath. Besides,
the stationary state reached by the spin density operator is left
undetermined by the master equation so that it must be en-
forced by the supplementary ad hoc assumption that the spins
return to the Boltzmann distribution of the spin populations.
A recent analysis by Bengs and Levitt (2020) showed that
the usual semi-classical master equation was not able to pre-
dict the correct magnetization evolution of a two-spin system
prepared in a singlet state.

Thus, the usual semi-classical inhomogeneous master
equation provides erroneous predictions in this case. The lat-
ter is obtained when the thermal corrections to the double
commutator part of the relaxation operator are retained to

the first order in the largest eigenvalue ω
q
p

kT
, and the relax-

ation operator reduces to a double commutator (low-order
case). However, the equilibrium density operator is not a sta-
tionary solution in this case, and therefore, a correction term
is added to the master equation, leading to the same result
as the usual semi-classical master equation (Hubbard, 1961).
And so, when the low-order assumption is not verified, as in
the case of a spin system prepared in the singlet state, this
description becomes inconsistent.

As shown above, the non-commutation of the bath op-
erators has critical consequences, leading to the lattice-
temperature-dependent terms in the master equation, and it
is only when the bath operators [B−q (t),Bq (0)] = 0 that one
recovers the double commutator expression, with the ad-
ditional property JL(ω)= JR(ω), so that the Kubo relation
imposes an infinite lattice temperature. This illustrates how
the finite temperature of the lattice is conveyed to the spins
through non-commutation of the bath operators of the cou-
pling Hamiltonian.

The conventional semi-classical approach, where spin–
bath interactions are represented by random spin Hamilto-
nians, has the following two simultaneous consequences: the
structure of the relaxation operator is affected in such a way

that the master equation takes the form of a double commu-
tator, and since JL(ω)= JR(ω), the system cannot evolve to
a thermodynamic equilibrium associated with a finite tem-
perature. In this case, the detailed balance property is con-
served but only in the special case of infinite lattice temper-
ature. In fact, since the detailed balance is statistical by na-
ture, it is per se compatible with a semi-classical approach.
If, on the other hand, a detailed balance is taken into ac-
count in the semi-classical theory of NMR relaxation, so that
J (−ω)= e−}ω/kT J (ω) and the general relations Eq. (48)
or (50) obeyed by correlation functions are retained, then it
is easy to show from the symmetry properties of the spec-
tral density function that the semi-classical Redfield equation
(Abragam, 1961) in the following:

σ̇ ∗S (t)=−
1
2

∑
q,p

J (ωqp)
[
S
−q
p ,

[
S
q
p,σ (t)

]]
, (78)

is obeyed with this definition of J (ω). However, the ex-
pected equilibrium density operator is not a stationary state
of Eq. (78) in this case, which illustrates the (also known)
fact that this condition alone is insufficient to completely de-
termine the transition probabilities of the bath in the absence
of a dynamical model for the latter. On the other hand, it
is possible to describe the dynamics of a classical system
where microscopic irreversibility, i.e., detailed balance, is
ensured. This is straightforward from the definition of the
correlation function of a phase variable in classical mechan-
ics, 〈A(t)B∗〉 =

∫
dqdpρeB∗eiLtA, where L is the classical

Liouvillian acting on the phase space (Evans and Moriss,
2008). In addition, general procedures have been used that
provide Fokker–Planck or master equations for diffusion that
obey the detailed balance condition, yielding classical spec-
tral density functions that comply with the Boltzmann equi-
librium distribution and the classical laws of motion of the
bath (see, for instance, VanKampen, 1981; Risken, 1972;
Wassam et al., 1980), in particular in the context of mag-
netic resonance (Stillman and Freed, 1980). As stated in sev-
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eral instances in this work, in the fully quantum approach,
detailed balance is ensured by assuming that the bath is in
a stationary state defined by a Boltzmann distribution of its
energy states. Thus, the irreducible difference between the
semi-classical and the fully quantized theory lies in the fact
that the bath operators do not mutually commute, which pre-
vents the expression in Eq. (26) from reducing to the double
commutator. Both thermodynamic and quantum mechanical
effects are thus entangled in the fully quantum mechanical
treatment of relaxation.

Appendix A: Derivation of Eq. (19)

d
dt
σ (t)

= LSσ (t)+ eLSt

t∫
0

dt ′trB
{
L∗1(t)L∗1(t ′)ρeB

}
σ ∗(t) (A1)

= LSσ (t)

+

t∫
0

dt ′trB

{
eLStL∗1(t)L∗1(t ′)ρeB

}
e−tLSσ (t) (A2)

= LSσ (t)+

t∫
0

dt ′trB

{
eLSte−(LS+LB)tL1e

(LS+LB)t

e−(LS+LB)t ′L1e
(LS+LB)t ′e−tLSρeB

}
σ (t) (A3)

= LSσ (t)+

t∫
0

dt ′trB

{
e−LBtL1e

(LS+LB)te−(LS+LB)t ′

L1e
(LS+LB)t ′e−tLSρeB

}
σ (t) (A4)

= LSσ (t)+

t∫
0

dt ′trB

{
L1e

(LS+LB)te−(LS+LB)t ′

L1e
(LS+LB)t ′e−tLSe−LBtρeB

}
σ (t) (A5)

= LSσ (t)+

t∫
0

dt ′trB

{
L1e
−(LS+LB)(t ′−t)

L1e
(LS+LB)(t ′−t)ρeB

}
σ (t). (A6)

In this derivation, the invariance of the trace to the circu-
lar permutations has been used, together with the fact that
[LB,ρ

e
B] = 0, since the bath is in a stationary state.

Appendix B: Evaluation of the terms of Eq. (44)

The correlation functions involved in Eq. (43) are as follows:

1
2
J
q,−q
R (ωqp)

=

∞∫
0

dτ 〈BqB−q (τ )〉e−iω
q
pτ

=

∞∫
0

dτ
1
L

∑
f,f ′

〈f |Bq |f ′〉〈f ′|B−q |f 〉

ei(f
′
−f )τ e−βf e−iω

q
pτ

=

∞∫
0

dτ
1
L

∑
f,f ′

|〈f |Bq |f ′〉|2ei(f
′
−f )τ e−βf e−iω

q
pτ

≈
1
2

1
L

∑
f,f ′

|〈f |Bq |f ′〉|2e−βf

∞∫
−∞

ei(f
′
−f−ω

q
p)τdτ

=
1
2

1
L

∑
f,f ′

|〈f |Bq |f ′〉|2e−βf δ(f ′− f −ωqp)

=
1
2

1
L

∑
f

|〈f |Bq |f +ω
q
p〉|

2e−βf , (B1)

since B−q = Bq†. Similarly, one has the following:

1
2
J
−q,q
L (ωqp)

=

∞∫
0

dτ 〈B−q (τ )Bq〉e−iω
qτ

=
1
L

∑
f,f ′

〈f |B−q |f ′〉〈f ′|Bq |f 〉e−βf

∞∫
0

dτei(f−f
′)τ e−iω

qτ

=
1
2

1
L

∑
f,f ′

|〈f |B−q |f ′〉|2e−βf

∞∫
−∞

ei(f−f
′
−ωq )τ

=
1
2

1
L

∑
f,f ′

|〈f |B−q |f ′〉|2e−βf δ(f − f ′−ωq ). (B2)

Noting that |〈f |B−q |f ′〉| = |B−q
f f ′
| = |B

q†
f f ′
| = |B

q∗

f ′f
| =

|B
q

f ′f
|, and exchanging indices f ↔ f ′, one obtains, from

Eq. (B2) the following:
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1
L

∑
f,f ′

|〈f |B−q |f ′〉|2e−βf δ
(
f − f ′−ω

q
p

)
=

1
L

∑
f,f ′

|〈f ′|Bq |f 〉|2e−βf δ
(
f − f ′−ω

q
p

)
=

1
L

∑
f,f ′

|〈f |Bq |f ′〉|2e−βf
′

δ
(
f ′− f −ω

q
p

)
=

1
L

∑
f

|〈f |Bq |f +ω
q
p〉|

2e−β
(
f+ω

q
p

)

= e−βω
q
p

1
L

∑
f

|〈f |Bq |f +ω
q
p〉|

2e−βf

= e−βω
q

JR (ωqp) . (B3)

Besides, it immediately follows from the definitions of J qR (ω)
and J qL (ω) so that, in the following:

J
q
R (−ω)= J−qR (ω). (B4)

Appendix C: Eigenoperators for a homonuclear
coupled spin 1/2 pair

In the case of a homonuclear spin pair, the main Hamiltonian
is defined as follows:

HZ = ω
0 (I1z+ I2z) , (C1)

where ω0
=−γB, γ is the magnetogyric ratio, and B is the

field strength. The eigenoperators for this Hamiltonian are
summarized in Table C1. The eigenoperators are denoted by
T

(ij )
λµ . The superscript (ij ) indicates the angular momentum

coupling of spins Ii and Ij , resulting in a spherical tensor
operator of the total angular momentum λ and z-angular mo-
mentum µ.

Table C1. Eigenoperators of Hamiltonian for a homonuclear cou-
pled spin 1/2 pair.

µ\λ 2 1

± 2 1
2 I
±

1 I
±

2 –

± 1 ∓

(
I±1 I

z
2 + I1zI

±

2

)
∓

1√
2
I±
j

0 −
1

2
√

6

(
I+1 I
−

2 + I
−

1 I
+

2 − 4I1zI2z
)

Ijz

Appendix D: Expansion coefficient for the
magnetization evolution solution

The coefficients from the Eq. (77) are in fact temperature
dependent, as follows:

A1(β)= A1+C1β
2
+O

(
β4
)

AS(β)= AS+CSβ
2
+O

(
β4
)
, (D1)

where the coefficients A1 and AS were shown before in the
main text, and the coefficients C1 and CS are defined as fol-
lows:

C1 =

ω2
0

RS
(
600R3

1 − 20R2
1
(
4416Rdd

1 + 35RS
)

−5RS

(
17280

(
Rdd

1
)2
+ 2958Rdd

1 RS+ 5R2
S

)
+2R1

(
43488

(
Rdd

1
)2
+ 51120Rdd

1 RS+ 125R2
S

))
5760R1

(
150R1− 149Rdd

1 − 25RS
)

(R1−RS)2

CS =−C1. (D2)
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