
Supplement of Magn. Reson., 3, 43–51, 2022
https://doi.org/10.5194/mr-3-43-2022-supplement
© Author(s) 2022. CC BY 4.0 License.

Open Access

Supplement of

Radiation damping strongly perturbs remote resonances in the presence
of homonuclear mixing
Philippe Pelupessy

Correspondence to: Philippe Pelupessy (philippe.pelupessy@ens.psl.eu)

The copyright of individual parts of the supplement might differ from the article licence.

Contents

In this document several simulations are presented to illustrate the influence of various parameters on the RD effects during
homo-nuclear total correlation mixing. The first 6 figures show simulations with parameters close to the ones in figure 5 of the
main text (typically only one parameter has been varied). Figure 7 shows the trajectory of the solvent magnetization under the
same conditions as in figure 7 of the main text. Finally, the Python program used for these simulations is included.

– Figure SI1) Influence of relaxation of the solvent 2

– Figure SI2) Different mixing sequences 2

– Figure SI3) RF miss-calibration .. 3

– Figure SI4) Variation of the RF amplitude 3

– Figure SI5) Variation of the carrier frequency νRF 4

– Figure SI6) Different initial conditions 4

– Figure SI7) Evolution of the magnetization of H2O................ 5

– Code simulation program ...6-9

1

Figures

Figure SI1. Simulations of the evolution of the magnetization of the methyl resonance of DSS. Simulations with the same parameters as in
figure 5 of the main article, except for the inclusion of a transverse relaxation rate RA

2 of the abundant spins A.

Figure SI2. Simulations of the evolution of the magnetization of the methyl resonance of DSS. Simulations of different TOCSY mixing
sequences. Except for the type of mixing, all other parameters (RF and RD values) were the same as in figure 5 of the main text. The
maximum number of spin-lock cycles nM have been chosen to give approximately an equal maximum duration for the different sequences
(0.435 s, 0.440 s and 0.430 s for DIPSI-2, MLEV-16 and FLOPSY-16). The continuous wave (CW) spin-lock has been simulated as the
DIPSI-2 sequence but without changing the phases of the RF pulses in the pulse train.

2

Figure SI3. Simulations of the evolution of the magnetization of the methyl resonance of DSS. Simulations as in figure 5 of the main text in
order to apprehend the effects of pulse miss-calibrations and RF inhomogeneities. The RF amplitude deviates from the ideal one (4.17 kHz,
corresponding to a 90° pulse of 60 µs) by a percentage indicated on top of each graph. The duration of the pulses has not been changed.

Figure SI4. Simulations of the evolution of the magnetization of the methyl resonance of DSS. Influence of the RF amplitude of the DIPSI-2
spin-lock. The different RF amplitudes are shown on top of each graph. The RF amplitudes were perfectly calibrated, hence for a doubling
of the RF amplitude, the duration of the pulses must be halved. The maximum number of spin-lock cycles has been chosen as to keep the
maximum spin-lock duration equal. All other parameters are identical to the ones used in figure 5 of the main text. Increasing the amplitude
to 33.3 kHz (not shown) does only slightly change the aspect of the curves compared to 16.7 kHz.

3

Figure SI5. Simulations of the evolution of the magnetization of the methyl resonance of DSS. The offset of the carrier has been varied (only
during the mixing sequence) as shown on top of each graph. The graph where the carrier frequency is set to the methyl resonance corresponds
to figure 5 in the main text. The frequencies have been set on the water resonance frequency, in the center between the water and DSS, and
on the other side of the DSS resonance frequency. In the latter case the spin-lock on the water is inefficient and the effect is much weaker.

Figure SI6. Simulations of the evolution of the magnetization of the methyl resonance of DSS. The RF and RD parameters were the same
as those in figure SI5 (lower left corner). (left) The magnetization of both water and DSS is aligned along the x-axis just before the mixing
sequence. (right) The magnetization of water is aligned along the y-axis and the one of DSS along the x-axis. The latter graph is close to the
one in figure SI5 (lower left corner) with the role of the y and z magnetization interchanged. For clarity, the curves are also labeled with the
corresponding direction of the magnetization.

4

Figure SI7. Simulations of the evolution of the magnetization of the solvent resonance. The same parameters as in figure 7 of the main article
have been used.

5

Program

#!/usr/bin/python

"""
nonlinBlochRD.py5

Python program to calculate trajectories of magnetization in presence an RF
pulse train and radiation damping. A homonuclear system of two non-coupled
species of spins, of which only one causes radiation damping, is considered.

10
The program has been run with versions:

Python 3.10.1
Numpy 1.21.5
Scipy 1.7.315
Matplotlib 3.5.1

This code is provided for the purpose of checking and/or reproducing the
simulations of the publication "Radiation damping strongly perturbs remote
resonances in presence of homo-nuclear mixing" by Philippe Pelupessy in20
Magnetic Resonance and the supporting information and comes without any
warranty. If you use (part of) this code for your own work, please cite the
original publication.

2022 Philippe Pelupessy25
"""

Import necessary libraries
import numpy as np
import scipy as sp30
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp

def evolpassive(ini,iks,why,zed):
"""35
Rotation about an arbitrary axis: iks, why are vectors containing the
time-dependent x and y component of the RF field and, zed is the offset
which if we want could also be time dependent. ini is the initial density
operator (Mx(0),My(0),Mz(0)). The output x,y,z gives the time evolution of
the three components of the density operator.40
"""
theta = np.sqrt(iks**2+why**2+zed**2)
a = np.cos(theta/2)
temp = np.sin(theta/2)/theta
b = -temp*iks45
c = -temp*why
d = -temp*zed
aa,bb,cc,dd = a*a, b*b,c*c, d*d
ab,ac,ad = 2*a*b, 2*a*c, 2*a*d
bc,bd,cd = 2*b*c, 2*b*d, 2*c*d50
x,y,z = np.zeros(len(aa)+1),np.zeros(len(aa)+1),np.zeros(len(aa)+1)
x[0],y[0],z[0] = ini[0],ini[1],ini[2]
for i in range(len(aa)):

x[i+1] = ((aa[i]+bb[i]-cc[i]-dd[i])*x[i]+(bc[i]+ad[i])*y[i]+
(bd[i]-ac[i])*z[i])55

y[i+1] = ((bc[i]-ad[i])*x[i]+(ab[i]+cd[i])*z[i]+
(aa[i]-bb[i]+cc[i]-dd[i])*y[i])

z[i+1] = ((bd[i]+ac[i])*x[i]+(cd[i]-ab[i])*y[i]+
(aa[i]-bb[i]-cc[i]+dd[i])*z[i])

return x,y,z60

6

def blochRD(t, M, wx, wy, wz, wr, a, R):
"""
Modified bloch equations (only transverse relaxation included). The RD
field is given by the sx, sy, cx, cy terms.65
"""
x,y,z = M
sx = np.sin(a)*x*wr;cx = np.cos(a)*x*wr
sy = np.sin(a)*y*wr;cy = np.cos(a)*y*wr
return [wy*z - wz*y - cx*z + sy*z - R*x,70

wz*x - wx*z - cy*z - sx*z - R*y,
-wy*x + wx*y + cx*x+cy*y -sy*x+sx*y]

def main():
B0 = -600.1233 ## main field (minus sign for positive gyrom.)75
vH2O = 4.67 ## chemical shift H20 (ppm)
vDSS = -0.087 ## chemical shift methyl DSS (ppm)

mixing = 'Dipsi'
mixing = 'Mlev16'80
mixing = 'Flopsy16'
mixing = 'CW'

initial conditions when water is selectively excited (figure 6 of
the article). the angles a and b account for imperfection in the85
selective pulse due to RD effects

vrf = vH2O
a = 0*np.pi/180;b = (-18)*np.pi/180
iniH2O = [np.cos(a)*np.cos(b),np.cos(a)*np.sin(b),np.sin(a)]
iniDSS = [0,0,1]90

initial conditions after selective excitation of the methyl goup of
DSS (figure 5)
vrf = vDSS
iniH2O = [0,0,1]95
iniDSS = [1,0,0]

non-selective excitation
vrf = (vH2O)
iniH2O = [1,0,0]100
iniDSS = [1,0,0]

t90 = 60e-6 ## duration of a 90 pulse of the DIPSI-2 train
misscal = 1.0 ## factor to account for RF amplitude errors
RaDa = 1*210 ## RD rate105
Rangle = 1*30 ## Angle Psi

loopmax = 64 ## maximum number of homonuclear mixing cycles
ninc = 1 ##integer >=1, calculation done each 1/ninc degrees (1 is ok)
rfoff = False ## if true RF power is zero110
lockph = 0 ## add phase to spin-lock
R2 = 0.
if mixing == 'Dipsi':

LockBlockPh = [0,180,0,180,0,180,0,180,0]
LockBlockT = [320,410,290,285,30,245,375,265,370] ##9 pulse DIPSI-2 (degr)115
SuperCycle = [0+lockph,180+lockph,180+lockph,0+lockph] ##supercycle RRbRbR

if mixing == 'Mlev16':
LockBlockPh = [0,90,0]
LockBlockT = [90, 180, 90]120
SuperCycle = [0,0,180,180, 180,0,0,180, 180,180,0,0, 0,180,180,0]

7

if mixing == 'Flopsy16':
LockBlockPh = [0,45,67.5,315,22.5,315,67.5,45,0]
LockBlockT = [46,96,164,159,130,159,164,96,46]125
SuperCycle = [0,0,180,180, 180,0,0,180, 180,180,0,0, 0,180,180,0]

if mixing == 'CW':
spin lock CW in such a way that the time increments are identical to dipsi

LockBlockPh = [0,0,0,0,0,0,0,0,0]130
LockBlockT = [320,410,290,285,30,245,375,265,370] ## pulse DIPSI-2 (degr)
SuperCycle = [0,0,0,0]

tblock = 1.0*np.sum(LockBlockT)*t90/90 ## duration cycle
tsc = tblock*len(SuperCycle) ## duration supercycle135
tmax = tsc*(loopmax-1)
print('Maximum duration mixing:', np.round(tmax,3), 's')

Rangle *= np.pi/180
w1 = misscal*2*np.pi/(4*t90) ## RF power spin lock140
if rfoff:w1=0
wrd = RaDa

first calculate water magnetization
wz = B0*(vH2O-vrf)*2*np.pi ## offset water145
Mx = ([iniH2O[0]]) ## Three components water magnetization
My = ([iniH2O[1]])
Mz = ([iniH2O[2]])
rfx = ([]) ## x-component RF field
rfy = ([]) ## y-component RF field150
for i in range(loopmax-1): ## loop over number spinlock cycles

for j in range(len(SuperCycle)): ## loop supercycle
for k in range(len(LockBlockT)): ## loop over basic elements

ph = (np.pi/180)*(LockBlockPh[k]+SuperCycle[j]) ## phase RF
wx = w1*np.cos(ph) ##RF amp of sequence element155
wy = w1*np.sin(ph)
t = [0,LockBlockT[k]*t90/90] ##length element
ini = [Mx[-1],My[-1],Mz[-1]]
scipy nonlinear solver:
sol = solve_ivp(blochRD,t,ini,args=(wx,wy,wz,wrd,Rangle,R2),160

method='RK45',rtol =1e-12,atol =1e-9,
dense_output=True)

time = np.linspace(0, LockBlockT[k]*t90/90, 1+LockBlockT[k]*ninc)
M = sol.sol(time)
Mx.extend(M[0][1::])165
My.extend(M[1][1::])
Mz.extend(M[2][1::])
rfx.extend(wx*np.ones(LockBlockT[k]*ninc))
rfy.extend(wy*np.ones(LockBlockT[k]*ninc))

Mx,My,Mz = np.array(Mx), np.array(My), np.array(Mz)170
rfx, rfy = np.array(rfx), np.array(rfy)
Mabs = np.sqrt(Mx*Mx+My*My+Mz*Mz) ##to check that the norm is conserved
plt.figure('H2O')
plt.plot(Mx[::len(SuperCycle)*np.sum(LockBlockT)*ninc],color='b',

linewidth =4)175
plt.plot(My[::len(SuperCycle)*np.sum(LockBlockT)*ninc],color='r',

linewidth =4)
plt.plot(Mz[::len(SuperCycle)*np.sum(LockBlockT)*ninc],color='g',

linewidth =4)
plt.plot(Mabs[::len(SuperCycle)*np.sum(LockBlockT)*ninc])180
plt.xlim([-1,loopmax])
plt.ylim([-1.04,1.04])

8

then calculate magnetization of methyl DSS
wz_b = B0*(vDSS-vrf)*2*np.pi ##offset

185
the RF contains the classic RF field + RD contribution,
the RF field of the total time interval is given
wx_b = rfx+My[:-1]*RaDa*np.cos(Rangle)+Mx[:-1]*RaDa*np.sin(Rangle)
wy_b = rfy-Mx[:-1]*RaDa*np.cos(Rangle)+My[:-1]*RaDa*np.sin(Rangle)

190
dt=t90/(90*ninc)
Mx_b,My_b,Mz_b = evolpassive(iniDSS,wx_b*dt,wy_b*dt,wz_b*dt)
plt.figure('DSS')
plt.plot(Mx_b[::len(SuperCycle)*np.sum(LockBlockT)*ninc],color='b',

linewidth =4)195
plt.plot(My_b[::len(SuperCycle)*np.sum(LockBlockT)*ninc],color='r',

linewidth =4)
plt.plot(Mz_b[::len(SuperCycle)*np.sum(LockBlockT)*ninc],color='g',

linewidth =4)
plt.xlim([-1,loopmax])200
plt.ylim([-1.04,1.04])
plt.show()

if __name__ == '__main__':
main()205

9

