
Supplement of Magn. Reson., 3, 53–63, 2022
https://doi.org/10.5194/mr-3-53-2022-supplement
© Author(s) 2022. CC BY 4.0 License.

Open Access

Supplement of

SORDOR pulses: expansion of the Böhlen–Bodenhausen scheme
for low-power broadband magnetic resonance
Jens D. Haller et al.

Correspondence to: David L. Goodwin (david.goodwin@partner.kit.edu) and Burkhard Luy (burkhard.luy@kit.edu)

The copyright of individual parts of the supplement might differ from the article licence.

1

Contents

Classification of Shaped Pulses .. 2

Exponential Fits: Figure 5 ... 4

Exponential Fits: Comparison to On-Resonant Hard Pulse ... 5

SORDOR pulse shapes... 6

SORDOR-90 (720 s, 50kHz bandwidth, 10kHz RF-ampl., ±5% compensation of B1-inhomog.) 6

SORDOR-180 (720 s, 50kHz bandwidth, 10kHz RF-ampl., ±5% compensation of B1-inhomog.) ... 6

SORDOR-90 (720 s, 50kHz bandwidth, 10kHz RF-ampl., ±10% compensation of B1-inhomog.) ... 6

SORDOR-180 (720 s, 50kHz bandwidth, 10kHz RF-ampl., ±10% compensation of B1-inhomog.) . 6

Pulse program for SORDOR 1D ... 7

Pulse program for SORDOR Echo ... 7

Pulse program for 19F-PROJECT using SORDOR ... 8

Python scripts for second order phase correction .. 9

Second order phase correction for 1D ... 9

Second order phase correction for 19F-PROJECT .. 10

2

Classification of Shaped Pulses

 (a) A (b) B

Figure S1: Classification of 180° shaped pulses following Levitt (1986). Effective rotations are

illustrated as normalized vectors for various offsets.

 (a) A (b) B1

 (c) B2 (d) B3

Figure S2: Classification of 90° shaped pulses following M. H. Levitt (1986). Effective rotations are

illustrated as normalized vectors for various offsets.

3

Shaped pulses are composed of numerous much shorter pulses that can be modulated in phase and

amplitude. The effective propagator 𝑈𝑒𝑓𝑓 of a shaped pulse, consisting of 𝑛 steps, can hence be

described by a piece-wise time-independent propagation:

𝑈𝑒𝑓𝑓 = 𝑈𝑛 . . . 𝑈1.

Such a propagator 𝑈𝑒𝑓𝑓 represents an “effective rotation” that can be used for pulse shape

classification as illustrated in Figure S1 and S2 for different 180° and 90° pulses, respectively.

The most versatile class A of 180° pulses is shown in Fig S1 (a) where a rotation about the x-axis is

achieved for all considered offsets. Shaped 180° pulses of class A are typically referred to as “refocusing

pulse” or “universal rotations” (UR) with 𝑈𝑒𝑓𝑓 = 𝑈180𝑥. Shaped 180° pulses of class B, on the other

hand, induce phase shifts for transverse components but can be used as an inversion of the z-

component – the effective rotations are shown in Fig S1 (b). These shaped 180° pulses are generally

referred to as “point-to-point” or “inversion pulses” and 𝑈𝑒𝑓𝑓 = 𝑈𝜑𝑈180𝑥𝑈𝜑
† where 𝑈𝜑 corresponds

to an arbitrary z-rotation.

For shaped 90° pulses a more distinctive classification is required as shown in Fig S2. Shaped 90° pulses

of class A induce a 90° rotation about a single axis for all considered offsets and are, hence, also

referred to as “universal rotations” where 𝑈𝑒𝑓𝑓 = 𝑈90𝑥 in Fig S2 (a). Effective rotations for shaped 90°

pulses of class B1 are illustrated in Fig S2 (b) where offset-dependent rotation axes are distributed in

the transverse plane with 𝑈𝑒𝑓𝑓 = 𝑈𝜑𝑈90𝑥𝑈𝜑
†. With respect to SORDOR-90 pulses, it is crucial to note

that this class of 90° pulses can be considered universal rotations where an offset dependent phase is

acquired. Pulse shapes of class B2, on the other hand, can only be used to transfer a single component

of magnetization. Therefore, B2-pulses are typically used to excite z-magnetization to the transverse

plane with defined phase (e.g. to 𝐼𝑦) as shown in Fig S2 (c) with 𝑈𝑒𝑓𝑓𝐼𝑧𝑈𝑒𝑓𝑓
† = 𝐼𝑦. It is noteworthy, that

for these so-called “point-to-point” or “excitation pulses” the effective rotations are in a tilted plane.

This is based on the fact that a transfer from 𝐼𝑧 to 𝐼𝑦 can be obtained e.g. by a 90° rotation about x but

also by a 270° degree rotation about -x and further by a 180° rotation about the axes in the intersection

of the tilted and the yz-plane. An excitation of z-magnetization to a state with undefined phase can be

obtained from shaped pulses of class B3 where 𝑈𝑒𝑓𝑓𝐼𝑧𝑈𝑒𝑓𝑓
† = 𝑈𝜑𝐼𝑦𝑈𝜑

† and 𝑈𝜑 corresponds to an

arbitrary z-rotation. In Fig S2 (d) certain effective rotation axes are shown but in principle all axes in

between the two cones are thinkable.

For a „matched“ pulse pair of a SORDOR-180 (B) and a SORDOR-90 (B1) the effective rotations are

distributed identically in the transverse plane or in other words 𝑈𝜑 is the same for the SORDOR-180

and the SORDOR-90. For this reason the pulse pair can be used as universal rotations with quadratic

phase distribution.

4

Exponential Fits: Figure 5

Signals of Figure 5 were extracted and fitted to an exponential decay using python. Due to strong

coupling, CF2 groups exhibit phase distortions and exponential fits show large residuals (red box).

5

Exponential Fits: Comparison to On-Resonant Hard Pulse

Exponential decays of the PROJECT experiment using SORDOR pulse pairs are compared to on-

resonant hard pulses for the Bruker "doped water" standard sample (0.1mg/ml GdCl3, 1% H2O and

0.1% 13C-labeled CH3OH in D2O). Since the water signal is not subject to coupling evolution the decay

rate does not depend on the mixing for J refocusing induced by PROJECT and it is possible to estimate

that SORDOR pulse imperfections have only a minor influence on the relaxation measurement.

SORDOR pulses are also used on-resonant, but a much larger bandwidth is expected (as shown in

Figure 5 of main text).

Figure S3: Exponential fits of PROJECT using on-resonant hard pulses (left), SORDOR pulse pairs with

±5% (middle) and ±10% (right) compensation of B1-inhomogeneity (right) are illustrated for the

Bruker “doped water” standard sample.

6

SORDOR pulse shapes

Pulse shapes are found in the available archive: „SORDOR_pulse_shapes.zip“

SORDOR-90 (720 s, 50kHz bandwidth, 10kHz RF-ampl., ±5% compensation of B1-inhomog.)

File name: SORDOR_90_720us_RF10_BW50_pm5

SORDOR-180 (720 s, 50kHz bandwidth, 10kHz RF-ampl., ±5% compensation of B1-inhomog.)

File name: SORDOR_180_720us_RF10_BW50_pm5

SORDOR-90 (720 s, 50kHz bandwidth, 10kHz RF-ampl., ±10% compensation of B1-inhomog.)

File name: SORDOR_90_720us_RF10_BW50_pm10

SORDOR-180 (720 s, 50kHz bandwidth, 10kHz RF-ampl., ±10% compensation of B1-inhomog.)

File name: SORDOR_180_720us_RF10_BW50_pm10

7

Pulse program for SORDOR 1D

;1D using shaped pulse

#include <Avance.incl>

1 ze

 30m pl=0[Watt]:f1

2 50m

 d1

 (p11:sp11 ph1):f1

 go=2 ph31

 50m mc #0 to 2 F0(zd)

exit

ph1=0 2 2 0 1 3 3 1

ph31=0 2 2 0 1 3 3 1

;pl1 : f1 channel - power level for pulse (default)

;p1 : f1 channel - high power pulse

;d1 : relaxation delay; 1-5 * T1

;ns: 1 * n, total number of scans: NS * TD0

Pulse program for SORDOR Echo

;1D gradient echo using shaped pulses

#include <Avance.incl>

#include <Grad.incl>

#include <Delay.incl>

"spoffs12=spoffs11"

1 ze

 30m pl=0[Watt]:f1

2 50m

 d1

 50u UNBLKGRAD

 (p11:sp11 ph1):f1 ;SORDOR-90

 20u

 p16:gp3

 d16

 (p12:sp12 ph1):f1 ;SORDOR-180

 p16:gp3

 d16

 20u BLKGRAMP

 go=2 ph31

 50m mc #0 to 2 F0(zd)

 20u LOCKH_OFF

exit

ph1=0 2 2 0 1 3 3 1

ph31=0 2 2 0 1 3 3 1

;pl1 : f1 channel - power level for pulse (default)

;p1 : f1 channel - high power pulse

;d1 : relaxation delay; 1-5 * T1

;ns: 1 * n, total number of scans: NS * TD0

8

Pulse program for 19F-PROJECT using SORDOR

;19F-PROJECT using SORDOR pulses

#include <Avance.incl>

"d11=30m"

1 ze

2 d1 pl=0[Watt]:f1 rpp3 rpp4

 (p11:sp11 ph1):f1 ;SORDOR-90

3 d20

 (p12:sp12 ph2+ph3):f1 ;SORDOR-180

 d20

 (p11:sp11 ph2+ph3):f1 ;SORDOR-90

 d20

 (p12:sp12 ph2+ph3):f1 ;SORDOR-180

 d20 ipp3 ipp4

 lo to 3 times c

4 d20 dpp4

 (p12:sp12 ph2+ph4):f1 ;SORDOR-180

 d20

 (p11:sp11 ph2+ph4):f1 ;SORDOR-90

 d20

 (p12:sp12 ph2+ph4):f1 ;SORDOR-180

 d20

 lo to 4 times c

 ;(p13:sp13 ph1):f1 ;scaled SORDOR-180 for phase compensation (optional)

 go=2 ph31

 d11 wr #0 if #0 ivc

 lo to 1 times td1

exit

ph1=0 0 2 2 1 1 3 3

ph2=1 3 1 3 0 2 0 2

ph3=0 0 2 2

ph4=0 0 2 2

ph31=0 0 2 2 1 1 3 3

;pl1 : f1 channel - power level for pulse (default)

;p1 : f1 channel - 90 degree high power pulse

;p2 : f1 channel - 180 degree high power pulse

;d1 : relaxation delay; 1-5 * T1

;d11: delay for disk I/O [30 msec]

;d20: fixed echo time to allow elimination of diffusion

; and J-mod. effects

;vc : variable loop counter, taken from vc-list

;td1: number of experiments = number of values in vc-list

;define VCLIST

;this pulse program produces a ser-file (PARMOD = 2D)

;d20: PROJECT delay

;vc : vc should contain even numbers to provide

; for cancellation of 180 degree pulse errors

9

Python scripts for second order phase correction

In order to execute python scripts in Topspin, please run the „edpy“ command in Topspin and create

new python scripts called pk2.py (1D version) and pk22D.py (pseudo-2D version). Copy and paste the

subsequent code to the created scripts and execute from the Topspin command line.

For a 1D, please run „pk2 𝜖“ (e.g. „pk2 3.65“), where 𝜖 is the value for second order phase correction

and the phase 𝜑 is calculated from

𝜑(𝜈, 𝜖) = 2𝜋 ∙ (
2𝜈

𝑠𝑤
)

2

∙ 𝜖,

where 𝑠𝑤 is the spectral width and 𝜈 is the frequency offset. Setting the spectral width to the band-

width covered by SORDOR pulses can facilitate the procedure.

For a pseudo-2D (e.g. 19F-PROJECT), the second order phase correction is applied successively and the

pseudo-2D is stored as multiple 1Ds. The script is executed with „pk22D 𝜖 procno“, where procno is

the processing number of the first 1D spectrum and following 1Ds are stored in ascending numbers.

Second order phase correction for 1D

call script like: pk2 "value for pk"

example: pk2 3.65

import sys

import math

slope = float(sys.argv[1])

spect_real = GETPROCDATA(-500, 500)

spect_imag = GETPROCDATA(-500, 500, dataconst.PROCDATA_IMAG)

for i in range(len(spect_real)):

 phase=(i-len(spect_real)/2)**2 *8*math.pi*slope/len(spect_real)**2

 dummyx=spect_real[i]*math.cos(phase) - spect_imag[i]*math.sin(phase)

 dummyy=spect_real[i]*math.sin(phase) + spect_imag[i]*math.cos(phase)

 spect_real[i]=dummyx

 spect_imag[i]=dummyy

SAVE_ARRAY_AS_1R1I(spect_real,spect_imag)

10

Second order phase correction for 19F-PROJECT

second order phase correction on 2D

it will create multiple 1Ds starting at a certain "procno"

call script like: pk22D "value for pk" "procno"

example: pk22D 3.65 900

import sys, math

td = int(GETPAR2("s1 TD"))

curdat = CURDATA()

slope = float(sys.argv[1])

for i in range(td):

 RSR(str(i+1), str(int(sys.argv[2])+i))

 #___

 # pk2.py

 spect_real = GETPROCDATA(-500, 500)

 spect_imag = GETPROCDATA(-500, 500,dataconst.PROCDATA_IMAG)

 for i in range(len(spect_real)):

 phase=(i-len(spect_real)/2)**2 *8*math.pi*slope/len(spect_real)**2

 dummyx=spect_real[i]*math.cos(phase) - spect_imag[i]*math.sin(phase)

 dummyy=spect_real[i]*math.sin(phase) + spect_imag[i]*math.cos(phase)

 spect_real[i]=dummyx

 spect_imag[i]=dummyy

 SAVE_ARRAY_AS_1R1I(spect_real,spect_imag)

 #___

 RE(curdat)

