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Classification of Shaped Pulses 
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Figure S1: Classification of 180° shaped pulses following Levitt (1986). Effective rotations are 

illustrated as normalized vectors for various offsets. 
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      (c)   B2                                                                (d)   B3 

 

 

 

 

   

   
 

Figure S2: Classification of 90° shaped pulses following M. H. Levitt (1986). Effective rotations are 

illustrated as normalized vectors for various offsets.  
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Shaped pulses are composed of numerous much shorter pulses that can be modulated in phase and 

amplitude. The effective propagator 𝑈𝑒𝑓𝑓 of a shaped pulse, consisting of 𝑛  steps, can hence be 

described by a piece-wise time-independent propagation: 

𝑈𝑒𝑓𝑓 = 𝑈𝑛 . . . 𝑈1. 

Such a propagator 𝑈𝑒𝑓𝑓  represents an “effective rotation” that can be used for pulse shape 

classification as illustrated in Figure S1 and S2 for different 180° and 90° pulses, respectively.  

The most versatile class A of 180° pulses is shown in Fig S1 (a) where a rotation about the x-axis is 

achieved for all considered offsets. Shaped 180° pulses of class A are typically referred to as “refocusing 

pulse” or “universal rotations” (UR) with 𝑈𝑒𝑓𝑓 = 𝑈180𝑥. Shaped 180° pulses of class B, on the other 

hand, induce phase shifts for transverse components but can be used as an inversion of the z-

component – the effective rotations are shown in Fig S1 (b). These shaped 180° pulses are generally 

referred to as “point-to-point” or “inversion pulses” and 𝑈𝑒𝑓𝑓 = 𝑈𝜑𝑈180𝑥𝑈𝜑
†  where 𝑈𝜑 corresponds 

to an arbitrary z-rotation. 

For shaped 90° pulses a more distinctive classification is required as shown in Fig S2. Shaped 90° pulses 

of class A induce a 90° rotation about a single axis for all considered offsets and are, hence, also 

referred to as “universal rotations” where 𝑈𝑒𝑓𝑓 = 𝑈90𝑥  in Fig S2 (a). Effective rotations for shaped 90° 

pulses of class B1 are illustrated in Fig S2 (b) where offset-dependent rotation axes are distributed in 

the transverse plane with 𝑈𝑒𝑓𝑓 = 𝑈𝜑𝑈90𝑥𝑈𝜑
†. With respect to SORDOR-90 pulses, it is crucial to note 

that this class of 90° pulses can be considered universal rotations where an offset dependent phase is 

acquired. Pulse shapes of class B2, on the other hand, can only be used to transfer a single component 

of magnetization. Therefore, B2-pulses are typically used to excite z-magnetization to the transverse 

plane with defined phase (e.g. to 𝐼𝑦) as shown in Fig S2 (c) with 𝑈𝑒𝑓𝑓𝐼𝑧𝑈𝑒𝑓𝑓
† = 𝐼𝑦. It is noteworthy, that 

for these so-called “point-to-point” or “excitation pulses” the effective rotations are in a tilted plane. 

This is based on the fact that a transfer from 𝐼𝑧 to 𝐼𝑦 can be obtained e.g. by a 90° rotation about x but 

also by a 270° degree rotation about -x and further by a 180° rotation about the axes in the intersection 

of the tilted and the yz-plane. An excitation of z-magnetization to a state with undefined phase can be 

obtained from shaped pulses of class B3 where 𝑈𝑒𝑓𝑓𝐼𝑧𝑈𝑒𝑓𝑓
† = 𝑈𝜑𝐼𝑦𝑈𝜑

†  and 𝑈𝜑  corresponds to an 

arbitrary z-rotation. In Fig S2 (d) certain effective rotation axes are shown but in principle all axes in 

between the two cones are thinkable.  

For a „matched“ pulse pair of a SORDOR-180 (B) and a SORDOR-90 (B1) the effective rotations are 

distributed identically in the transverse plane or in other words 𝑈𝜑 is the same for the SORDOR-180 

and the SORDOR-90. For this reason the pulse pair can be used as universal rotations with quadratic 

phase distribution. 
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Exponential Fits: Figure 5 
 

Signals of Figure 5 were extracted and fitted to an exponential decay using python. Due to strong 

coupling, CF2 groups exhibit phase distortions and exponential fits show large residuals (red box). 
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Exponential Fits: Comparison to On-Resonant Hard Pulse 
 

Exponential decays of the PROJECT experiment using SORDOR pulse pairs are compared to on-

resonant hard pulses for the Bruker "doped water" standard sample (0.1mg/ml GdCl3, 1% H2O and 

0.1% 13C-labeled CH3OH in D2O). Since the water signal is not subject to coupling evolution the decay 

rate does not depend on the mixing for J refocusing induced by PROJECT and it is possible to estimate 

that SORDOR pulse imperfections have only a minor influence on the relaxation measurement. 

SORDOR pulses are also used on-resonant, but a much larger bandwidth is expected (as shown in 

Figure 5 of main text). 

 

   

Figure S3: Exponential fits of PROJECT using on-resonant hard pulses (left), SORDOR pulse pairs with 

±5% (middle) and ±10% (right) compensation of B1-inhomogeneity (right) are illustrated for the 

Bruker “doped water” standard sample. 
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SORDOR pulse shapes 
 

Pulse shapes are found in the available archive: „SORDOR_pulse_shapes.zip“ 

 

SORDOR-90 (720 s, 50kHz bandwidth, 10kHz RF-ampl., ±5% compensation of B1-inhomog.) 
 

File name: SORDOR_90_720us_RF10_BW50_pm5 

 

SORDOR-180 (720 s, 50kHz bandwidth, 10kHz RF-ampl., ±5% compensation of B1-inhomog.) 
 

File name: SORDOR_180_720us_RF10_BW50_pm5 

 

SORDOR-90 (720 s, 50kHz bandwidth, 10kHz RF-ampl., ±10% compensation of B1-inhomog.) 
 

File name: SORDOR_90_720us_RF10_BW50_pm10 

 

SORDOR-180 (720 s, 50kHz bandwidth, 10kHz RF-ampl., ±10% compensation of B1-inhomog.) 
 

File name: SORDOR_180_720us_RF10_BW50_pm10 
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Pulse program for SORDOR 1D  
 

;1D using shaped pulse 

 

#include <Avance.incl> 

 

1 ze 

 30m pl=0[Watt]:f1 

2 50m 

   d1 

  (p11:sp11 ph1):f1 

  go=2 ph31 

  50m mc #0 to 2 F0(zd) 

exit 

 

ph1=0 2 2 0 1 3 3 1 

ph31=0 2 2 0 1 3 3 1 

 

 

;pl1 : f1 channel - power level for pulse (default) 

;p1 : f1 channel -  high power pulse 

;d1 : relaxation delay; 1-5 * T1 

;ns: 1 * n, total number of scans: NS * TD0 

 

 

Pulse program for SORDOR Echo 
 

;1D gradient echo using shaped pulses 

 

#include <Avance.incl> 

#include <Grad.incl> 

#include <Delay.incl> 

 

"spoffs12=spoffs11" 

 

1 ze  

 30m pl=0[Watt]:f1 

2 50m  

  d1 

  50u UNBLKGRAD 

  (p11:sp11 ph1):f1 ;SORDOR-90 

  20u 

  p16:gp3 

  d16 

  (p12:sp12 ph1):f1 ;SORDOR-180 

  p16:gp3 

  d16 

  20u BLKGRAMP 

  go=2 ph31 

  50m mc #0 to 2 F0(zd) 

  20u LOCKH_OFF 

exit 

 

ph1=0 2 2 0 1 3 3 1 

ph31=0 2 2 0 1 3 3 1 

 

;pl1 : f1 channel - power level for pulse (default) 

;p1 : f1 channel -  high power pulse 

;d1 : relaxation delay; 1-5 * T1 

;ns: 1 * n, total number of scans: NS * TD0 
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Pulse program for 19F-PROJECT using SORDOR 
 

;19F-PROJECT using SORDOR pulses 

 

#include <Avance.incl> 

 

"d11=30m" 

 

1 ze 

2 d1 pl=0[Watt]:f1 rpp3 rpp4 

  (p11:sp11 ph1):f1  ;SORDOR-90  

 

3 d20  

  (p12:sp12 ph2+ph3):f1  ;SORDOR-180 

  d20 

  (p11:sp11 ph2+ph3):f1 ;SORDOR-90 

  d20 

  (p12:sp12 ph2+ph3):f1  ;SORDOR-180 

  d20 ipp3 ipp4 

  lo to 3 times c 

 

4 d20 dpp4 

  (p12:sp12 ph2+ph4):f1  ;SORDOR-180 

  d20 

  (p11:sp11 ph2+ph4):f1  ;SORDOR-90 

  d20 

  (p12:sp12 ph2+ph4):f1  ;SORDOR-180 

  d20  

  lo to 4 times c 

 

  ;(p13:sp13 ph1):f1  ;scaled SORDOR-180 for phase compensation (optional) 

 

  go=2 ph31 

  d11 wr #0 if #0 ivc  

  lo to 1 times td1 

exit 

 

 

ph1=0 0 2 2 1 1 3 3  

ph2=1 3 1 3 0 2 0 2 

 

ph3=0 0 2 2 

ph4=0 0 2 2 

 

ph31=0 0 2 2 1 1 3 3 

 

;pl1 : f1 channel - power level for pulse (default) 

;p1 : f1 channel -  90 degree high power pulse 

;p2 : f1 channel - 180 degree high power pulse 

;d1 : relaxation delay; 1-5 * T1 

;d11: delay for disk I/O                             [30 msec] 

;d20: fixed echo time to allow elimination of diffusion 

;     and J-mod. effects 

;vc : variable loop counter, taken from vc-list 

 

;td1: number of experiments = number of values in vc-list 

;define VCLIST 

;this pulse program produces a ser-file (PARMOD = 2D) 

;d20: PROJECT delay  

;vc : vc should contain even numbers to provide  

;     for cancellation of 180 degree pulse errors 
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Python scripts for second order phase correction 
 

In order to execute python scripts in Topspin, please run the „edpy“ command in Topspin and create 

new python scripts called pk2.py (1D version) and pk22D.py (pseudo-2D version). Copy and paste the 

subsequent code to the created scripts and execute from the Topspin command line.  

For a 1D, please run „pk2 𝜖“ (e.g. „pk2 3.65“), where 𝜖 is the value for second order phase correction 

and the phase 𝜑 is calculated from 

𝜑(𝜈, 𝜖) =  2𝜋 ∙ (
2𝜈

𝑠𝑤
)

2

∙ 𝜖, 
 

where 𝑠𝑤 is the spectral width and 𝜈 is the frequency offset. Setting the spectral width to the band-

width covered by SORDOR pulses can facilitate the procedure. 

For a pseudo-2D (e.g. 19F-PROJECT), the second order phase correction is applied successively and the 

pseudo-2D is stored as multiple 1Ds. The script is executed with „pk22D 𝜖 procno“, where procno is 

the processing number of the first 1D spectrum and following 1Ds are stored in ascending numbers.  

 

 

Second order phase correction for 1D 
 

 

# call script like: pk2 "value for pk" 

# example: pk2 3.65 

 

import sys 

import math 

 

slope = float(sys.argv[1]) 

 

spect_real = GETPROCDATA(-500, 500) 

spect_imag = GETPROCDATA(-500, 500, dataconst.PROCDATA_IMAG) 

 

for i in range(len(spect_real)): 

 phase=(i-len(spect_real)/2)**2 *8*math.pi*slope/len(spect_real)**2 

 

 dummyx=spect_real[i]*math.cos(phase) - spect_imag[i]*math.sin(phase) 

 dummyy=spect_real[i]*math.sin(phase) + spect_imag[i]*math.cos(phase) 

 

 spect_real[i]=dummyx 

 spect_imag[i]=dummyy 

 

SAVE_ARRAY_AS_1R1I(spect_real,spect_imag) 
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Second order phase correction for 19F-PROJECT 
 

 

# second order phase correction on 2D 

# it will create multiple 1Ds starting at a certain "procno" 

# call script like: pk22D "value for pk" "procno" 

# example: pk22D 3.65 900 

 

import sys, math 

 

td = int(GETPAR2("s1 TD")) 

curdat = CURDATA() 

slope = float(sys.argv[1]) 

 

for i in range(td): 

 RSR(str(i+1), str(int(sys.argv[2])+i)) 

  

 #_______________________________________________ 

 # pk2.py 

 spect_real = GETPROCDATA(-500, 500) 

 spect_imag = GETPROCDATA(-500, 500,dataconst.PROCDATA_IMAG) 

 

 for i in range(len(spect_real)): 

  phase=(i-len(spect_real)/2)**2 *8*math.pi*slope/len(spect_real)**2 

 

  dummyx=spect_real[i]*math.cos(phase) - spect_imag[i]*math.sin(phase) 

  dummyy=spect_real[i]*math.sin(phase) + spect_imag[i]*math.cos(phase) 

 

  spect_real[i]=dummyx 

  spect_imag[i]=dummyy 

 

 SAVE_ARRAY_AS_1R1I(spect_real,spect_imag) 

 #_______________________________________________ 

  

 RE(curdat) 


