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Abstract. In the solid effect of dynamic nuclear polarization (DNP), the concerted flips of the electronic and
nuclear spins, which are needed for polarization transfer, are induced by the microwaves. Commonly, the effect
of the microwaves is modeled by a rate process whose rate constant is determined perturbatively. According to
quantum mechanics, however, the coherent microwave excitation leads to Rabi nutation, which corresponds to a
rotation rather than a rate process. Here we reconcile the coherent effect of the microwaves with the description
by rate equations by focusing only on the steady state of the spin dynamics. We show that the phenomenological
rate constants describing the synchronous excitation of the electronic and nuclear spins can be selected such
that the description by rate equations yields the same steady state as the exact quantum-mechanical treatment.
The resulting non-perturbative rates differ from the classical, perturbative ones and remain valid also at the
high microwave powers used in modern-day DNP. Our treatment of the solid effect highlights the role of the
coherences in the mechanistic steps of polarization transfer and reveals the importance of the dispersive (i.e.,
out-of-phase) component of the EPR line. Interestingly, the multiplicative dependence of the DNP enhancement
on the dispersive EPR component was intuited in the very first report of the solid effect in liquids (Erb et al.,
1958a). The time-domain description of the solid effect developed here is extendable to liquids, where the dipolar
interaction changes randomly in time due to molecular diffusion.

1 Introduction

The Boltzmann polarization of electronic spins in a mag-
netic field is orders of magnitude larger than that of nuclear
spins. When the electronic and nuclear spins interact with
each other, it becomes possible to transfer the much larger
polarization of the former to the latter. Such transfer, known
as dynamic nuclear polarization (DNP), can be achieved in
several ways, which differ in their mechanistic steps. Two of
the DNP mechanisms, namely the Overhauser effect and the
solid effect, can be explained by considering a minimal sys-
tem comprising one electronic spin and one nuclear spin. To
explain the other two DNP mechanisms known as the cross
effect and thermal mixing, it is necessary to consider one nu-
clear spin interacting with, respectively, two and many cou-
pled electronic spins (Wenckebach, 2016). The current paper
engages only with the former two DNP mechanisms.

Historically, the Overhauser effect was the first to be con-
ceived (Overhauser, 1953) and observed experimentally, ini-
tially in metals and subsequently also in liquids (Carver and
Slichter, 1953, 1956). A rigorous theoretical understanding
of the effect in nonmetals was provided shortly after the first
experiments (Abragam, 1955; Solomon, 1955). At the core
of this understanding are the Solomon equations, which de-
scribe the relaxation processes in a system of two interact-
ing spins (Solomon, 1955). For our purposes, it is useful
to discern two aspects of the theoretical formalism. On the
one hand, the evolution of the electronic and nuclear polar-
izations is described by two coupled differential equations
(Solomon, 1955), analogous to the rate equations of chemical
kinetics. On the other, the phenomenological rate constants
that appear in these rate equations are expressed in terms of
the quantum-mechanical probabilities for transition between
two distinct energy states (Solomon, 1955). To first order in
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a perturbative calculation, the amplitude of such transition
probability per unit time is proportional to the matrix ele-
ment of the relevant interaction term in the spin Hamilto-
nian (Solomon, 1955). While the name Solomon equations
is mainly used to refer to the first of these aspects (Keeler,
2010), the perturbative calculation of the transition probabili-
ties per unit time is an integral part of the theoretical descrip-
tion. In fact, the idea that interaction terms in the Hamilto-
nian have corresponding probabilities per unit time to induce
transitions (i.e., what we have called the second aspect of the
theory) provides the logical justification for the description
by rate equations (Abragam, 1955; Solomon, 1955; Webb,
1961).

The solid-state effect (or solid effect) was the second DNP
effect to be observed experimentally and explained theoreti-
cally (Abragam and Proctor, 1958). In the Overhauser effect,
the simultaneous flips of the electronic and nuclear spins,
which are needed to couple the electronic and nuclear po-
larizations, are achieved by thermal relaxation; in the solid
effect, these synchronous spin flips are driven coherently by
the microwave irradiation. Thus, in the solid effect, the phe-
nomenological rate constants of the rate equations are calcu-
lated from the matrix elements of the microwave term in the
Hamiltonian. For this term to excite nuclear spin flips, the
dipolar interaction between the electronic and nuclear spins
should mix the Zeeman energy states and thus make the zero-
quantum (ZQ) and double-quantum (DQ) transitions weakly
allowed (Abragam and Proctor, 1958).

Although the Overhauser effect and the solid effect are
described using a consistent theoretical formalism (with
its two complementary aspects explained above), quantum-
mechanically there is a major difference between relaxation
and coherent excitation. By their very nature, the rate equa-
tions of the polarizations model all evolution as exponential
decay/increase towards some steady state. However, accord-
ing to quantum mechanics, the effect of the microwave field
is to rotate the magnetization, leading to the phenomenon
known as Rabi nutation. Since rotation and exponential de-
cay/increase are fundamentally different, modeling the ef-
fect of the microwaves as a relaxation process should not be
possible in general. This raises questions about the funda-
mental applicability of the first aspect of our theoretical un-
derstanding, namely the rate-equation formalism, to the de-
scription of the coherently driven polarization transfer in the
solid effect (as opposed to the relaxation-driven transfer in
the Overhauser effect). Because the rate equations are justi-
fied by the idea that interaction terms induce transitions with
a constant probability per unit time, the possibility to model
the effect of the microwaves through a perturbative rate con-
stant also becomes questionable. It should be pointed out that
these concerns are not new. Indeed, in the case of single spin
1/2, where the quantum dynamics is described exactly by the
Bloch equations, Abragam explicitly analyzes how the rate
equation with a perturbative rate constant for the microwave

(mw) excitation relates to the exact solution, both at short
times and at long times (Abragam, 1961, pp. 27–32).

While many modern applications of DNP in the solid
state rely on pulsed methods (Can et al., 2015; Quan et al.,
2022), here we consider only continuous-wave (cw) excita-
tion, where one is exclusively interested in the steady state
of the spin dynamics. As a result, we will be only con-
cerned with how the description of the mw excitation by rate
equations relates to the steady state of the proper quantum-
mechanical description. To this end, in Sect. 2 we examine
the two descriptions for a single spin 1/2 and, following
Abragam (1961), confirm that the perturbative rate constant
of mw excitation leads to the same steady state as the Bloch
equations.

Motivated by this observation, in Sect. 3 we adopt the
same perspective to analyze the system composed of one
electronic and one nuclear spin 1/2. In this case, starting with
the Liouville–von Neumann equation of the density matrix,
we first derive proper quantum-mechanical equations of mo-
tion for the expectation values of the spin operators that are
relevant to the solid effect. Then we show that one can ana-
lytically solve for the steady state of the exact quantum dy-
namics, under the simplifying assumption that the dynamics
of the electronic spins is not affected by the hyperfine inter-
action with the nuclei. Since, at steady state, all coherences
can be expressed in terms of the polarizations, it becomes
possible to rewrite the dynamical equations in terms of the
polarizations only. Comparing the resulting equations with
the rate equations of the polarizations, we select the phe-
nomenological rate constants that appear in the latter, such
that the two descriptions have identical steady states.

Stated differently, we abolish the idea of constant transi-
tion probabilities per unit time as justification for the rate
equations. Instead, we view the rate equations as a convenient
mnemonic for encoding the steady state of the exact quantum
dynamics. Having decoupled the phenomenological rate con-
stants from the perturbative calculation of the mw-induced
transition probabilities, we are free to select them such that
the mnemonic yields the correct steady state, thus providing a
shortcut to its analysis. We find that the rate constants for the
ZQ and DQ transitions selected in this way differ from the
corresponding perturbative rate constants that are currently
used in the literature (Abragam and Goldman, 1978; Wind
et al., 1985; Duijvestijn et al., 1986).

In Sect. 6 we show that our new rate constants reproduce
the classical expressions when the Rabi nutation frequency
ω1 is much smaller than the nuclear Larmor frequency ωI ,
as required by the perturbative treatment. Our new analyt-
ical expressions for driving the forbidden transitions, how-
ever, also hold when ω1 > ωI , as could happen at S and X
bands, given the high microwave powers currently employed
in DNP experiments with resonance structure (Neudert et al.,
2016; Denysenkov et al., 2022). These new expressions are
the main analytical result of the current paper.
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A complete description of the spin dynamics of the four-
level system that we analyze here requires only 16 different
spin operators, including the identity operator. The dynamics
is thus encoded by a 16× 16 propagation matrix in Liou-
ville space and can be simulated numerically using a spin-
dynamics simulation package (Bengs and Levitt, 2018; Yang
et al., 2022). Such numerical simulations are currently often
employed to explore the efficiency of the solid effect for vari-
ous experimental parameters. However, even in the relatively
simple case of a four-level system, observing a certain ef-
fect in the simulations does not automatically provide under-
standing about the mechanism of this effect, as demonstrated
recently by Quan et al. (2023), who strive to explain the ori-
gin of a dispersive DNP component seen both in experiments
(Shankar Palani et al., 2023) and in their numerical simula-
tions. Clearly, developing intuition about the spin dynamics
that is relevant for a given phenomenon is invaluable.

The general quantum dynamics of a four-level system can
be described through 15 coupled differential equations for
the expectation values of the 15 spin operators, excluding the
identity. The equations that we derive in Sect. 3.2, together
with the Bloch equations from Sect. 2.2, constitute seven
such equations. (In fact, we implicitly account for three more
operators, thus covering 10 out of the 15 possible ones, as ex-
plained in Sect. 4.) When the number of coupled differential
equations increases beyond three, gaining an intuitive insight
into the dynamics that they describe becomes difficult.

Inspired by the graphical representation of chemical re-
actions in biochemistry, in Sect. 4 we represent visually the
coupled differential equations describing the solid-effect spin
dynamics. The resulting “flow diagram” sheds light on the
dynamical interconnections between the spin polarizations
and the coherences that are active in the solid effect. In
Sect. 5 we study the algebraic relationships between the co-
herences and the polarizations that emerge at steady state.
When considered in the context of the dynamical intercon-
nections, these algebraic relationships highlight the impor-
tance of the purely electronic coherences in the transfer of
polarization, with the out-of-phase (i.e., dispersive) compo-
nent playing a prominent role. Interestingly, the importance
of the dispersive EPR line for the solid effect was intuited
already in the first report of the solid effect in liquids (Erb
et al., 1958a), as we discuss in Sect. 7.2. Our conclusions are
presented in Sect. 8.

2 Allowed EPR transition

In the rate-equation treatment of the Overhauser and solid
effects (Webb, 1961; Barker, 1962), both thermal relaxation
and mw excitation are envisioned as randomly flipping spins
between pairs of energy levels with certain rates, as depicted
in Fig. 1. The current section aims to illustrate the analytical
strategy that we will employ to analyze the solid effect, in
the simplest possible case of a single spin 1/2 (Fig. 1a). We

first present the rate equation of the electronic polarization
and obtain its steady state (Sect. 2.1). Then we turn to the
Bloch equations and also obtain their steady state (Sect. 2.2).
Finally, by requiring that the two descriptions have identi-
cal steady states, we identify the rate constant that should
be used to describe the effect of the microwaves in the phe-
nomenological rate equation.

2.1 Rate equation of the electronic polarization

Let n+ and n− be the populations of the two energy levels in
Fig. 1a. Assuming the spins are not destroyed or created, the
sum of the two populations is constant in time. Treating the
mw excitation as a process that randomly flips the spins with
rate constant v1, we have

ṅ+|mw =−ṅ−|mw =−v1 (n+− n−) . (1)

(The subscript of the vertical bar indicates that the time
derivative accounts only for mw excitation.) Note that v1 ≥

0, since a negative rate constant does not make physical
sense.

The electronic spin polarization PS = (n+−n−)/(n++n−)
is negative at thermal equilibrium, i.e., P eq

S < 0. Differen-
tiating PS with respect to time and using Eq. (1), we find
ṖS|mw =−2v1PS for the effect of the mw irradiation. The
action of thermal relaxation is analogous, after replacing v1
by w1S and taking into consideration that PS decays towards
its thermal equilibrium: ṖS|th =−2w1S(PS−P

eq
S ). Combin-

ing the contributions of mw excitation and thermal relax-
ation, we get

ṖS =−2v1PS−R1S
(
PS−P

eq
S
)
, (2)

where R1S = 2w1S. The electronic longitudinal relaxation
time is T1S = 1/R1S.

In the case of cw irradiation, one is interested in the steady
state of the electronic polarization. When the left-hand side
of Eq. (2) is set equal to zero,

P ss
S =

R1S

R1S+ 2v1
P

eq
S = pP

eq
S , (3)

where the second equality defines the factor p. We refer to
p as the electronic polarization factor, since it quantifies how
close the steady-state polarization is to its Boltzmann value.

The rate equation (Eq. 2) models the competition between
mw pumping and the (longitudinal) relaxation of the polar-
ization. When the two effects balance each other, the polar-
ization is given by the steady-state solution (Eq. 3). For the
rate equation to be a predictive tool, it is necessary to express
the phenomenological rate constants v1 and w1S in terms of
more fundamental quantities. As discussed in the Introduc-
tion, these are identified with the probabilities of transition
per unit time between the two energy levels (Fig. 1a), which
are calculated from time-dependent perturbation theory to
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Figure 1. Energy levels of (a) a single electronic spin S = 1/2 and
(b) one electronic spin and one nuclear spin I = 1/2. Microwaves
excite single-, zero- and double-quantum transitions (wiggly red ar-
rows) with rate constants v1, v0 and v2, respectively. Thermal relax-
ation (thick gray arrows) arises from coupling to external degrees of
freedom.

first order (Solomon, 1955). In the case of v1, this is basi-
cally Fermi’s golden rule (Shankar, 1994, chap. 18), which
contains the product of a squared matrix element and a shape
function that accounts for the fact that the energies of the two
levels are not infinitely sharp (Abragam, 1961, Sect. II D).
For a mw magnetic field in the x direction, the relevant ma-
trix element is 〈+|ω1Sx |−〉. When the spread of the energy
levels is identified with the EPR line shape, which we take to
be a Lorentzian, one arrives at

v1(�)=
1
2
ω2

1
R2S

R2
2S+�

2
, (4)

where �= ωS−ω is the offset of the mw frequency ω from
the electronic resonance frequency ωS, and R2S is the elec-
tronic T2 relaxation rate.

Formally, this perturbative result is valid only for short
times (Cohen-Tannoudji et al., 2019, chap. XIII). Its valid-
ity at long times, including the steady state, thus needs to
be explicitly established (Abragam, 1961, pp. 30–32). In the
next subsection, we show that Eq. (4) is consistent with the
steady state of the Bloch equations.

2.2 Bloch equations

The effect of the microwaves on the two-level system in
Fig. 1a is described exactly, and for all times, by the classi-
cal Bloch equations. The coherent part of these equations can
be derived from the Liouville–von Neumann equation of the
density matrix. Specifically, the evolution of the expectation
value q = 〈Q〉 of a general spin operator Q, under the action
of a spin Hamiltonian H (in units of angular frequency), is

q̇|coh = i〈[H,Q]〉. (5)

We describe the interaction of the electronic spins with the
magnetic field using the following Hamiltonian in the rotat-
ing frame:

H =�Sz+ω1Sx . (6)

Here the first term accounts for the Zeeman interaction with
the constant magnetic field B0 (along the z axis) and the sec-
ond for the interaction with the mw field B1 (along x).

Using Eq. (6) in Eq. (5), it is straightforward to obtain the
coherent dynamics of sz = 〈Sz〉, sy = 〈Sy〉 and sx = 〈Sx〉. Af-
ter appending transverse and longitudinal relaxation by hand,
one arrives at the familiar Bloch equations

ṡx =−�sy −R2Ssx

ṡy =�sx −ω1sz−R2Ssy

ṡz = ω1sy −R1S(sz− s
eq
z ). (7)

Since the polarization PS corresponds to the expectation
value of the spin operator Sz, the rate equation Eq. (2) must
be directly comparable to the third equation in Eq. (7). How-
ever, we see that the effect of the microwaves is modeled
differently in the two equations. In the last Bloch equation,
the microwaves couple sz to the transverse component sy .
Such coupling is understandably missing in the rate equa-
tion, which describes the dynamics of PS without reference
to the transverse components. Clearly, the two descriptions
cannot be equivalent in general. Nevertheless, in spite of the
fundamentally different ways the two descriptions model the
microwaves, there is a regime where the Bloch equations and
the rate equation are equivalent, not only approximately but
exactly. This is the regime of steady state, as we show next.

At steady state, the transverse variables sx,y can be elimi-
nated using the first two Bloch equations. From the first equa-
tion we find

sss
x =−

�

R2S
sss
y , (8)

where the superscript “ss” denotes steady state. Substituting
this result into the second Bloch equation, we get

sss
y =−

ω1

R2S+�
1
R2S
�
sss
z . (9)

We have thus expressed both transverse components in terms
of the longitudinal component as follows:

sss
x,y =±

(
ω1fx,y

)
sss
z (10)

(the upper sign corresponds to x and the lower to y), where
we have defined the auxiliary functions

fy =
1

R2S+�
1
R2S
�
, fx =

�

R2S
fy . (11)

Finally, substituting sss
y into the third Bloch equation in

Eq. (7), we arrive at the following differential equation for
sz at steady state:

ṡss
z =−ω

2
1fy s

ss
z −R1S

(
sss
z − s

eq
z

)
. (12)

Although the time derivative on the left-hand side of
Eq. (12) equals zero, the equation was written in this form
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Table 1. Functions characterizing the steady-state properties of the
classical Bloch equations and the Bloch-like equations of the vari-
ables gn = 〈SnI+〉 (n= x,y,z).

Classical Bloch eqs. Bloch-like eqs.

Unit of time fx ,fy ,fz Fx ,Fy ,Fz
Dimensionless ω1fx ,ω1fy ,R1Sfz ω1Fx ,ω1Fy ,δFz

to facilitate its comparison with the rate equation (Eq. 2).
Clearly, if the rate constant v1 in Eq. (2) is selected such that

2v1 = ω
2
1fy = ω

2
1

1

R2S+�
1
R2S
�
, (13)

then the steady state of PS will be identical to the steady state
of sz. Incidentally, the v1 in Eq. (13), which ensures that the
two descriptions have the same steady state, is identical to
the rate constant obtained from first-order perturbation the-
ory (Eq. 4). This will not be the case for the rate constants of
the forbidden transitions, as we show in Sect. 3.

Once the two descriptions are demonstrated to have iden-
tical steady states, the analysis of the Bloch equations can be
terminated at this point since it will exactly follow the steady-
state analysis of the rate equation. In the next section, where
we determine the ZQ and DQ transition rates from the steady
state of the spin dynamics, we will similarly need to consider
only the evolution of iz = 〈Iz〉 under the action of the mi-
crowaves. The balance between the mw irradiation and the
nuclear T1 relaxation will be handled on the level of the rate
equation of the nuclear polarization.

For completeness, here we proceed one step further and
solve Eq. (12) for sss

z recalling that the time derivative equals
zero. The result is

sss
z = (R1Sfz)s

eq
z , (14)

where we have defined

fz =
1

R1S+ω
2
1fy

. (15)

The functions fx , fy and fz introduced in Eqs. (11) and (15)
have units of time, and the factors enclosed in parentheses
in Eqs. (10) and (14) are dimensionless. This information is
collected in Table 1. Since Eq. (14) is equivalent to Eq. (3),
it provides an expression for the polarization factor p = 1−
s, where s is the familiar saturation factor of the (allowed)
electronic transition.

3 Forbidden transitions

The excitation of the allowed EPR transition considered
above does not lead to simultaneous flips of the electronic
and nuclear spins and is thus not capable of transferring po-
larization from the former to the latter. In contrast, the ZQ

and DQ transitions involve simultaneous electron–nucleus
spin flips (Fig. 1b) and drive the solid-state DNP effect.
While these so-called forbidden transitions couple the nu-
clear and electronic polarizations, their influence on the lat-
ter is typically negligible compared to other mechanisms of
electronic relaxation. It is therefore justified to write a rate
equation for the electronic polarization considering only the
allowed EPR transition, as we did in Sect. 2. The effect of the
mw-induced ZQ and DQ transitions on the nuclear polariza-
tion is described in the current section.

3.1 Rate equation of the nuclear polarization

Let n++, n+−, n−+ and n−− be the populations of the lev-
els of the four-level system in Fig. 1b. While their sum,
n= n+++n+−+n−++n−−, remains constant in time, the
individual populations change due to the ZQ and DQ transi-
tions with rate constants v0 and v2 as follows:

ṅ−+|mw =−ṅ+−|mw =−v0 (n−+− n+−)

ṅ++|mw =−ṅ−−|mw =−v2 (n++− n−−) . (16)

It is implicitly assumed that v0 ≥ 0 and v2 ≥ 0, as negative
rate constants would not make physical sense.

The polarizations of the nuclear and electronic spins are

PI =
[
(n++− n+−)+ (n−+− n−−)

]
/n

PS =
[
(n++− n−+)+ (n+−− n−−)

]
/n. (17)

While, as before, P eq
S < 0, the sign of PI at thermal equilib-

rium will depend on the gyromagnetic ratio of the nuclear
spin. We will assume protons; hence γI > 0 and P eq

I > 0.
Differentiating the definition of PI in Eq. (17) with respect
to time, and using Eq. (16), we obtain

ṖI |mw =−v0 (PI −PS)− v2 (PI +PS)

=− (v2+ v0)PI − (v2− v0)PS

=−v+PI − v−PS, (18)

which shows that mw excitation of the forbidden transitions
couples the evolution of the nuclear polarization to the polar-
ization of the electrons. This coupling is responsible for the
solid effect. Because one always encounters either the differ-
ence or the sum of v0 and v2, in the third equality of Eq. (18)
we introduced

v± = v2± v0. (19)

In fact, as we show later, the individual rates v0 and v2
may become negative and thus meaningless from the rate-
equation point of view.

Although in the current paper we are only interested in the
rates that describe the effect of the microwaves (i.e., the red
arrows in Fig. 1), we also discuss thermal relaxation as it is
essential for reaching steady state.
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Thermal relaxation of the nuclear spins due to their cou-
pling to the electronic spins acts analogously to Eq. (18) af-
ter replacing the rates v0,2 by w0,2 and the polarizations by
their deviations from thermal equilibrium. Further including
nuclear T1 relaxation due to mechanisms other than the cou-
pling to the electrons, we arrive at

ṖI |th =−R
0
1I
(
PI −P

eq
I

)
− 2w1

(
PI −P

eq
I

)
−w+

(
PI −P

eq
I

)
−w−

(
PS−P

eq
S
)
, (20)

where R0
1I is the nuclear T1 relaxation rate in the absence of

the polarizing agent, and, analogously to Eq. (19),

w± = w2±w0. (21)

The cross-relaxation rate w− is seen to couple the dynamics
of PI to PS. This coupling leads to the Overhauser effect.

From Eq. (20), the total nuclear T1 relaxation rate (i.e.,
in the presence of the free radical) is identified as R1I =

R0
1I +2w1+w+. Combining the contributions of mw excita-

tion (Eq. 18) and relaxation (Eq. 20), we arrive at the follow-
ing rate equation for the nuclear polarization:

ṖI =−R1I
(
PI −P

eq
I

)
−w−

(
PS−P

eq
S
)

− v+PI − v−PS. (22)

As the rate equations are only used in our analysis to de-
scribe the steady state, we solve Eq. (22) at steady state and
express the nuclear polarization under cw irradiation in terms
of the equilibrium polarizations:

P ss
I =

R1I

R1I + v+
P

eq
I +

sw−

R1I + v+
P

eq
S −

pv−

R1I + v+
P

eq
S . (23)

(We used Eq. 3 for the steady-state electronic polarization,
and s = 1−p.)

DNP is generally quantified through the enhancement of
the nuclear polarization,

ε = P ss
I /P

eq
I − 1, (24)

which is defined such that it equals zero at thermal equilib-
rium. Taking into account that P eq

S /P
eq
I =−|γS|/γI , where

γS and γI are the gyromagnetic ratios of the electronic and
nuclear spins, from Eq. (23) we obtain

ε = εSE+ εOE+ (pX − 1) (25)

with

εSE =
pv−

R1I + v+

|γS|

γI
, εOE =−

sw−

R1I + v+

|γS|

γI

pX =
R1I

R1I + v+
. (26)

The first two additive contributions to the DNP enhancement
correspond to, respectively, the solid and Overhauser effects.

The last one is due to neither of them. Since it does not scale
with the ratio of the gyromagnetic ratios, it should be negli-
gible in all cases of practical interest. Note that pX is similar
to the electronic polarization factor p in Eq. (3) but with R1S
and 2v1 replaced by R1I and v0+ v2, respectively.

For the expressions in Eq. (26) to have a predictive value,
it is necessary to express the rates v± in terms of more funda-
mental quantities. This is done using first-order perturbation
theory, under the assumption that the dipolar interaction be-
tween the electronic and nuclear spins is much smaller than
the nuclear splitting (Abragam, 1955). Because the dipo-
lar interaction mixes the Zeeman energy levels depicted in
Fig. 1b, the ZQ and DQ transitions become weakly allowed.
To first order, the mixed states are of the form (−−)+q(−+)
(Abragam, 1955; Abragam and Proctor, 1958), with mixing
parameter

q =
1
4
Ddip

ωI

−3cosθ sinθ eiφ

r3 . (27)

Here, Ddip = (µ0/4π )}γSγI is the dipolar constant and
(r,θ,φ) are the spherical polar coordinates of the relative po-
sition vector of the spins. The probability amplitude of the
microwaves to excite a transition between the mixed energy
levels is then proportional to ω1q. Combining the probabil-
ity of excitation with the Lorentzian spread of the electronic
energy levels, one arrives at the rate constants (Wind et al.,
1985)

v0,2(�)= 4
(
q∗q

)
v1 (�±ωI ) , (28)

where v1 is the rate of the allowed (single-quantum) EPR
transition (Eq. 4). In essence, the rates of the ZQ and DQ
transitions are obtained by shifting the rate of the allowed
transition along the frequency axis by ±ωI and reducing its
magnitude through multiplication by 4|q|2.

We observe that in this approach the rates of the forbid-
den transitions acquire a factor of ω−2

I from |q|2 and a factor
of ω2

1 from the mw excitation (Eq. 4), without any room for
non-trivial cross talk between these two frequencies. Such
cross talk is also not provided by the Lorentzian dependence
on �. Similar to Eq. (28), the rate constants that we will ob-
tain in the next subsection will also contain ω2

1 and D2
dip as

multiplicative factors. However, their offset dependence will
couple ω1 and ωI in a non-trivial way, which will reduce to
the classical expression when ω1� ωI but will predict qual-
itatively different dependence when ω1 is similar to or larger
than ωI (Sect. 6.1).

3.2 Generalized Bloch equations for the solid effect

In this section, we obtain alternative expressions for the
forbidden-transition rates v± from the steady state of the ex-
act quantum dynamics. We start by deriving equations of mo-
tion for the expectation values of the operators relevant to
the solid effect. To use Eq. (5), we need to first specify the
Hamiltonian guiding the dynamics.
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We will consider the minimal solid-effect spin Hamilto-
nian (Wenckebach, 2016)

H =�Sz+ω1Sx −ωI Iz+
1
2

(
A∗1SzI++A1SzI−

)
, (29)

which is in the rotating frame for the electronic spin and in
the laboratory frame for the nuclear spin. The first two terms
are the same as in Eq. (6). The third term describes the nu-
clear Zeeman interaction. The sign of ωI is negative since
we assumed a nuclear spin with positive gyromagnetic ratio.
The last two terms in Eq. (29) account for the dipolar in-
teraction between the electronic and nuclear spins. We have
truncated this interaction by dropping all non-secular terms
containing Sx and Sy . Similar to the assumption behind the
derivation of the mixing factor (Eq. 27), we take the dipo-
lar interaction to be small compared to the nuclear Zeeman
splitting and drop the secular term proportional to SzIz. The
remaining, pseudosecular terms scale with the dipolar cou-
pling (Wenckebach, 2016)

A1 =Ddip
−3cosθ sinθ

r3 eiφ, (30)

whereDdip/2π ≈ 79.066kHznm3 for protons. The subscript
of A1 indicates that its angular dependence is identical to the
second-degree spherical harmonic of order m= 1.

We start our derivation of equations of motion with iz =
〈Iz〉, as it corresponds to the nuclear polarization. There is
no contribution from the first three terms in the Hamiltonian
(Eq. 29) as Iz commutes with all of them (Eq. 5). From the
commutator with the dipolar terms we obtain

i̇z|coh = i
1
2

(
A1g

∗
z −A

∗

1gz
)
=−Re{iA∗1gz}, (31)

where

gn = 〈SnI+〉 (n= x,y,z). (32)

Proceeding in the same way, we first find

ġz|coh =−iωIgz+ω1gy − i (A1/4) iz (33)

and then

ġy |coh =�gx − iωIgy −ω1gz+ (A1/4)sx
ġx |coh =−iωIgx −�gy − (A1/4)sy . (34)

The chain of dynamical equations can be terminated at this
stage, as sx,y obey the classical Bloch equations discussed
above. (The dynamics of the electronic spin was taken to be
independent of its dipolar coupling with the nuclei.)

In addition to the coherent evolution considered so far,
gz = 〈SzI+〉 and gx,y = 〈Sx,yI+〉 are expected to decay with
rates R1S+R2I and R2S+R2I , respectively. Neglecting R2I
compared to R1S and R2S, we arrive at the following system

of coupled differential equations:

ġx =− (R2S+ iωI )gx −�gy − (A1/4)sy
ġy =�gx − (R2S+ iωI )gy −ω1gz+ (A1/4)sx
ġz =− (R1S+ iωI )gz+ω1gy − i (A1/4) iz. (35)

Equations (31) and (35), supplemented by the Bloch equa-
tions (Eq. 7), constitute the generalization of the Bloch equa-
tions to the four-level system in Fig. 1b as relevant to the
solid effect. If desired, one can also supplement Eq. (31) with
nuclear T1 relaxation. However, because our aim is to iden-
tify the rates v±, this is not necessary. In any case, the bal-
ance between thermal relaxation and mw excitation at steady
state was already analyzed using the rate-equation formalism
(Sect. 3.1).

Analogously to our treatment of the Bloch equations
(Sect. 2.2), we will now use the condition of steady state
to eliminate all variables except the polarizations iz and sz.
From the steady state of the first equation in Eq. (35) we get

gss
x =−

�

R2S+ iωI
gss
y −

A1/4
R2S+ iωI

sss
y . (36)

Substituting into the second equation of Eq. (35) we find

gss
y =−ω1Fy g

ss
z + (A1/4)

(
Fy s

ss
x −Fx s

ss
y

)
, (37)

where we introduced the complex-valued functions

Fy =
1

R2S+ iωI +�
1

R2S+iωI
�

Fx =
�

R2S+ iωI
Fy, (38)

which generalize the functions in Eq. (11) by supplementing
their relaxation rates with an imaginary part. Like their real
analogs, Fx,y have units of time (Table 1).

Substituting gss
y into the last equation of Eq. (35) and solv-

ing for gz at steady, we find

gss
z =−i (A1/4)Fziss

z + (A1/4)Fz
(
ω1Fy s

ss
x −ω1Fx s

ss
y

)
, (39)

where the function

Fz =
1

R1S+ iωI +ω
2
1Fy

(40)

generalizes Eq. (15) of the classical Bloch equations. Finally,
we substitute gss

z into the equation of iz (Eq. 31). Factoring
out the dipolar coupling as

δ2
=
(
A∗1A1

)
/4, (41)

at steady state, Eq. (31) becomes

i̇ss
z |coh =− δ

2Re{Fz}iss
z − δ

2Re{iFz
(
ω1Fy

)
}sss
x

− δ2Re{iFz (−ω1Fx)}sss
y . (42)
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We have thus managed to eliminate the three electron–
nucleus coherences gn.

To further eliminate the electronic coherences from
Eq. (42), we recall that at steady state the transverse com-
ponents sx,y are algebraically related to sz (Eq. 10). Hence,

i̇ss
z |coh =−δ

2Re{Fz}iss
z − δ

2ω2
1Re{iFz

(
Fy fx +Fx fy

)
}sss
z . (43)

As the right-hand side of Eq. (43) contains only iz and sz, it
can be directly compared with the rate equation that accounts
for the contribution of the microwaves to the time derivative
of PI (Eq. 18). The comparison allows us to identify the two
phenomenological rate constants of the forbidden transitions
as

v+ = δ
2Re{Fz}, v− = δ

2ω2
1Re{iFz

(
Fy fx +Fx fy

)
}. (44)

When used with these two rate constants, the rate equation of
PI is guaranteed to have the correct steady state.

The above non-perturbative derivation of the rate constants
v± is the main analytical contribution of the current paper. In
Sect. 6, we will explore the predictions of these expressions,
as well as their relationship to the classical perturbative rates
(Eq. 28). Before that, in the next section, we revisit the equa-
tions of motion (Eqs. 31 and 35) and the Bloch equations
(Eq. 7), which constitute a system of seven coupled differen-
tial equations. The steady state of this system of equations is
examined in Sect. 5.

4 Making sense of the spin dynamics

The Bloch equations (Eq. 7) are coupled differential equa-
tions describing the time evolution of three dynamical vari-
ables. When the number of coupled equations is small, it
is possible to form a mental picture of the dynamical inter-
connections between the variables by examining the written
equations. In the case of more than three variables, however,
gaining insight into the dynamics by simply looking at the
written equations becomes harder.

The need to make sense of several coupled differential
equations also arises in the context of chemical reaction ki-
netics, where the concentrations of the reactants change in
time. When the number of chemical species is small, it is
sufficient to write down the kinetic equations for the concen-
trations. However, when one deals with the reactions of even
a relatively simple metabolic pathway, like glycolysis or the
citric acid cycle, the rate equations are almost never writ-
ten down explicitly. Instead, they are represented in a visual
way by drawing arrows between the names of the chemical
species that are interconverted by the reactions.

Following the same logic, we represent the dynamical
variables sx , sy and sz of the classical Bloch equations (Eq. 7)
as nodes and the various interactions that couple their dynam-
ics as arrows (Fig. 2a). The time derivative of each variable
is calculated by summing the contributions of all arrows that

point into its node, where the contribution of an arrow is ob-
tained by multiplying the weight of the arrow by the vari-
able from which it originates. Differently from the represen-
tation of chemical reactions, here an arrow does not deplete
the node at its origin but only contributes to the node at its
pointed end. In addition, as our arrows do not have the phys-
ical interpretation of reaction rate constants, their weights
may also be negative.

The two orange arrows in Fig. 2a, which flow into the
node of sx , correspond to the two terms on the right-hand
side of the first Bloch equation in Eq. (7). The arrow with
weight −� originates from sy and thus contributes −�sy to
the time derivative of sx . The other orange arrow originates
from sx and accounts for the decay of this variable with the
rate constant R2S of the transverse relaxation. We refer to
such arrows that leave a node and enter the same node as
self-arrows. To prevent positive feedback and thus ensure dy-
namical stability, the total contribution of self-arrows (in case
several such arrows point into a node) should be positive. We
will generally write the weight of a self-arrow with an ex-
plicit negative sign, which we place inside the loop formed
by the arrow.

Similarly, the three blue arrows in Fig. 2a, which flow into
the node of sy , correspond to the three terms on the right-
hand side of the second Bloch equation in Eq. (7). The re-
maining three arrows, which flow into sz, correspond to the
right-hand side of the last Bloch equation. Rather then us-
ing the same color for these three arrows, we have indicated
the contribution of mw irradiation with red and the contribu-
tion of relaxation with gray, in line with the colors used in
Fig. 1a. In any case, the colors of the arrows do not play a
role in the correspondence between the differential equation
and its visual representation. Because the equilibrium value
s

eq
z is a constant parameter in the Bloch equations, there are

no arrows flowing into its node. A node is shaded gray when
the corresponding variable remains constant in time.

While Fig. 2a contains exactly the same information as the
Bloch equations (Eq. 7), all dynamical interconnections be-
tween the variables are now visually accessible. For example,
the loop formed by the two arrows with weights −ω1 and ω1
between the variables sy and sz corresponds to rotation in the
y–z plane with angular velocity equal to ω1. In other words,
this loop is a visual manifestation of the Rabi nutation driven
by the microwaves. There is a similar loop between the vari-
ables sx and sy , which corresponds to rotation with angular
velocity� in the x–y plane. This is the Larmor precession, as
seen in the rotating frame. Since all other arrows correspond
to relaxation, the diagram in Fig. 2a confirms in a visual way
that the coherent part of the Bloch equations consists of two
rotations.

At this point we mention that instead of working with the
real-valued Bloch equations (Eq. 7), one could form the dy-
namical variable s+ = sx + isy and work with the complex-
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Figure 2. (a) Real-valued and (b) complex-valued classical Bloch equations and (c) corresponding dynamics according to the rate equation
of the electronic polarization. (d) Spin dynamics of relevance to the solid effect and (e) corresponding dynamics implied by the rate equation
of the nuclear polarization.

valued Bloch equations

ṡ+ =− (R2S− i�)s+− iω1sz

ṡz =−R1S
(
sz− s

eq
z

)
−Re{iω1s+}. (45)

These two differential equations are depicted in Fig. 2b. No-
tably, the rotation in the x–y plane with angular velocity �
(i.e., the Larmor precession) has now become the imaginary
part of the self-arrow of s+, whose real part is the T2 relax-
ation rate.

In Eq. (45) we arbitrarily retained s+ and dropped s−, thus
reducing the number of variables in the diagrammatic repre-
sentation from three to two. (The analogous reduction will be
more substantial in the case of the coupled electron–nucleus
system.) Note, however, that the contribution of s− is recov-
ered when the real part of is+ is evaluated to calculate the
time derivative of sz in the second line of Eq. (45).

In Fig. 2c we have represented the dynamics of sz which
is implied by the rate equation of the electronic polarization
(Eq. 2). The visual comparison of this dynamics with the
Bloch equations above it makes clear that the rate v1 of the
allowed EPR transition is supposed to account in some effec-
tive way for the coupling between sz and sy (due to ω1) and
for the dynamics of the transverse components (due to� and
R2S). Indeed, the rate constant v1 in Eq. (13) is a function of
ω1, � and R2S.

In Fig. 2d we show the system of seven coupled differ-
ential equations that play a role in the solid effect (Eqs. 31
and 35 and the Bloch equations). For clarity, the nodes gn
(n= x,y,z) are labeled as sni+ in the figure. Black arrows
correspond to the classical Bloch equations. Blue, orange
and green arrows, which flow into the nodes gx , gy and gz,
respectively, correspond to the right-hand sides of the three
equations in Eq. (35). The red arrow flowing into the node of
iz corresponds to the right-hand side of Eq. (31). Note that
the weight of the red arrow involves taking a real part, just

like in the complex-valued Bloch equations. Thus, although
we only show the dynamics of the coherences SnI+, at this
point the effect of the coherences SnI− is also included. In
other words, if we did not take the real part, we would need
to represent 10 coupled differential equations, rather than 7.

The graphical representation of the spin dynamics in
Fig. 2d lays bare the overall topology of the dynamical con-
nections between the seven variables. For example, note that
the Bloch-equation pattern connecting the top three nodes
(black arrows) is recapitulated between the nodes of the
coherences gn below them. Indeed, between the electron–
nucleus coherences one recognizes the loops that correspond
to Rabi nutation and Larmor precession. Due to the involve-
ment of the nuclear spin operator I+, this second set of Bloch
equations is “shifted” by the nuclear Larmor frequency, as
evidenced by the imaginary part of the self-arrows of gn. The
link between the electronic Bloch equations and these new
Bloch equations that describe the dynamics of the S–I co-
herences is established by the dipolar coupling (A1), which
connects the two sets of Bloch equations such that the y vari-
able of one of them feeds into the x variable of the other
and vice versa. The same dipolar interaction also connects gz
to the nuclear polarization through the red arrow in Fig. 2d.
Although the coherences SnI− are not explicitly modeled,
their contribution is recovered when we feed a real value into
the time derivative of iz, as discussed above. At this stage,
Bloch-like equations shifted by +ωI (shown) and by −ωI
(not shown) contribute symmetrically to the nuclear polar-
ization.

All interactions in the Hamiltonian (Eq. 29) lead to ro-
tations, which are manifested as loops between two vari-
ables formed by arrows with opposite weights. Although
such loops are also formed between the variables sy and gx ,
and between sx and gy , we have not shown the arrows that
originate at gx and gy and flow into, respectively, sy and sx .
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These arrows, which would complete the loops of the dipo-
lar interaction, are dropped because their contribution to the
electronic dynamics is neglected.

For comparison, in Fig. 2e we recall the description of the
same spin dynamics according to the rate-equation formal-
ism (Eq. 18). Clearly, the two rates v± should summarize in
some faithful way the complexity of the proper, quantum-
mechanical dynamics in Fig. 2d. In particular, the rate v−
should account for the pathways from sz to iz and the rate v+
for the pathways from iz into the coherences gn and back to
iz.

By examining the pathways from sz to iz we gain visual
understanding of the mechanism of dynamical coupling be-
tween the electronic and nuclear polarizations in the solid
effect. The two possible paths for reaching iz from sz fol-
lowing the “flow” of the arrows are shown in Fig. 3a. Both
paths consist of four steps, not counting the mixing of the
transverse components by ±�. First, the mw excitation (ω1)
generates the transverse components sy,x from sz. This step
is described by the classical Bloch equations. Then, the dipo-
lar coupling (A1) generates the coherences gx,y from sy,x .
These are then converted to gz by the mw excitation, and fi-
nally the dipolar interaction transforms gz to iz. Observe that
the weights ω1 and A1 appear twice along each path; thus
both paths scale as ω2

1|A1|
2. Since these paths contribute to

the rate constant v−, it should also scale with the mw power
and the square of the dipolar interaction, which is in agree-
ment with the perturbative rates in Eq. (28).

In addition to the weights considered above, both paths in
Fig. 3a also traverse arrows with weights±�. Thus, on reso-
nance (i.e., �= 0), the possibility of polarization transfer is
severed. This observation does not appear to be particularly
useful as the forbidden transitions are driven at �≈±ωI
anyway. However, since going along an arrow with weight
±� amounts to multiplication by �, we realize that crossing
from the left side of the dynamical network to the right side
involves change of parity in �. In other words, because sz is
an even function of the frequency offset, its effect on iz must
be odd in �. This is the reason for the anti-symmetric field
profile of the solid effect (in contrast to the symmetric profile
of the Overhauser effect). The diagram makes clear that the
solid effect is odd in � for the same reason that sx is odd.
This point is further examined in Sect. 5.

In Fig. 3b we have highlighted the arrows that contribute to
the self-loop of iz with weight v+. Again there are two differ-
ent possible paths: one consists of two steps and the other of
four. The shorter path from iz to gz (blue arrow) and back to
iz (red arrow) relies only on the dipolar interaction between
the electronic and nuclear spins and must be active even in
the absence of mw excitation. The longer path additionally
goes from gz to gx,y (the latter are mixed by �) and back
and contributes only under mw irradiation. Considering that
thermal relaxation and mw excitation are treated separately,
we realize that the short loop in fact contributes to the nu-
clear T1 relaxation (more precisely to the rate w1 in Fig. 1b);

Figure 3. Pathways (a) from sz to iz contributing to the rate v−
and (b) from iz to iz contributing to the rate v+.

hence its contribution should be removed when calculating
the rate v+.

On the basis of this observation, we now modify the an-
alytical expression for v+ that we gave in Eq. (44). Since
the nuclear T1 is typically measured with the microwaves
switched off, we identify the ω1-independent part of Fz
(Eq. 40), namely

Fz (ω1 = 0)= (R1S+ iωI )−1, (46)

as contributing to relaxation. The corrected form of the first
equality in Eq. (44) is thus

v+ = δ
2Re{Fz− (R1S+ iωI )−1

}. (47)

Having a visual representation of the spin dynamics was thus
helpful to identify an aspect that would be harder to identify
on the level of the written equations.

5 Analyzing the steady state

The diagrammatic representations of the previous section
showed that the quantum-mechanical dynamics consists of
several simultaneous rotations that mix the expectation val-
ues of the various spin operators. In spite of the complicated
time evolution that such interconnected rotations may gener-
ally lead to, relatively simple algebraic relationships between
the variables emerged at steady state (Sects. 2.2 and 3.2).

The steady-state relationships of the Bloch equations,
which were given in Eqs. (10) and (14), are depicted dia-
grammatically in Fig. 4a. Because we deal with algebraic
(as opposed to differential) equations, the inflowing arrows
now contribute directly to the value of the variable inside the
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node and not to its time derivative. To make this distinction
visually clear, we use a rectangular node when the variable
itself is obtained by adding the contributions of all inflow-
ing arrows. In addition, we use dashed arrows to signal that
the mathematical relationships hold only at steady state. In
contrast, the solid arrows of the previous section represented
fundamental, causal relationships between the variables gov-
erning their dynamics at all times.

It is convenient to think of the steady-state Bloch equations
as a system that takes the Boltzmann polarization seq

z as an
input and produces the outputs sss

x,y , as suggested graphically
in Fig. 4a. Each dashed arrow can thus be viewed as a transfer
function that multiplies the variable at its input to produce the
variable at its output. The weights of the arrows in Fig. 4a are
dimensionless (Table 1).

Equation (43), from which we identified the rates v±, is
depicted in Fig. 4b and, equivalently, in Fig. 4c. The three
colored arrows in Fig. 4b correspond to the three terms on the
right-hand side of Eq. (42), before the transverse components
sss
x,y were replaced by sss

z . Specifically,

Ti = Re{Fz}, T ′x = Re{iFz
(
ω1Fy

)
},

T ′y = Re{iFz (−ω1Fx)}. (48)

The cumulative transfer function from sz to iz (Fig. 4c) is
obtained by adding the contributions of the two parallel paths
in Fig. 4b. The sum

Tz = ω1fxT
′
x −ω1fyT

′
y

= ω2
1 Re{iFz

(
Fyfx +Fxfy

)
} = v−/δ

2 (49)

was already evaluated in Eq. (43).

5.1 Bloch equations

To examine the steady-state properties of the Bloch equa-
tions, in Fig. 5 we plot the ratios sss

z /s
eq
z = p(�,ω1) (first

row) and sss
x,y/s

ss
z =±ω1fx,y(�) (second row) against the

offset frequency � for four different values of B1. A free
radical with g = 2 was assumed when converting B1 to ω1,
so that B1 = 6 G corresponds to ω1/2π = 16.8 MHz. This
maximum value of B1 is intended to reflect the actual mw
field of modern-day DNP spectrometers at X band (Neudert
et al., 2016) and at J band (Kuzhelev et al., 2022). The elec-
tronic relaxation times used in the plots were T2S = 60 ns and
T1S = 9T2S = 540 ns.

From the first row of Fig. 5 we see that the electronic sat-
uration is most efficient on resonance (�= 0) and quickly
becomes inefficient at larger offsets. With increasing mw
power (different columns) the deviation of sss

z from equi-
librium spreads to larger offsets. As our main interest is
in the solid effect, we have indicated with dashed vertical
lines the offsets� that correspond to proton Larmor frequen-
cies at the X (9.2 GHz/14 MHz), Q (30 GHz/45 MHz) and W

(92 GHz/140 MHz) mw bands. Considering that DNP is per-
formed at high mw powers, let us examine the saturation at
B1 = 6 G (Fig. 5, upper right plot).

Looking at�= ωI at X band, we see that the allowed EPR
transition is almost completely saturated. Because the effi-
ciency of the solid effect scales with p (Eq. 26) any gain from
efficiently driving the forbidden transitions will be squashed
down dramatically, thus substantially reducing the ultimate
enhancement of the NMR signal. This observation implies
that at X band the best solid-effect enhancement may occur
at less than maximum mw power, as we demonstrate numer-
ically in Sect. 6.2.

The second row of Fig. 5 shows the offset dependence
of the transfer functions connecting the longitudinal compo-
nent sss

z to the transverse components sss
x,y . The observed in-

crease in magnitude from left to right reflects the multiplica-
tion by ω1 of the functions fx,y which are independent of ω1
(Eq. 11). Being the real (fy) and imaginary (fx) components
of a complex-valued Lorentzian with width R2S and center
frequency �= 0, these functions correspond to the absorp-
tive and dispersive components of a homogeneous EPR line.
The absorptive component (blue line) is largest at �= 0,
while the two extrema of the dispersive component (orange
line) are located at �=±R2S. At offsets much larger than
the locations of these extrema (i.e.,�� R2S), the absorptive
component drops as 1/�2, while the dispersive component
drops as 1/�.

The third row of Fig. 5 shows the net transfer functions re-
lating the input of the Bloch equations, seq

z , to their ultimate
outputs, sss

x,y . These transfer functions are obtained by multi-
plying the solid black lines in the first row by the lines in the
second row. In essence, what we see are the absorptive and
dispersive components of a power-broadened EPR line. The
power broadening (i.e., multiplication by 1−s) leads to qual-
itative differences. For example, while the peak of the blue
line in the second row of the figure increased linearly with
ω1, it now decreases as 1/ω1. In the case of the orange line,
the locations of its extrema are now shifted towards larger
offsets (�≈±ω1(T1S/T2S)1/2), and their magnitude is ap-
proximately independent of B1 (≈ 0.5(T2S/T1S)1/2, which
equals 1/6≈ 0.17 for the choice of relaxation times in
Fig. 5). Clearly, the tail of the power-broadened dispersive
(orange) component extends further into the range of interest
for the solid effect at high mw frequencies than the tail of the
absorptive (blue) component. One could thus expect that the
path through sss

x in Fig. 3a (orange arrows) contributes to v−
more than the path through sss

y (blue arrows), simply because
sss
y does not survive at offsets equal to the nuclear Larmor

frequencies at high fields.

5.2 Generalized Bloch equations

The transfer functions indicated with colored arrows in
Fig. 4b depend on the auxiliary functions Fx,y and Fz
(Eq. 48). These three complex-valued functions are plotted in
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Figure 4. Algebraic relations between the dynamical variables at steady state. (a) Transfer functions of the Bloch equations. (b, c, d) Transfer
functions describing the steady-state relationship between the time derivative of iz (output) and different choices of the electronic input.

Figure 5. Transfer functions characterizing the steady state of the classical Bloch equations. The conversion of B1 to ω1 was for free radical
with g = 2; hence B1 = 6 G corresponds to ω1/2π = 16.8MHz. In all plots T2 = 60 ns and T1 = 9T2. The positions of the nuclear Larmor
frequencies at X (14 MHz), Q (45 MHz) and W (140 MHz) bands are indicated with vertical dashed lines.

the ωI -� plane in Fig. 6a. In the plots, the angular frequen-
cies are reported in units of R2S. Cross-sections at ωI = 0,
0.5, 1.5 and 3 are drawn over the surfaces with solid black
lines. The black lines at ωI = 0 show that the imaginary parts
of Fy , Fx and Fz vanish, and their real parts become equal to
fy , fx and fz of the classical Bloch equations (cf. Fig. 5, first
two rows). In particular, at ωI = 0, Fy and Fx as functions of
� are like the absorptive and dispersive components of the
EPR line. When plotting Fz we used ω1 = 1.5 (in units of
R2S). Because both the real and imaginary parts of Fz decay
very rapidly with increasing ωI , we also show the logarithm
of the real part and the product of the imaginary part with ωI .

These transformations make the small values of Fz at large
ωI visible.

In Fig. 6b we show these functions against� at four differ-
ent nuclear Larmor frequencies and, in the case of Fz, three
different mw powers. In each case, the locations of the Lar-
mor frequencies along the horizontal axis are indicated with
vertical dashed lines. In the first and second rows we see Fy
and Fx , which do not change with mw power. The real and
imaginary parts of Fy (first row) look like the real and imag-
inary parts of two complex-valued Lorentzians centered at
�=−ωI and �=+ωI . Indeed, with

L± = [R2S+ i (ωI ±�)]−1, (50)
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Figure 6. The functions Fy , Fx and Fz characterizing the steady state of the second set of Bloch equations. (a) Angular frequencies are
measured in units of R2S. R1S = R2S/9 as in the other figures. To calculate Fz we used ω1 = 1.5, which for T2S = 60 ns corresponds to
B1 ≈ 1.5 G. Solid black lines are cross-sections at ωI = 0, 0.5, 1.5 and 3. (b) Numerical parameters as in Fig. 5. Recall that B1 = 6 G
corresponds to ω1/2π = 16.8 MHz. The approximate curves in the last three rows (dotted black) are calculated using Eq. (51).

it is straightforward to show that Fy = (L−+L+)/2. These
Lorentzians have the same width as fy and fx of the clas-
sical Bloch equations (Fig. 5, second row). The function Fx
in the second row of Fig. 6b also has Lorentzian-like fea-
tures centered at �=±ωI , but the Lorentzian on the right is
flipped around the horizontal axis. Indeed, it can be shown
that Fx = (L−−L+)/2.

Differently from Fx,y , Fz depends on ω1 (Eq. 40). In the
last three rows of Fig. 6b we plot Fz(�) for three different
values of B1, starting with B1 = 6 G (third row) and going
down to B1 = 1.5 G (last row). The first thing to notice is
that both the real (blue) and imaginary (orange) parts of this
function decrease rapidly with increasing ωI , i.e., moving to
the right in a given row. (The former as 1/ω2

I and the latter as
1/ωI .) As all transfer functions in Eq. (48) are proportional
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to Fz, we expect these to also decrease rapidly with increas-
ing nuclear Larmor frequency.

At the lower mw powers and higher magnetic fields Fz
is seen to be dominated by its imaginary part, as its real
part remains close to zero. At higher mw powers and lower
magnetic fields (B1 = 6 G, X and K bands, and B1 = 3 G, X
band) the real and imaginary parts are seen to be comparable
in magnitude. Moving from the former to the latter regime,
there is a major qualitative change: the features at �=±ωI
shift towards the origin (B1 = 6 G, K band, and B1 = 3 G,
X band) until they coalesce into a single line (B1 = 6 G, X
band).

In the companion paper (Sezer, 2023a), we calculate Fz
approximately using perturbation theory and find

Fz ≈
cos2α

R̃1+ iωI
+

1
2 sin2α

R̃2+ i (ωI −ωeff)

+

1
2 sin2α

R̃2+ i (ωI +ωeff)
, (51)

where the frequency ωeff = (�2
+ω2

1)1/2 corresponds to the
effective magnetic field, α is the angle between this field and
B0, such that cosα =�/ωeff and sinα = ω1/ωeff, and

R̃1 = R1S(cosα)2
+R2S(sinα)2

R̃2 = R2S[1− (sinα)2/2] +R1S(sinα)2/2. (52)

This result is exact for R1S = R2S and is perturbative in
the difference of the two electronic relaxation rates (Sezer,
2023a).

The approximation in Eq. (51) is shown with dotted black
lines in the last three rows of Fig. 6b. It is seen to correctly
capture both the shift of the peaks towards smaller offsets
and their coalescence at �= 0. Inspecting Eq. (51), we see
that the dependence of Fz on � comes from the second and
third summands. The second summand is a complex-valued
Lorentzian centered at ωeff = ωI , which corresponds to the
offsets�=±(ω2

I−ω
2
1)1/2. This explains the deviation of the

maxima from the canonical solid-effect positions �=±ωI
for ω1 ≈ ωI . At X band, when B1 = 6 G, ω1 is larger than
ωI , and the two Lorentzians fuse together. It is notewor-
thy that the equality ωeff = ωI , implied by the approxima-
tion Eq. (51), also arises as the matching condition of the
pulsed DNP method known as NOVEL (nuclear orientation
via electron spin locking) (Henstra et al., 1988; Henstra and
Wenckebach, 2008; Jain et al., 2017).

We now turn to the transfer functions in Eq. (48), which
were depicted with colored arrows in Fig. 4b. These are plot-
ted in the second and third rows of Fig. 7. As Ti (solid red
lines) is just the real part of Fz, it exhibits all the features
that we already talked about when discussing Fig. 6b. The
dashed red lines in the third row of Fig. 7 correspond to the
mw-independent part of Ti , namely T 0

i = Ti(ω1 = 0), which
contributes to the nuclear relaxation ratew1 rather than to v+

(Eq. 47). At the high mw field that we have used (B1 = 6 G),
T 0
i is negligible compared to Ti (solid red line), thus sub-

tracting the relaxation would not make much of a difference.
However, at lower mw powers the contribution of Ti to ther-
mal relaxation becomes comparable to the rest, and the cor-
rection makes a difference. (This can be seen in the bottom
plot of Fig. A1, where B1 = 1 G.)

In the second row of Fig. 7, the functions T ′x,y resulted
from the product of Fy,x and Fz (Eq. 48). Interestingly, their
Lorentzian-like features are at the same frequency offsets as
those of Ti , the real part of Fz. We observe that T ′x (orange)
and T ′y (blue) are similar in magnitude. Thus, if sss

x and sss
y

were comparable in magnitude, the contributions of the two
parallel branches from sss

z to iss
z would be similar (see flow

diagram in the right margin of Fig. 7). We know, however,
that sss

y is much smaller than sss
x at large offsets (Fig. 7, first

row), and so the path via T ′x (orange) will contribute more.
Multiplying the functions T ′x,y (Fig. 7, second row) by the

functions in the first row, we obtain the orange and blue lines
in the last row of the figure. (The functions in the first row
were shown before in Fig. 5. They are plotted here again
only for B1 = 6 G. The four plots are identical to each other
but appear different due to the different scales of the hori-
zontal axes.) Comparing the first and second rows of Fig. 7,
we see that an odd/even function in the first row is multi-
plied by an even/odd function in the second row to produce
the corresponding orange and blue lines in the bottom row.
As a result, the contribution of both parallel paths from sss

z to
iss
z (via either sss

x or sss
y ) is odd in �. The cumulative trans-

fer function of the two parallel paths (Eq. 49) is also plotted
in the last row of Fig. 7 with dashed black lines. At Q and
W bands it is seen to be essentially identical to its first addi-
tive contribution ω1fxTx (orange line), which means that the
electronic polarization is transferred to the nucleus almost
entirely through the dispersive component sss

x .
In the light of this observation, we will now rewrite the

cumulative transfer function Tz (Eq. 49) as if the polarization
was transferred only through the dispersive component. We
start by observing that

Fyfx +Fxfy = Fy
2R2S+ iωI

R2S+ iωI
fx = F

′
yfx, (53)

where the last equality defines F ′y . The second R2S in the
numerator of Eq. (53) comes from Fxfy and can be viewed
as a “correction” to Fyfx due to Fxfy . Introducing

Tx = Re
{
iFz

(
ω1F

′
y

)}
(54)

(compare this Tx with T ′x in Eq. 48), we rewrite Eq. (42) in a
way that contains sss

x but does not contain sss
y as follows:

i̇z|
ss
coh =−

(
δ2Ti

)
iss
z −

(
δ2Tx

)
sss
x . (55)

Note that this expression is exact and does not result from
simply dropping the last term in Eq. (42), which is propor-
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Figure 7. Transfer functions characterizing the steady state of the two coupled sets of Bloch equations. Used parameters: B1 = 6 G, T2S =
60 ns and T1S = 9T2S.

tional to sss
y , as the contribution of the path through sss

y is
taken into account in the definition of Tx .

Equation (55) is depicted in Fig. 4d, which shows only one
path from sss

z to iss
z going through sss

x . From Fig. 4d,

v− = (ω1fx)
(
δ2Tx

)
. (56)

This factorization is revisited in Sect. 7.1.

6 Closer look at the rate constants

6.1 Relation to the classical rates

Here we show that the classical expression of the ZQ and DQ
transition rates (Eq. 28) follows from the exact rates (Eqs. 47
and 56) when ω1� ωI . To simplify the analysis, we take
from the start a long electronic T1 relaxation time, such that
R1S� ωI . This should be the case for high-field DNP in
solids, where the electronic T1 is at least a microsecond. In
this case, the function Fz (Eq. 40) simplifies to

Fz ≈
1

iωI +ω
2
1Fy
=

1
iωI

(
1+

ω2
1

iωI
Fy

)−1

. (57)

For ω1� ωI , to first order in ω2
1,

Fz ≈
1
iωI
+
ω2

1

ω2
I

Fy . (58)

Note that, because the relaxation rate R1S was neglected,
T 0
i = Re{Fz(ω1 = 0)} = 0. In other words, the contribution

of the short path in Fig. 3b (blue and red arrow) to the nuclear
relaxation rate vanishes. From Eqs. (47) and (56), retaining
only terms of up to first order in ω2

1,

v+ ≈ δ
2 ω

2
1

ω2
I

Re{Fy}, v− ≈ δ
2 ω

2
1

ω2
I

ωIfxRe
{
Fy

2R2S+ iωI

R2S+ iωI

}
. (59)

To establish the equivalence of these expressions with
Eq. (28), we need to show that Re{Fy} and ωIfxRe{F ′y}
equal, respectively, the sum and difference of two real-
valued Lorentzians centered at �=±ωI . For the complex-
valued Lorentzians in Eq. (50), we already observed that
L−+L+ = 2Fy . One can also confirm that Re{L−−L+} =
2ωIfxRe{F ′y}. Hence,

v± ≈ δ
2ω

2
1

ω2
I

1
2

(Re{L−}±Re{L+}) , (60)

and thus

v0,2 ≈
1
8

(
A∗1A1

) ω2
1

ω2
I

Re{L±}, (61)

which is equivalent to the classical expression (Eq. 28).
The sum and difference of the classical rates v2 and v0 are

compared with the exact v± in the first two rows of Fig. 8.
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Naturally, the Lorentzians associated with the classical rates
remain centered at ±ωI even when the maxima of the exact
rates shift closer to each other at Q and K bands and converge
at X band. At high fields (e.g. W band), where ωI � ω1, the
classical approximations work perfectly.

In the last row of Fig. 8 we show the DQ-transition rate v2.
While, classically, it is always non-negative (dashed black
lines), the exact rate deduced from v± (solid brown lines) is
seen to become negative at some offsets. From the perspec-
tive of the rate-equation formalism, such negative rates are
meaningless. In that sense, the description of the forbidden
transitions in terms of v± is more fundamental than their de-
scription in terms of v0 and v2.

6.2 Solid-effect DNP enhancement

The DNP enhancement of the solid effect (Eq. 26) can be
written as the product of |γS|/γI with the following two di-
mensionless factors:

pX =
R1I /δ

2

R1I /δ2+
(
Ti − T

0
i

) , pv−

R1I
=

pTz

R1I /δ2 , (62)

which we have rewritten here in terms of the transfer func-
tions Ti , T 0

i and Tz. These transfer functions already ap-
peared in the last two rows of Fig. 7. Thus, to calculate the
DNP enhancement, we only need to specify the ratio R1I /δ

2.
In the case of δ, rather than calculating A1 (Eq. 30) for

some arbitrary inter-spin vector, let us average A∗1A1 over
the entire 3D space. With b denoting the so-called “distance
of closest approach” or “contact distance”, and N denoting
the number of electron spins per unit volume, we have

〈δ2
〉 =

1
4
〈A∗1A1〉 =D

2
dip

6π
5
N

3b3 , (63)

where, in this case, the angular brackets denote spatial aver-
aging. We will use b = 1 nm andN = 0.1 M as representative
but otherwise arbitrary values.

While the average over 3D space in Eq. (63) is clear math-
ematically, it is important to understand that physically it im-
plies fast spin diffusion (Wind et al., 1985). Since the nu-
clear polarization in solids is homogenized across the sample
through spin diffusion, replacing the individual δ2’s of the
nuclear spins by the average over all nuclei is only legitimate
when spin diffusion is faster than the nuclear spin-lattice re-
laxation. In practice, spin diffusion is rather slow and is of-
ten the bottleneck for efficient polarization transfer in solids
(Hovav et al., 2011; Smith et al., 2012; Pinon, 2018). As a
result, the DNP enhancement values that we will calculate
with Eq. (63) are expected to be appreciably larger than what
could be observed experimentally.

Similar considerations also apply for the choice of the nu-
clear spin-lattice relaxation time. In principle T1I will de-
pend on the distance of the nucleus from the electronic spin
and thus will vary greatly across the sample. In the limit of

fast spin diffusion, however, only its average value becomes
relevant. In general, this time depends on the radical concen-
tration and on the magnetic field B0. However, for the pur-
poses of illustration, here we take a generic numerical value
of T1I = 30 ms across all mw bands. Again, this value is re-
alistic but otherwise arbitrary.

Using b = 1 nm, N = 0.1 M and T1I = 30 ms we find
R1I /〈δ

2
〉 = 1.78 ns. Let us visually compare this timescale

with (Ti − T 0
i )= v+/〈δ2

〉 by consulting the solid red line in
the first row of Fig. 8. We observe that at X and K bands
the maxima of the red line are much larger than 2 ns, which
means that the minima of pX will be close to zero. At Q
band the maxima of the red line are comparable to 2 ns, and
at W band they are much smaller. The minima of the nuclear
cross-polarization factor are thus expected to be about 1/2
and 1, respectively. These expectations are confirmed by the
maroon lines in the first row of Fig. 9 and demonstrate that
the ratio pX can substantially deviate from one at lower mag-
netic fields.

To estimate the expected magnitude of the second factor
in Eq. (62), we need to compare the timescale R1I /〈δ

2
〉 =

1.78 ns with pTz. While Tz was shown with dashed black
lines in the bottom row of Fig. 7, now it has to be multiplied
by the electronic polarization factor in the top row of Fig. 5.
From the line for B1 = 6 G in this row, we see that Tz will be
significantly suppressed at X band, so it is hard to judge how
the reduced value will compare with 1.78 ns. At Q band, Tz
will be reduced by a little more than a factor of 2, which will
make its peak in Fig. 7 comparable to R1I /〈δ

2
〉. At W band,

where the factor p is about 0.9, Tz will be only slightly re-
duced, so its peak is expected to be about one-fifth of 1.78 ns.
Again, these estimates are confirmed by the green lines in the
second row of Fig. 9.

The last row of Fig. 9 shows the product of the first two
rows times |γS|/γI , assuming a proton spin. The result is
the solid-effect DNP enhancement (Eq. 26). In the figure we
have also shown the factors predicted by the classical ex-
pression of the rates (Eq. 28) with dashed black lines. While
there are quantitative differences between the exact calcu-
lations and the classical approximation, the magnitudes of
the DNP enhancements in the two cases are, in fact, com-
parable. A closer look reveals that, for the specific B1 and
relaxation times used in the calculations, the classical de-
scription of the solid effect (Eq. 28) works perfectly at Q
band and at larger mw frequencies. (In Fig. A2 we show
that by reducing the mw power to B1 = 1 G the classical ex-
pressions are also perfect at X band.) The amplitudes of the
maximum enhancements at the four mw bands are roughly in
the ratios 1 : 2 : 4 : 2 (X : K : Q : W). On the other hand, con-
sidering the inverse dependence on ω2

I , we expect the ratios
100 : 40 : 10 : 1. These expected ratios are indeed observed at
the much lower mw power of B1 = 1 G (Fig. A2b). Compar-
ison of Figs. 9 and A2 shows that increasing B1 increases
the amplitudes of the maximum enhancements at W and Q
bands but reduces the enhancement at X band. Such reduc-
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Figure 8. Forbidden-transition rates calculated either exactly (solid lines) or using the classical expression (Eq. 28) with v± = v2± v0
(dashed lines). As in the previous figures, B1 = 6 G, T2S = 60 ns and T1S = 9T2S.

Figure 9. Decomposition of the DNP field profile (εSE) in terms of the multiplicative contributions pX and pv−/R1I . The new parameters
used here are T1I = 30 ms, b = 1 nm and N = 0.1 M. Other parameters: B1 = 6 G, T2S = 60 ns and T1S = 9T2S.
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tion of the solid-effect DNP enhancement with increasing B1
has been reported at X band (Neudert et al., 2016).

7 Concluding discussion

7.1 Refactorization of the polarization transfer

When pX ≈ 1 (Eq. 26), e.g., at high magnetic fields (Fig. 9,
W band) and lower mw powers (Fig. A2b), the DNP en-
hancement of the solid effect is

εSE ≈ (pv−)T1I |γS|/γI (pX ≈ 1) . (64)

Since T1I is easily accessible experimentally, pv− is the only
non-trivial factor in Eq. (64). From Fig. 4a we know that p
relates sz at steady state to seq

z , and from Fig. 4c we know
that v− relates the time derivative of iz at steady state to sz.
Hence, the product pv− relates the time derivative of iz di-
rectly to the electronic Boltzmann polarization seq

z , as shown
graphically in Fig. 10a.

Since, by construction, the rate equations of the polariza-
tions do not model the dynamics of the coherences, their
steady state balances the rates of mw excitation only against
the longitudinal (i.e., spin-lattice) relaxations. The polariza-
tion factor p quantifies this balance for the allowed EPR tran-
sition (Eq. 3). Because the rate equations work only with the
polarizations, all dynamical variables between sz and iz in
Fig. 2d are lumped into the rate constant v−. Classically, this
rate constant (v− = v2− v0) is obtained by calculating the
rates of the ZQ (v0) and DQ (v2) transitions using first-order
perturbation theory. From this point of view, decomposing
the product pv− into the factors p and v− is natural. The off-
set dependence of these two factors was visualized in Fig. 5
(top row) and Fig. 8 (middle row, dashed black lines). The
curves for B1 = 6 G and W band are reproduced in Fig. 10a
(black and green lines).

In contrast to this classical approach, here we considered
the complete spin dynamics of relevance to the solid effect,
including the dynamics of the coherences (Fig. 2d). The anal-
ysis was simplified by the realistic assumption that the elec-
tronic dynamics was not affected by the dipolar interaction
with the nuclear spins. Thus, in our description, the purely
electronic degrees of freedom constitute an isolated dynam-
ical system, which influences the other dynamical variables
but is not affected by them.

This division of the complete dynamical system into a
purely electronic part and the rest calls for a similar sepa-
ration of the product pv− in Eq. (64) into an electronic part
and a mixed electron–nucleus part. Such factorization of pv−
is illustrated in Fig. 10b, where the purely electronic part
is identified with the dispersive component of the EPR line.
This would be the out-of-phase cw-EPR spectrum recorded
under the same mw power as used in the DNP experiment.
Then, from Eq. (56), the second factor is recognized to be
δ2Tx , where δ2 accounts for the strength of the dipolar in-
teraction (Eq. 41), and Tx takes care of the interconnections

between the relevant electron–nucleus coherences at steady
state (Eq. 54). The offset dependence of the dispersive EPR
line was visualized before in Fig. 5 (bottom row). The curve
for B1 = 6 G is reproduced in Fig. 10b (blue line). The curve
below it (orange line) corresponds to δ2Tx at W band, which
is essentially the same as δ2T ′x that was shown in the second
row of Fig. 7 since at this high magnetic field T ′y contributes
negligibly little.

Because, as already illustrated above (Fig. 9, middle row,
W band), the classical approach and our new approach lead
to essentially the same product pv−, the new factorization in
Fig. 10b may appear as a purely mathematical exercise of lit-
tle practical interest. Note, however, that recognizing the dis-
persive EPR line as contributing multiplicatively to the DNP
enhancement suggests that the dispersive extrema could be-
come visible in the field profile of the enhancement, provided
that they are not fully suppressed by the factor δ2Tx . Such
possibility is completely missing in the classical description
on the left-hand side of Fig. 10, where any reference to the
dispersive EPR line and its extrema is irrelevant.

In the companion paper (Sezer, 2023a), we show that,
in liquids, the random modulation of the dipolar interaction
broadens the lines of the factor δ2Tx (Fig. 10b, orange line).
When the tails of these broadened lines reach the extrema
of the dispersive EPR line (blue line), the enhancement field
profile exhibits features that are reminiscent of the DNP ef-
fect known as thermal mixing (Kuzhelev et al., 2022). These
features are a direct manifestation of the dispersive EPR line
in the DNP spectrum (Sezer, 2023a).

7.2 Origin of the solid effect

The issue of Comptes rendus from 9 April 1958 contained the
article “Effect of nuclear polarization in liquids and gases
adsorbed on charcoal” by Erb, Motchane and Uebersfeld
(Erb et al., 1958a). It reported enhancements of the proton
NMR signal of benzene upon mw irradiation of the EPR line
of charcoal. The enhancements were positive at fields larger
than the EPR resonance position and negative at smaller
fields. Because fields symmetrically displaced from the res-
onance yielded the same magnification factor, the enhance-
ment profile was odd in the field offset and resembled the dis-
persive component of the EPR line. The similarity between
the two prompted the authors to augment the Solomon equa-
tion (Solomon, 1955) with two new terms proportional to sx
and sy (Erb et al., 1958a):

i̇z = λ
(
iz− i

eq
z

)
+µ

(
sz− s

eq
z

)
+ νsx + ρsy . (65)

Taking into account that “under saturation conditions sy =
0”, the authors arrived at

i̇z = λ
(
iz− i

eq
z

)
+µ

(
sz− s

eq
z

)
+ νsx . (66)

Assuming µ was small in their case, they solved Eq. (66) at
steady state as

iss
z = i

eq
z − (ν/λ)sss

x , (67)
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Figure 10. Two ways of decomposing the effect of the electronic Boltzmann polarization (seq
z ) on the steady-state nuclear polarization (iss

z ).
The classical expression (a) partitions this effect into the factors p and v− = v2−v0, which reflect respectively the saturation of the allowed
EPR transition and the excitation of the forbidden DQ (v2) and ZQ (v0) transitions. Alternatively (b), the same effect can be written as
the product of the dispersive component of the power-broadened EPR line (sss

x /s
eq
z ) and the rate constant δ2Tx . The latter characterizes the

steady state of the electron–nucleus coherences without any contribution from the purely electronic coherences.

which explained the similarity between the field profile of the
enhancement and the dispersive EPR line.

Intriguingly, with µ= 0, the phenomenological equation
(Eq. 65) is mathematically identical to Eq. (42), which ex-
pressed the time derivative of iz at steady state as a linear
combination of iz, sx and sy . The argument of Erb et al.
(1958a) that the contribution of sy could be neglected, which
let to Eq. (66), is justified by our analysis. Specifically, in
the last row of Fig. 7 we observed that the contribution of
the absorptive component sy to the rate constant v− was
smaller than that of the dispersive component sx . Moreover,
we showed that Eq. (55) was, in fact, exact within the frame-
work of our treatment. Thus, the phenomenological equation
(Eq. 66) produces the correct steady state when its coeffi-
cients are selected as ν =−δ2Tx and λ=−δ2(Ti − T 0

i ).
The next installment of Comptes rendus from

14 April 1958 contained Abragam and Proctor’s report
“A new method for dynamic polarization of atomic nu-
clei in solids” (Abragam and Proctor, 1958), which was
printed 132 pages after Erb et al. (1958a). This seminal
contribution provided the modern theoretical understanding,
and subsequently also the name, of the solid-state effect
of dynamic nuclear polarization. In particular, the authors
argued that the excitation of the forbidden transitions
(++) 
 (−−) and (+−) 
 (−+), which become weakly
allowed because the dipolar coupling yields mixed states
of the form (−−)+ q(−+), could be used for DNP. (±
are the states of the two spin types, both taken as 1/2 for
simplicity.) As an experimental verification of the theoretical
proposal, the Boltzmann polarization of 19F nuclei was used
to enhance the NMR signal of 6Li in a LiF monocrystal, thus

demonstrating polarization transfer from nuclei with larger
to nuclei with smaller gyromagnetic ratios (i.e., a nuclear
solid effect).

One month and a half after Abragam and Proctor’s report,
in the 28 May 1958 issue of Comptes rendus, Erb, Motchane
and Uebersfeld published another report with the lengthy ti-
tle “On a new method of nuclear polarization in fluids ad-
sorbed on charcoal. Extension to solids and in particular to
irradiated organic substances” (Erb et al., 1958b). There, the
authors state the following (our translation):

The experiments (Erb et al., 1958a) had been car-
ried out with charcoal whose half-linewidth was 5
gauss and the multiplication factor seemed to re-
produce the paramagnetic dispersion curve.

The new experiments . . . indicated that the in-
crease in polarization of the proton in the adsorbed
fluid is maximum in all cases, when the electronic
and nuclear frequencies are chosen such that the
nuclear resonance field differs from the electron
resonance field δH =±5 gauss (within 10 %).

These results support the suggestion of Abragam
that the new theory of Abragam and Proctor on the
nuclear polarization in solids (Abragam and Proc-
tor, 1958) must apply to these new phenomena, and
invalidates the interpretation proposed previously
(Erb et al., 1958a).

The value of 5 gauss found in the case of the proton
indeed corresponds to the value deduced from the
theoretical formula H0± δH = (ω±ωN)/γe,. . . .
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This seems to have sealed the fate of the insightful obser-
vation of Erb et al. (1958a) that the odd parity of the solid-
effect DNP field profile resembles the dispersive component
of the EPR line.

With the understanding developed in the 65 years since
these first publications on the solid effect, the additional
transverse terms in Eq. (65) appear strange and even disturb-
ing. Nevertheless, our analysis showed that in one specific
regime, namely at steady state, Eq. (65) is exact. Admittedly,
because of the algebraic relationships between all dynami-
cal variables at steady state, the transverse components in
Eq. (65) can be expressed in terms of the longitudinal com-
ponent, as we did when going from Eq. (42) to Eq. (43).
Such mathematical manipulation, however, only highlights
the fact that the value of any description of spin dynam-
ics by rate equations, independently of whether it contains
transverse components or not, lies in the proper selection of
the phenomenological rate constants. In this paper, we de-
parted from the classical approach of identifying these rate
constants with the transition probabilities per unit time. In-
stead, completely disregarding the dynamical aspect of the
rate equations, we selected the phenomenological rate con-
stants by requiring that the steady state of the exact quantum
dynamics is correctly reproduced.

By writing the rate equation of the nuclear polariza-
tion with explicit dispersive component (Eq. 66), Erb et al.
(1958a) reached the conclusion that the DNP enhancement
depends multiplicatively on sx (Eq. 67). This conclusion is
confirmed by our analysis. Indeed, from the new perspective
illustrated in Fig. 10b, the DNP field profile acquires its odd
parity in � directly from the dispersive component of the
EPR line (blue line), exactly as intuited by Erb et al. (1958a).
Certainly, one could explain the odd parity of the solid-effect
DNP enhancement in various other ways that do not involve
the dispersive EPR line, as has been done in the past 65 years.
The validity of these other explanations, however, does not
invalidate the intuition of Erb, Motchane, and Uebersfeld.

8 Conclusions

In this paper we developed a novel way of thinking about the
solid effect, which was grounded in the dynamics of the spins
at steady state. The main insight of our dynamical description
relates to the role of the coherences.

While our analysis focused on the solid effect and the
Hamiltonian in Eq. (29), the systematic procedure for de-
riving the relevant equations of motion under a given spin
Hamiltonian (Sect. 3.2), and the developed graphical rep-
resentations to visualize the interplay of these equations
(Sect. 4) and their steady state (Sect. 5), should be applicable
to other related effects with different Hamiltonians.

The classical explanation of the solid effect in terms of
state mixing (Abragam and Proctor, 1958) is static in nature
and is thus hard to generalize to liquids where the dipolar
interaction fluctuates randomly due to molecular motions.
The time-dependent description of the solid effect devel-
oped here naturally accommodates such stochastic modula-
tion of the parameters of the Hamiltonian, in a way simi-
lar to the treatment of relaxation in liquids (Abragam, 1961,
chap. VIII). In the companion paper (Sezer, 2023a), the for-
malism is extended to the solid effect in liquids, and its pre-
dictions are validated against recent DNP experiments at J
band (Kuzhelev et al., 2022).

Appendix A: Additional figures

The numerical examples in the paper were for the excessively
high mw field ofB1 = 6 G, which is reachable with a custom-
designed resonance structure (Denysenkov et al., 2022). As
the modern-day DNP experiments in solids are generally per-
formed without a mw resonator, here we show numerical
examples for the lower fields of B1 = 3 and B1 = 1 G. Al-
though these are still likely an order of magnitude larger than
what is used in practice, the figures aim to illustrate how
some of the features discussed in the paper progressively
change upon reduction of B1.
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Figure A1. Same as Fig. 7 with smaller mw fields of B1 = 3 G (a) and B1 = 1 G (b).
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Figure A2. Same as Fig. 9 with smaller mw fields of B1 = 3 G (a) and B1 = 1 G (b).
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Code availability. The code used to generate the fig-
ures is at https://github.com/dzsezer/solidDNPliquids
(https://doi.org/10.5281/zenodo.7990757, Sezer, 2023b).
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