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Abstract. The solid-state effect of dynamic nuclear polarization (DNP) is operative also in viscous liquids
where the dipolar interaction between the electronic and nuclear spins is partially averaged. The proper way
to quantify the degree of averaging, and thus calculate the efficiency of the effect, should be based on the time-
correlation function of the dipolar interaction. Here we use the stochastic Liouville equation formalism to develop
a general theoretical description of the solid effect in liquids. The derived expressions can be used with different
dipolar correlations functions depending on the assumed motional model. At high magnetic fields, the theory
predicts DNP enhancements at small offsets, far from the classical solid-effect positions that are displaced by
one nuclear Larmor frequency from the electronic resonance. The predictions are in quantitative agreement with
such enhancement peaks observed at 9.4 T (Kuzhelev et al., 2022). These non-canonical peaks are not due to
thermal mixing or the cross effect but exactly follow the dispersive component of the EPR line.

1 Introduction

The last 2 decades have witnessed an overarching devel-
opment in nuclear hyperpolarization techniques across the
entire spectrum of mechanisms, from the classical Over-
hauser and solid-state effects to (photo)chemically induced
and parahydrogen-based polarization (Eills et al., 2023).
While the majority of the reported applications have relied
on polarization transfer in the solid state at cryogenic tem-
peratures (Ni et al., 2013; Pinon et al., 2021), transfer in the
liquid state at elevated (room or physiological) temperatures
has also been actively explored (Prisner et al., 2016; Deny-
senkov et al., 2022). In the liquid state, the mechanism of
polarization has almost exclusively been the Overhauser ef-
fect (Jakdetchai et al., 2014). One notable exception is the
work of Stapf and coworkers in which the solid effect of
dynamic nuclear polarization (DNP) has been employed in
combination with field-cycling relaxometry to characterize
the molecular dynamics in ionic liquids and polymer melts at
ambient temperatures (Neudert et al., 2017; Gizatullin et al.,
2019, 2021a, b, 2022).

At X band (9.6 GHz/0.35 T), where the DNP measure-
ments of Stapf and colleagues have been carried out, the
nuclear Larmor frequencies of 1H and 19F (ωI ≈ 15 MHz)

are less than the EPR spectral width of a nitroxide free radi-
cal and even comparable to the spectral width of the single-
line radical BDPA (Gizatullin et al., 2021b). As a result, the
negative and positive solid-effect enhancements overlap and
partly cancel each other, complicating the quantitative anal-
ysis of the effect. An additional difficulty for quantification
is that, in many instances, the Overhauser and solid effects
coexist (Leblond et al., 1971b; Neudert et al., 2017; Gizat-
ullin et al., 2022). Although the contributions of these two
effects can generally be distinguished on the basis of their
even (Overhauser effect) and odd (solid effect) parity with
the offset from the electronic resonance, this identification
could be complicated when the EPR spectrum is broad and
asymmetrical.

To quantify the field profile of the DNP enhancement (i.e.,
the DNP spectrum), Stapf and colleagues use a weighted
sum of (i) the EPR line shape (for the Overhauser effect)
and (ii) the same line shape shifted by ±ωI , with one of
the shifted copies flipped around the vertical axis (for the
solid effect) (Neudert et al., 2017; Gizatullin et al., 2021b).
The relative contribution of the two effects is then treated
as a fitting parameter. In general, the resulting fits are in
good overall agreement with the experimental DNP spectra,
but oftentimes there are quantitative deviations. Recently, the
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154 D. Sezer: Solid effect in liquids

remaining discrepancy between the experimental and calcu-
lated DNP spectra was interpreted as evidence for the simul-
taneous occurrence of a third DNP mechanism, in addition to
the Overhauser and solid effects (Gizatullin et al., 2022).

In the companion paper (Sezer, 2023a) we showed that
when the microwave (mw) nutation frequency approaches
the nuclear Larmor frequency, as could be the case at X
band under the high mw powers used in the DNP experi-
ments (Neudert et al., 2016), the forbidden transitions of the
solid effect are no longer shifted by ±ωI with respect to the
electronic resonance but come closer together and may even
coalesce. In such cases, the theoretical justification for mod-
eling the solid-effect field profile by shifting the EPR line
shape by ±ωI becomes questionable. Unfortunately, the an-
alytical expressions of Sezer (2023a), which remain valid in
this regime, are not applicable to liquids since they do not ac-
count for the modulation of the dipolar interaction by molec-
ular diffusion. In the current paper, the time-domain descrip-
tion of the solid effect from Sezer (2023a) is extended to liq-
uids.

Recently, Kuzhelev et al. (2022) reported proton DNP en-
hancements in the liquid phase of lipid bilayers at 9.4 T
(260 GHz) using the free radical BDPA as a polarizing agent.
The large nuclear Larmor frequency (400 MHz) enabled a
clear spectral separation of the acyl-chain protons and the po-
lar protons of water. For the non-polar protons, maximal en-
hancements were observed at the canonical resonance posi-
tions of the zero- and double-quantum forbidden transitions,
characteristic of the solid effect, while enhancement due to
the Overhauser effect was missing. The large spectral sepa-
ration of the positive and negative enhancements and the nar-
row line of BDPA provided a uniquely “clean” access to the
solid effect in a viscous liquid environment (Kuzhelev et al.,
2022).

In addition to the maximum enhancements at the canon-
ical solid-effect offsets, the DNP spectrum of Kuzhelev
et al. (2022) revealed additional enhancement peaks at much
smaller offsets. These were postulated to arise due to the
DNP mechanism known as thermal mixing. However, ther-
mal mixing is commonly associated with a broad EPR spec-
trum (Wenckebach, 2021), while the spectrum of BDPA was
extremely narrow at the elevated DNP concentration used
in the experiment, and the observed spurious enhancement
peaks lay outside this narrow spectrum (Kuzhelev et al.,
2022, Fig. 2). Here we explain the entire DNP spectrum, in-
cluding the puzzling features at low offsets, considering only
one electronic and one nuclear spin.

The rest of the paper is organized as follows. To account
for molecular diffusion, in Sect. 3 we transform the equations
of motion of Sezer (2023a) into stochastic Liouville equa-
tions (SLEs) (Kubo, 1969). After taking into account that
all relevant timescales are orders of magnitude shorter than
the nuclear spin-lattice relaxation time, the SLE formalism
yields the time-correlation function of the dipolar interaction.
In Sect. 4 we show that the solid-effect lines in the DNP spec-

trum (i.e., those shifted by ±ωI ) experience additional mo-
tional broadening compared to the homogeneous EPR line
width. As a result, the tails of these lines around the position
of the electronic resonance increase substantially. Under fa-
vorable conditions, the product of these tails with the disper-
sive EPR component may become sufficiently large to be vis-
ible as separate enhancement peaks in the DNP field profile.
We attribute the non-canonical peaks in the DNP spectrum
of Kuzhelev et al. (2022) to this phenomenon. Our conclu-
sions are presented in Sect. 5. The next section summarizes
the needed background.

2 Motivation and background

2.1 Dynamic nuclear polarization in liquids

The transfer of polarization in solids involves two mechanis-
tically different steps (Hovav et al., 2010; Smith et al., 2012).
The first one is the direct polarization of the nuclear spins
that are sufficiently close to the free radical and have appre-
ciable dipole–dipole interaction with the electronic spin. Be-
ing closest to the unpaired electron, the nuclei on the free
radical itself benefit most from this first step of direct polar-
ization (Tan et al., 2019; Delage-Laurin et al., 2021). Polar-
izing the intramolecular nuclei in this way, however, is not
particularly useful unless the polarization can spread to the
rest of the sample. This is where the second step comes in.
In this step, the polarization spreads from the directly polar-
ized nuclei to the distant nuclei by spin diffusion. Because
it relies on the relatively weak dipole–dipole interaction be-
tween the nuclear spins, spin diffusion is slow and is often
the bottleneck for efficient polarization transfer in the solid
state (Hovav et al., 2010; Wiśniewski et al., 2016).

In liquids, spin diffusion is not efficient because the nu-
clei constantly change their positions due to random ther-
mal motions. However, since molecular diffusion moves the
nuclei across nanometer distances in nanoseconds and thus
rapidly spreads the polarization of the directly polarized nu-
clei across the sample, spin diffusion is also not needed. Tak-
ing glycerol as an example, with a self-diffusion coefficient
of 6.6×10−3 nm2 ns−1 at 40 ◦C (Tomlinson, 1973), which is
500 times less than the self-diffusion coefficient of water at
the same temperature (Holz et al., 2000), it is a rather viscous
liquid. Nevertheless, at the relatively small radical concen-
tration of 1 mM, a molecule of glycerol covers the average
distance between two radicals in less than 400 ns. This is at
least 5 orders of magnitude less than the nuclear T1 of pro-
tons, even after accounting for paramagnetic relaxation. Any
given solvent nucleus will thus encounter the electronic spins
a million times during its T1 relaxation time. Even in viscous
liquids, therefore, molecular diffusion is expected to homog-
enize the nuclear polarization across the sample during times
that are orders of magnitude shorter than the nuclear T1. This
advantage of liquids over solids, however, comes at a price:
the polarization of the nuclei on the free radical is no longer
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Figure 1. Two conceptually different steps of the polarization trans-
fer process in liquids. (1) Direct transfer from the electronic spin
on the free radical to the proximate nuclear spins on the solvent
molecules due to dipolar interaction. (2) Diffusion of the proximate
solvent molecules to the bulk.

accessible to the solvent, and proximal solvent nuclei have to
be polarized directly in the first step of polarization transfer
(Fig. 1).

Given that every solvent molecule gets directly polarized
and also spreads the polarization, the distinction between the
two steps of polarization transfer in liquids (Fig. 1) is con-
ceptual and does not reflect fundamental differences in the
mechanisms of the two steps. In fact, both steps are enabled
by molecular diffusion which sometimes brings a solvent
molecule closer to the radical and sometimes takes it further
away. Since the analytical description of translational diffu-
sion in simple liquids is well developed (Ayant et al., 1975;
Hwang and Freed, 1975), a unified theoretical treatment of
the two steps of polarization transfer becomes possible, as
we demonstrate in the present paper.

From the six terms of the dipolar alphabet, the part that
contributes to the solid effect is A1SzI++A

∗

1SzI− (Wencke-
bach, 2016), where

A1 =Ddip
−3cosθ sinθe−iφ

r3 . (1)

Here Ddip = (µ0/4π )}γSγI is the dipolar constant, γS and
γI are the gyromagnetic ratios of the electronic and nuclear
spins, and (r,θ,φ) are the spherical polar coordinates of the
vector pointing from one of the spins to the other. The an-
gular dependence of A1 is that of a second-degree spherical
harmonic of order m= 1, as implied by the subscript. The
need for direct polarization of the solvent nuclei in liquids
increases the shortest possible distance r in Eq. (1) and thus
reduces the largest achievable dipolar coupling. This require-
ment for interaction across a larger distance, however, does
not explain why the solid effect works in solids but is com-
promised in liquids.

To understand the difference between solids and liquids
one should consider the time-correlation function of the dipo-

lar interaction:

C11(t)= 〈〈A∗1(t ′+ t)A1(t ′)〉t ′〉. (2)

Here the inner angular brackets with the subscript t ′ denote
averaging with respect to the time point t ′ along the random
trajectory of a single nuclear spin. Because every nucleus en-
counters the electronic spins millions of times during its T1
relaxation time, this average should be the same for all nu-
clei in the liquid. Thus, in addition to the time averaging, in
Eq. (2) we also average over the ensemble of identical nu-
clear spins in the sample (outer angular brackets).

Now, if the dipolar correlation function (Eq. 2) decays on
timescales that are much longer than some relevant character-
istic time, then the experiment essentially detects the initial
value C11(0)= 〈〈A∗1(t ′)A1(t ′)〉t ′〉 = 〈A∗1A1〉. The last ensem-
ble average over all electron–nucleus pairs requires integra-
tion over the spatial variables (r,θ,φ) and multiplication by
the concentration N of the unpaired electrons:

〈A∗1A1〉 =ND
2
dip

24π
5

∞∫
b

dr
r4 =D

2
dip

24π
5

N

3b3 . (3)

(The factor 24π/5 comes from the normalization of the
spherical harmonic Y 1

2 .) This slow-motional limit corre-
sponds to the situation in solids under the (unrealistic) as-
sumption of fast and efficient spin diffusion. If, on the
other hand, the decay time of the correlation function
is much shorter than the relevant characteristic timescale,
then the experiment detects the long-time limit C11(∞)=
〈〈A∗1(∞)A1(t ′)〉t ′〉 = 〈A∗1〉〈A1〉. The solid effect vanishes be-
cause the average of the spherical harmonic Y 1

2 over the an-
gles gives 〈A1〉 = 0. This fast-motional limit corresponds to
low-viscosity liquids in which the dipolar interaction is av-
eraged out. To the extent that they exhibit the solid effect,
viscous liquids must lie somewhere between these two ex-
tremes.

The interpolation between these two limiting cases on the
basis of the dipolar correlation function is formally devel-
oped in Sect. 3. This task requires a time-domain descrip-
tion of the solid effect, similar to the treatment of relaxation
by random motion where the correlation function arises from
second-order, time-dependent perturbation theory (Abragam,
1961, chap. VIII). In principle, there are two such time-
domain descriptions that we can utilize for the treatment of
the solid effect in liquids. The first is the rate-equation for-
malism, which models the dynamics of the electronic and
nuclear polarizations, and the second is the description de-
veloped in Sezer (2023a), which additionally accounts for the
dynamics of the coherences. Both of these options will be ex-
plored in Sect. 3. When modeling the stochastic dynamics of
the dipolar interaction, we resort to the stochastic Liouville
equation (SLE) of Kubo (1954) and Anderson (1954), rather
than to second-order perturbation theory. In agreement with
previous work (Papon et al., 1968; Leblond et al., 1971a),
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our analysis shows that the characteristic timescale against
which the dipolar correlation time should be compared is the
electronic T2 relaxation time.

In the next two subsections we summarize the time-
domain analysis of Sezer (2023a).

2.2 Rate equations

The dynamics of the electronic polarization, PS , is justifiably
taken to be independent of the dipolar interaction with the
nuclear spins, as other mechanisms relax the electrons more
efficiently. With R1S denoting the rate of electronic T1 relax-
ation, and v1 the rate constant of the mw excitation of the
(allowed) EPR transition, the rate equation of the electronic
polarization is

ṖS =−R1S(PS −P
eq
S )− 2v1PS . (4)

Here P eq
S is the equilibrium (Boltzmann) electronic polariza-

tion and the dot over the symbol denotes differentiation with
respect to time. Solving this equation for P ss

S at steady state,
we arrive at the ratio

p =
P ss
S

P
eq
S

=
R1S

R1S + 2v1
= 1− s, (5)

where s is the familiar electronic saturation factor. We re-
fer to p as the electronic polarization factor, since p = 0 in-
dicates that the steady-state polarization has vanished, and
p = 1 indicates that it is identical to the Boltzmann polariza-
tion (i.e., maximally polarized).

The rate equation of the nuclear polarization, PI , is

ṖI =−R1I
(
PI −P

eq
I

)
− v+PI − v−PS, (6)

where R1I is the nuclear T1 relaxation rate, and the phe-
nomenological rate constants v± quantify the mw excitation
of the forbidden transitions. The steady state of Eq. (6) is

R1I
(
P ss
I −P

eq
I

)
=−v+P

ss
I −pv−P

eq
S , (7)

where P ss
S = pP

eq
S was used in the last term.

As the derivations in Sect. 3 consider only the effect of
mw excitation, we have written Eq. (7) such that the relax-
ation contribution is on the left and the mw contribution on
the right of the equality. Subsequently, to identify the phe-
nomenological rate constants v±, we will match the terms on
the right-hand side with the predictions of the proper analysis
in liquids.

From Eq. (7) we find the DNP enhancement

ε = P ss
I /P

eq
I − 1= εSE− (1−pX) , (8)

where the first equality is the definition of ε and

εSE =
pv−

R1I + v+

|γS |

γI
, pX =

R1I

R1I + v+
. (9)

From εSE it is clear that the solid effect benefits from large
pv− and small R1I + v+. The ratio pX in Eq. (9) is anal-
ogous to the electronic polarization factor Eq. (5), and we
call it the nuclear cross-polarization factor. In liquids, v+ is
typically negligible compared to the nuclear spin-lattice re-
laxation rate, and pX ≈ 1. Then,

εSE ≈ (pv−)T1I |γS |/γI (pX ≈ 1). (10)

2.3 Spin dynamics

The dynamics of the quantum-mechanical expectation val-
ues sn of the electronic spin operators Sn (n= x,y,z) is de-
scribed by the classical Bloch equations[
ṡx
ṡy
ṡz

]
=−

[
R2S � 0
−� R2S ω1

0 −ω1 R1S

][
sx
sy
sz

]
+R1S

[ 0
0
s

eq
z

]
. (11)

The matrix in Eq. (11) contains the electronic transverse re-
laxation rate R2S , the mw nutation frequency ω1 and the off-
set�= ωS−ω between the electronic Larmor frequency ωS
and the mw frequency ω.

In Sezer (2023a) we visualized such coupled differential
equations diagrammatically. In our visual depiction, the time
derivative of a dynamical variable, like sn, is represented by
an oval node. The contributions to this time derivative, which
are on the right-hand side of the differential equation, are
represented by arrows that flow into that node (Fig. 2a). The
contribution of a given arrow is obtained by multiplying the
weight of the arrow by the variable from which the arrow
originates. The self-arrows that exit from an oval node and
enter the same node correspond to the relaxation terms along
the diagonal of the Bloch matrix. The negative sign of the
weight of a self-arrow is written separately inside the loop
formed by the arrow. The constant variable seq

z in the in-
homogeneous term of the Bloch equations (Eq. 11) is rep-
resented by a gray rectangular node. With this notation, the
Bloch equations are depicted by the four nodes in the top row
of Fig. 2a and by the black arrows connecting these nodes.

The lower half of Fig. 2a shows the dynamics of the
electron–nuclear coherences that are relevant for the solid ef-
fect. In particular, the quantum-mechanical expectation val-
ues of the operators SnI+ (n= x,y,z), which we denote in-
terchangeably by gn and sni+, evolve according to the fol-
lowing coupled differential equations (Sezer, 2023a):ġxġy
ġz

=−B
gxgy
gz

− i 1
4
A1

−isyisx
iz

 , (12)

where

B=

R2S + iωI � 0
−� R2S + iωI ω1

0 −ω1 R1S + iωI

 . (13)

The matrix B is essentially the Bloch matrix but with the
nuclear Larmor frequency ωI added as an imaginary part to
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Figure 2. Diagrammatic representation of (a) the equations of motion of the spin dynamics relevant to the solid effect, namely Eq. (11)
(purple rectangle), Eq. (12) (cyan rectangle) and Eq. (14), and (b) the rate equations of the electronic and nuclear polarizations (Eqs. 4 and
6). (c) Steady-state relationships between the input and output variables.

its main diagonal. The time derivatives of gn in Eq. (12) are
represented by the three oval nodes enclosed in the cyan rect-
angle in Fig. 2a. The arrows between these nodes are seen to
exactly replicate the classical Bloch equations in the rectan-
gle above them. The inhomogeneous term in Eq. (12) couples
the dynamics of the variables gn to the transverse compo-
nents of the electronic magnetization, on the one hand, and
to the longitudinal component of the nuclear magnetization,
on the other. All these couplings scale with the dipolar inter-
action A1. They play an essential role in the solid effect, as
they connect the Boltzmann electronic polarization to the nu-
clear polarization (labeled “Input” and “Output” in Fig. 2a).

Lastly, the coherent dynamics of the operator Iz, whose
expectation value is denoted by iz, is

i̇z|coh =−Re{iA∗1gz}, (14)

where Re takes the real part of a complex number. In Fig. 2a
this equation is represented by the oval node iz (labeled “Out-
put”) and the red arrow flowing into it.

In liquids, the weights A1 fluctuate randomly due to
molecular diffusion. When extending the formalism to liq-
uids (Sect. 3.3), we will transform Eq. (12), which consti-
tutes a system of coupled differential equations, to an SLE
(Kubo, 1969) that describes the spin dynamics under random
modulation of A1.

For comparison, Fig. 2b shows the dynamics of the longi-
tudinal components implied by the rate equations (Eqs. 4 and
6). Visual inspection of Fig. 2a and b makes it clear that the
rate constant v− provides a reduced description of the com-

plicated network connecting sz to iz. Similarly, the rate con-
stant v+ accounts for the self-influence of iz mediated by the
coherences in the second set of Bloch equations (enclosed in
the cyan rectangle). In (Sezer, 2023a), we identified the rates
v± and v1 by requiring that the dynamics in Fig. 2a and b
reached identical steady states.

At steady state, the three dynamical variables of the clas-
sical Bloch equations (Eq. 11) were related to each other and
to the electronic Boltzmann polarization as follows:

sss
x = (ω1fx )sss

z , sss
y =−

(
ω1fy

)
sss
z , sss

z = (R1Sfz)s
eq
z , (15)

where

fy =
R2S

R2
2S +�

2
, fx =

�

R2S
fy, fz =

1
R1S +ω

2
1fy

. (16)

(Comparing the last equality in Eq. (15) with Eq. (5) we
found that p = R1Sfz and that the rate constant of the al-
lowed EPR transition was v1 = ω

2
1fy/2.)

Solving the second set of Bloch equations (Eq. 12) at
steady state, and substituting gss

z in Eq. (14), we obtain

i̇z|
ss
coh =−δ

2Re

[0 0 1
]
B−1

−isss
y

isss
x

iss
z

 , (17)

where the dipolar interaction is isolated in

δ2
=
(
A∗1A1

)
/4. (18)
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Since the transverse components sss
x,y are related to the Boltz-

mann polarization (Eq. 15), the right-hand side of Eq. (17) is
of the form

i̇z|
ss
coh =−δ

2 (Ti iss
z + Tss

eq
z

)
, (19)

where

Ti =
[
0 0 1

]
Re{B−1

}
[
0 0 1

]T
= Re{B−1

33 }

Ts =
[
0 0 1

]
Re{iB−1

}
[
pω1fy pω1fx 0

]T
. (20)

(The superscript “T” indicates transpose, and B−1
ij is the ij th

element of the inverse matrix B−1.) Because B has units of
inverse time, Ti and Ts have units of time.

We note that Ts receives contributions from both sss
y and

sss
x . As was shown in Sezer (2023a), it is possible to rewrite

the contribution of the former as if it also came from sss
x . In

other words, the entire contribution of seq
z to the derivative

of iz at steady state can be expressed as if it is mediated
only through the dispersive component sss

x , as depicted in
Fig. 2c. (Dashed arrows represent mathematical relationships
between the variables that hold at steady state. Differently
from the solid arrows, which correspond to causal dependen-
cies governing the dynamics at all times, the dashed arrows
need not reflect direct causal dependence. A rectangular node
indicates that the inflowing arrows contribute directly to the
value of the variable and not to its time derivative. The gray
shade of the nodes signals that the variables remain constant
in time, as they should at steady state.)

In addition to B−1
33 , in Eq. (20) we also need B−1

31 and
B−1

32 . These are B−1
31 = (ω1Fx)Fz, B−1

32 = (ω1Fy)Fz and
B−1

33 = Fz, where the functions

Fy =
R2S + iωI

(R2S + iωI )2
+�2

, Fx =
�

R2S + iωI
Fy

Fz =
1

R1S + iωI +ω
2
1Fy

(21)

play an analogous role in the steady-state analysis of the sec-
ond set of Bloch equations as the functions fy , fx and fz
(Eq. 16) in the classical Bloch equations. In terms of these,

Ti = Re{Fz}, Ts = (pω1fx)Tx, (22)

where

Tx = Re{iFz(ω1F
′
y)}, F ′y =

2R2S + iωI

R2S + iωI
Fy . (23)

(The functions in Eq. 23 emerge from lumping the contribu-
tion of sss

y to that of sss
x , as mentioned above.)

With Ti and Ts determined, the forbidden-transition rates
on the right-hand side of Eq. (7) become

v+ = δ
2
(
Ti − T

0
i

)
, pv− = δ

2Ts = (pω1fx)δ2Tx, (24)

where the mw-independent part of Ti , namely

T 0
i = Re {Fz (ω1 = 0)} = (R1S + iωI )−1, (25)

is subtracted in the first equality of Eq. (24) because it con-
tributes to the nuclear T1 relaxation rate. (In Fig. 2a this mw-
independent part corresponds to the loop formed by the green
arrow from iz to gz and the red arrow in the opposite direc-
tion.)

2.4 The solid effect

Using the rate constants in Eq. (24), we rewrite the solid-
effect DNP enhancement (Eq. 9) as

εSE =
(pω1fx)Tx

R1I /δ2+
(
Ti − T

0
i

) |γS |
γI
. (26)

The functions pω1fx , Tx and (Ti−T 0
i ) in this expression are

visualized in, respectively, the first, second and third rows of
Fig. 3. The product of the first two rows, which appears in
the numerator of Eq. (26), is shown in the fourth row of the
figure. In the right margin of the figure, we have included the
flow diagram from Fig. 2c, which has been straightened here
so that the weights of the arrows correspond to the respective
rows. Note that the dipolar interaction strength, δ, and the nu-
clear spin-lattice relaxation rate were not needed to calculate
the properties in the first four rows of the figure. (They will
be needed for the last two rows.)

While different magnetic fields B0 yield different relax-
ation times, for illustrative purposes we used the same elec-
tronic T1 and T2 times for X, Q, W and J bands. We addition-
ally used the same mw field (B1 = 6 G) at all bands. Hence,
the steady state of the classical Bloch equations (Fig. 3, first
row) is identical across the four columns of the figure. The
solid blue lines, which correspond to the dispersive compo-
nent of the power-broadened EPR line, are identical but ap-
pear different due to the different scalings of the horizon-
tal axes. The absorptive component is much smaller under
the power-broadening conditions considered here and is not
shown. However, its contribution is exactly accounted for in
the analysis. (This was the reason for introducing the func-
tions in Eq. 23.) Anticipating the liquid state, we observe that
the classical Bloch equations are independent of the dipolar
coupling A1 (Fig. 2a). Hence, the first row of Fig. 3 will not
change when going to liquids because we use identical relax-
ation rates.

The transfer functions Tx and (Ti − T 0
i ) encapsulate all

relevant steady-state properties of the second set of Bloch
equations, as well as their coupling to the classical Bloch
equations and to iz through the dipolar interaction (Fig. 2a).
These functions are visualized in the second and third rows
of Fig. 3 (orange and red lines). The solid colored lines are
calculated using the equations given above and correspond
to solids, subject to the (unrealistic) assumption of very fast
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Figure 3. Comparison between solids (with fast spin diffusion) and liquids. First row: dispersive component of the power-broadened EPR
line. Second and third rows: relevant transfer functions of the new Bloch equations in Fig. 2a. Fourth row: the product of the first and second
rows, which relates the input seq

z to the output iss
z . Fifth row: DNP enhancement calculated from the third and fourth rows using R1I /〈δ

2
〉.

Sixth row: nuclear cross-polarization factor calculated from the third row using R1I /〈δ
2
〉. Simulation parameters: T2S = 60 ns, T1S = 9T2S ,

B1 = 6 G (converted to ω1 assuming g = 2), contact distance b = 1 nm, radical concentration N = 0.1 M, and T1I of 4.7 ms (X band),
27.4 ms (Q band) and 50 ms (W and J bands). The dipolar correlation time of the liquid simulation (dashed black lines) is τ = T2S/5= 12 ns.

spin diffusion. The dashed black lines are calculated as de-
scribed in the next section and correspond to liquids. Clearly,
the time-dependent modulation of the dipolar interaction in
liquids has a dramatic effect on these functions.

The fourth row in Fig. 3 shows the product of the blue
lines in the first row and the orange lines in the second row
and corresponds to the total transfer function from the pri-
mary input, seq

z , to the ultimate output, iz (Fig. 2a). With the
exception of X band, going from solids to liquids substan-
tially reduces the peaks of pv−. (We used identical relaxation

parameters for liquids and solids to highlight the role of the
dipolar correlation time.)

The transfer functions in the first four rows of Fig. 3
depend only on the electronic relaxation times (assuming
T2I � T1S,T2S). To calculate the enhancement εSE and the
nuclear cross-polarization factor, pX, which are shown in the
last two rows of Fig. 3, we had to select specific values for
R1I and δ2. For the latter, we used the ensemble-averaged
static value from Eq. (3),

〈δ2
〉 =

1
4

〈
A∗1A1

〉
=D2

dip
6π
5
N

3b3 , (27)
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which applies to solids with fast and efficient spin diffusion.
The numerical calculations in Fig. 3 are for contact distance
bref = 1 nm and radical concentration Nref = 0.1 M. These
are realistic but otherwise arbitrary values.

For the purposes of illustration we wanted to use the same
R1I for all four mw bands in the figure. In this way, by com-
paring the four columns with each other, one would be able to
assess the effect of changing only B0. This strategy worked
for solids, at least for the numerical values that were used, but
failed for liquids due to the very different contributions of Ti
to the nuclear relaxation rate (denoted by T 0

i in Eq. 25). This
part of Ti is shown in the third row of Fig. 3 with horizontal
dotted lines. The dotted red lines for solids are very close to
zero. The more visible dotted black lines for liquids change
dramatically with the mw band. Since the total relaxation rate
R1I must be larger than the contribution of T 0

i , the nuclear
T1 had to be only a few ms at X band. Using such small T1 at
J band, however, gave tiny liquid-state DNP enhancements.

Even if, admittedly, our calculated enhancements are only
illustrative, in an effort to have somewhat realistic nuclear T1
relaxation times, we used T1I = 50 ms when the correspond-
ing rate R1I was larger than 〈δ2

〉T 0
i and used R1I /〈δ

2
〉 =

2T 0
i otherwise. This resulted in the following nuclear T1 re-

laxation times: 4.7 ms (X band), 27.4 ms (Q band) and 50 ms
(W and J bands). These were used for both liquids and solids.
Naturally, the choice of different nuclear T1 times has a direct
influence on the calculated enhancements. For example, the
peak DNP enhancements at X and W bands differ by about
1 order of magnitude (purple lines in the fifth row of Fig. 3)
mostly because the nuclear T1 times at these two bands also
differ by 1 order of magnitude.

The theory behind the liquid calculations in Fig. 3 is pre-
sented in the next section.

3 Liquids

3.1 Molecular motion as a random process

Let us denote the components (r,θ,φ) of the inter-spin vector
collectively by ζ . To describe the solid effect in liquids we
consider a random process that changes ζ and thus modulates
the dipolar interaction between the two types of spins.

When the random dynamics of ζ is modeled as a discrete-
state process, the probabilities of observing the different dis-
crete states are collected in the vector p(t). This probability
vector evolves in time as ṗ(t)=−Kp(t), where the matrix
K contains the rate constants of the random transitions be-
tween the states. All eigenvalues of such stochastic matrices
are non-negative, and, for an ergodic chain of states, only
one of the eigenvalues equals zero. In general, the stochas-
tic matrix K is not symmetric, which means that there are a
right eigenvector and a left eigenvector associated with each
eigenvalue. The right eigenvector of the zero eigenvalue cor-
responds to the vector of equilibrium probabilities, peq, and
the left eigenvector of the zero eigenvalue corresponds to the

vector 1, which contains ones in all of its entries. Note that
1Tpeq

= 1.
When the random dynamics of ζ is modeled as a

continuous-state diffusion process, then the time evolution
of the probability density p(ζ, t) is described by a Fokker–
Planck equation of the form

∂p(ζ, t)
∂t

=−Kζp(ζ, t), (28)

where Kζ is a linear differential operator acting on the ζ
dependence of p(ζ, t). As in the discrete case, the eigen-
values of Kζ would be non-negative, and one eigenvalue
would equal zero. The corresponding right eigenfunction is
the equilibrium probability density peq(ζ ), and the left eigen-
function is constant in ζ .

For brevity, we will also adopt the discrete notation for the
continuous case. In particular, we will use italic bold symbols
to indicate the dependence on ζ and will denote operators
that act on the ζ dependence with non-italicized capital bold
symbols. With this understanding,

ṗ(t)=−Kp(t) (29)

will apply to both the continuous and discrete cases. Sim-
ilarly, 1Tf will imply integration over the ζ dependence of
the function f (ζ ) in the continuous case and summation over
all different states in the discrete case.

Note that in the probabilistic description of the random
process by the Fokker–Planck equation (Eq. 28), the proba-
bility density p(ζ, t) characterizes an ensemble of nuclei, and
ζ is treated as an independent variable which is not a function
of t . In contrast, when a single nucleus is followed in time
(e.g., through molecular dynamics simulations), ζ is a ran-
dom function of t . Although this second picture of random
trajectories was invoked when writing the dipolar correlation
function in Eq. (2), in the following pages we only work with
the probabilistic description of an ensemble of identical nu-
clei.

Below, we will use the dynamical rule (Eq. 29) when com-
bining the stochastic dynamics of ζ with the spin dynamics
from Sect. 2. The combined dynamics will be described by a
stochastic Liouville equation (SLE) for a ζ -conditioned spin
variable. In the case of the nuclear polarization, for example,
the SLE will describe the dynamics of P I (t), which stands
for PI (ζ, t) in the continuous case. For a detailed explanation
of SLE the reader is referred to the literature (Kubo, 1969;
Gamliel and Levanon, 1995). A more recent discussion can
be found in Kuprov (2016).

3.2 Rate equations in liquids

3.2.1 Electronic polarization

The electronic polarization was assumed to be insensitive to
the dipolar coupling with the nuclear spins. Hence, the ζ -
conditioned electronic polarization P S(t) is of the following
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separable form:

P S(t)= peqPS(t), (30)

in which all ζ dependence is isolated in the equilibrium prob-
ability of the stochastic process. From P S(t) we obtain the
averaged (over ζ ) electronic polarization by summing/inte-
grating over the ζ dependence. This is done with the help of
the constant vector/function 1 as follows:

1TP S(t)= 1TpeqPS(t)= PS(t). (31)

(In the last equality we used the normalization of the prob-
ability, 1Tpeq

= 1, which reads
∫

dζ peq(ζ )= 1 in the con-
tinuous case.) Note that PS(t) in Eq. (30) is, in fact, the
electronic polarization averaged over the stochastic variable
(Eq. 31).

In this description, the experimentally accessible polar-
izations correspond to the averaged values, while the ζ -
dependent variables, like P S(t), serve only an intermediate,
book-keeping role. In other words, at the end we will always
average over ζ by using the constant vector/function 1.

Since Eq. (30) holds in general for the electronic polariza-
tion, it also holds at steady state and at equilibrium:

P ss
S = peqP ss

S , P
eq
S = peqP

eq
S . (32)

Here P ss
S and P eq

S are the averaged (over ζ ) values which
correspond to the macroscopic polarization.

Lastly, we point out that at equilibrium all joint spin-ζ
properties are of the above separable form. In other words,
the last equality in Eq. (32) is not limited to the electronic
polarization but applies to all other equilibrium properties.

3.2.2 Nuclear polarization

To illustrate the SLE formalism and to introduce further nota-
tion, we start by transforming the rate equation of the nuclear
polarization (Eq. 6) to an SLE:

Ṗ I (t)=−KP I (t)−R1I
(
P I (t)−peqP

eq
I

)
−V+P I (t)−V−peqPS(t). (33)

There are several different things going on here, so let us
examine them one by one.

First, following the convention introduced above, P I (t)
stands for PI (ζ, t), which is the nuclear polarization condi-
tional on the random state ζ . In this case the dot indicates par-
tial derivative with respect to the time dependence, at fixed ζ .
Second, the term KP I drives the dynamics in the ζ space by
providing “off-diagonal” elements that mix the different ran-
dom states. All remaining terms on the right-hand side of the
SLE are “diagonal” in the ζ space and act only on the spin
degree(s) of freedom (which are conditioned on ζ ). Third,
the mw excitation rates v± and the relaxation rate R1I have
acquired ζ dependence, turning into operators in ζ space that

act on P I (t) or peq. In the discrete case, these would be ma-
trices with different v± and R1I values for each discrete state
ζ along their main diagonals. We use hollow capital letters
to denote such “diagonal” operators in ζ space, also in the
continuous case. Fourth, as all equilibrium properties, the nu-
clear Boltzmann polarization is separable, with the ζ depen-
dence confined to the equilibrium probability of the random
process.

The steady state of Eq. (33) is

(K+R1I +V+)P ss
I =

(
P

eq
I R1I −P

eq
S pV−

)
peq, (34)

where we used P ss
S = pP

eq
S (Eq. 5). Our aim is to solve

Eq. (34) for P ss
I and then obtain the macroscopic nuclear po-

larization by calculating the average P ss
I = 1TP ss

I .
Clearly, solving Eq. (34) consists of calculating the inverse

of the operator (K+R1I +V+). This is a daunting task in
general and requires the matrix representation of K in some
basis set. Here we will limit the discussion to random mo-
tions that are orders of magnitude faster than the nuclear T1
relaxation rate, which we concluded to be the case even in
viscous liquids like glycerol. This assumption ensures that,
at steady state, all nuclear spins in the sample are equivalent
and have the same polarization. Hence, we will look for a
separable steady-state solution of the form

P ss
I = peqP ss

I (ansatz for liquids). (35)

With this ansatz, Eq. (34) becomes

(K+R1I +V+)peqP ss
I =

(
P

eq
I R1I −P

eq
S pV−

)
peq. (36)

While the difference between Eqs. (34) and (36) appears to
be minor, in fact we have achieved a tremendous simpli-
fication since Kpeq

= 0, and thus the dynamical aspect of
the random process is gone; only its equilibrium (i.e., time-
independent) properties remain. Indeed, since in Eq. (36) all
ζ operators act on the equilibrium probability peq, integra-
tion over the ζ dependence brings the average values:

〈R1I 〉 = 1TR1Ip
eq, 〈V±〉 = 1TV±peq. (37)

(These are the average values of the ζ -dependent functions
R1I (ζ ) and v±(ζ ), respectively.) After averaging, Eq. (36)
becomes

(〈R1I 〉+ 〈V+〉)P ss
I = 〈R1I 〉P

eq
I −p〈V−〉P

eq
S . (38)

Comparison of Eqs. (38) and (7) shows that the phe-
nomenological rates R1I and v± in the rate equation should
be identified with the macroscopic averages 〈R1I 〉 and 〈V±〉
over the liquid sample. This is the familiar regime of fast mo-
tion, where one observes the averaged values of the magnetic
parameters. We have thus provided a formal justification of
why the averaged δ2 in Eq. (27) corresponds to fast spin dif-
fusion in the case of solids.
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We observe that the static averages over 3D space, which
are implied by Eq. (37), do not allow for the partial dynami-
cal averaging of the dipolar interaction. As discussed above,
such averaging should be based on the time-correlation func-
tion of A1. However the rate constants v± always contain the
square of the dipolar interaction and do not provide access to
A1 itself. We thus conclude that the partial averaging of the
dipolar interaction in liquids is inaccessible to modeling by
rate equations.

3.3 Spin dynamics in liquids

To gain access to the dipolar interaction before it is squared,
we turn to the equations of motion of the coherences from
Sect. 2.3. We first transform the equation of iz (Eq. 14) to an
SLE:

i̇z(t)|coh =−Kiz(t)−Re{iA∗1gz(t)}. (39)

As before, iz(t) and gz(t) stand for iz(ζ, t) and gz(ζ, t) in the
continuous case, K acts on the ζ dependence of iz andA∗1 has
become a “diagonal” operator in ζ space. Averaging Eq. (39)
over ζ , we obtain the macroscopic equation

1Ti̇z(t)|coh =−Re{i1TA∗1gz(t)}. (40)

At steady state, using the ansatz for liquids (Eq. 35) in the
form iss

z = peqiss
z , we have

i̇z|
ss
coh =−Re{i1TA∗1g

ss
z }. (41)

Since we accounted only for the coherent contribution to the
time derivative of iz, the right-hand side of Eq. (41) corre-
sponds to the right-hand side of Eq. (7). Our aim is to identify
the phenomenological rate constants v± that should be used
in Eq. (7) by analyzing Re{i1TA∗1g

ss
z }. However, because the

random modulation of A1 additionally contributes to the nu-
clear T1 relaxation, we have the equality

Re{i1TA∗1g
ss
z } = R

A
1I i

ss
z + v+i

ss
z +pv−s

eq
z (42)

from which we will read out the desired rates.

3.3.1 Contribution to nuclear T1 relaxation

The contribution of Re{i1TA∗1g
ss
z } to the nuclear spin-lattice

relaxation can be identified by its value in the absence of mw
irradiation. From Eqs. (12) and (13) we see that for ω1 = 0
the dynamics of gz completely decouples from gx and gy .
The SLE of gz in this case becomes

ġz(t)=−Kgz(t)− (R1S + iωI )gz(t)− i
1
4
A1iz(t). (43)

Technically, R1S and ωI should be operators that act on
the ζ dependence of gz. However, we take the electronic T1
relaxation rate and the nuclear Larmor frequency to be inde-
pendent of the dipolar coupling, which is parametrized by ζ .

The corresponding operators are then R1SI and ωI I, where I
is the identity operator in ζ space. This identity operator will
not be written explicitly.

The steady-state solution of Eq. (43) is

gss
z =−i

1
4

(K+R1S + iωI )−1A1p
eqiss

z , (44)

where we again used the ansatz for liquids. Substituting this
gss
z on the left-hand side of Eq. (42), we find that the nuclear

relaxation rate due to A1 is

RA1I =
1
4

Re
{

1TA∗1(K+R1S + iωI )−1A1p
eq
}
. (45)

To express this relaxation rate in a more intelligible man-
ner, we observe that the inverse of a matrix M whose eigen-
values have strictly positive real parts can be written as

M−1
=

∞∫
0

e−Mt dt. (46)

Applying this identity to the matrix (K+R1S + iωI ) in
Eq. (45), we find

RA1I =
1
4

Re


∞∫

0

dt e−(R1S+iωI )tC11(t)

 , (47)

where

C11(t)= 1TA∗1e
−KtA1p

eq

=

∫
dζ A∗1(ζ )e−Kζ tA1(ζ )peq(ζ ) (48)

is the time-correlation function of the dipolar interaction
(Eq. 2). Since the integral in Eq. (47) corresponds to the
Laplace transform

J11(s)=

∞∫
0

dt e−stC11(t), (49)

we have

RA1I =
1
4

Re {J11(R1S + iωI )} . (50)

The real part of the Laplace transform is known as spectral
density. Here the spectral density is evaluated at a the com-
plex argument R1S + iωI , which contains both the nuclear
Larmor frequency and the electronic T1 relaxation rate.

Let us examine Eq. (50) in the solid-state limit where A1
does not change with time. Then C11 = 〈A

∗

1A1〉 and

RA1I,solid = 〈δ
2
〉

T1S

1+ T 2
1Sω

2
I

. (51)
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In Abragam’s nomenclature (Abragam, 1961) this is relax-
ation of the second kind, meaning that it is due to the relax-
ation of the electronic spins and not due to the modulation
of the dipolar interaction by motion. This RA1I,solid/〈δ

2
〉 was

shown with horizontal, dotted red lines in the third row of
Fig. 3.

In the case of liquids, we expect C11(t) to decay with time.
Assuming a mono-exponential decay with correlation time τ ,

RA1I,exp = 〈δ
2
〉Re


∞∫

0

dt e−
(
R1S+iωI+τ

−1)t


= 〈δ2
〉Re

{(
R1S + τ

−1
+ iωI

)−1
}
. (52)

This RA1I,exp/〈δ
2
〉 was shown with horizontal, dotted black

lines in the third row of Fig. 3. To understand why it increases
with decreasing ωI , let us examine the case of motion that is
faster than the electronic T1 time, i.e., τ−1

� R1S . The result,

RA1I,exp ≈ 〈δ
2
〉

τ

1+ τ 2ω2
I

, (53)

is relaxation of the first kind with Lorentzian spectral density.
Clearly, smaller ωI implies larger dipolar contribution to the
nuclear T1 relaxation rate.

Having identified the relaxation rate RA1I on the right-hand
side of Eq. (42), we now proceed with the analysis of the
rates v± characterizing the forbidden transitions.

3.3.2 Contribution to forbidden transitions

Combining the dynamics of the coherences (Eq. 12) with the
stochastic dynamics (Eq. 29), we arrive at the following SLE:ġx

ġy
ġz

=− (K+B)

gx
gy
gz

− i 1
4
A1

−isypeq

isxp
eq

iz

 . (54)

Note that the matrix B does not depend on time as the elec-
tronic relaxation properties were taken to be insensitive to the
dipolar interaction between the electronic and nuclear spins.
Recall that the operators written as upright bold letters (in-
cluding the hollow ones) act on the ζ dependence of the vari-
ables, which is encoded by the italic bold symbols. The script
uppercase letters denote 3×3 matrices, which act on the col-
umn vectors that are shown explicitly.

Although not shown explicitly in Eq. (54), we imply the
tensor products of the operators K, B and A1 with the iden-
tity operators in the spaces on which K, B and A1 do not act
(i.e., K and A1 are in fact I ⊗K and I ⊗A1 where I is the
3× 3 identity matrix, and B is B⊗ I where I is the identity
operator in the ζ space).

Before solving Eq. (54) at steady state, let us introduce the
(right) eigenvalue problem of B,

BU= UD, (55)

where the diagonal matrix

D = diag(λ1,λ2,λ3) (56)

contains the eigenvalues of B along its main diagonal, and
the columns of the 3× 3 matrix U contain the corresponding
right eigenvectors. Then, the steady state of Eq. (54) is

U (K+D)U−1

gss
x

gss
y

gss
z

=−i 1
4
A1p

eq

−isss
y

isss
x

iss
z

 , (57)

which, after inverting the matrices, yieldsgss
x

gss
y

gss
z

=−i 1
4
U(K+D)−1A1p

eqU−1

−isss
y

isss
x

iss
z

 . (58)

Plugging this solution for gss
z into the left-hand side of

Eq. (42), and defining the matrix

L= 1TA∗1(K+D)−1A1p
eq, (59)

we find

Re{i1TA∗1g
ss
z } =

1
4

Re{
[
0 0 1

]
ULU−1

−isss
y

isss
x

iss
z

}. (60)

Comparison with the right-hand side of Eq. (42) yields

RA1I + v+ =
1
4

[
0 0 1

]
Re
{
ULU−1

}[
0 0 1

]T
v− =

1
4

[
0 0 1

]
Re
{
iULU−1

}[
ω1fy ω1fx 0

]T
, (61)

where we used the relationships between sss
x,y and s

eq
z

(Eq. 15) to arrive at v−.
We observe that L is a 3×3 diagonal matrix without any ζ

dependence since the right-hand side of Eq. (59) is averaged
over ζ . With L= diag(L1,L2,L3), we have

Ln = 1TA∗1(K+ λn)−1A1p
eq (n= 1,2,3). (62)

Using Eq. (46), these diagonal elements can be written as

Ln = 1TA∗1

∞∫
0

e−(K+λn)t dtA1p
eq

=

∞∫
0

e−λnt
(

1TA∗1e
−KtA1p

eq
)

dt

=

∞∫
0

e−λnt C11(t) dt = J11 (λn) , (63)

where we used Eq. (48) in the third equality and Eq. (49) in
the last one. Hence, each Ln is the Laplace transform of the
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time-correlation function C11(t) evaluated at the eigenvalue
λn of B. The matrix L to be used in Eq. (61) is thus

L= diag(J11 (λ1) ,J11 (λ2) ,J11 (λ3)) . (64)

In summary, for any given set of parameters, we form the
3× 3 matrix B (Eq. 13) and numerically calculate its eigen-
values and right eigenvectors. The former are used in Eq. (64)
to calculate L. Sandwiching L by the eigenvectors, as re-
quired in Eq. (61), we arrive at the desired rates v±. This
prescription applies to any motional model describing the
stochastic dynamics of the inter-spin vector. Different mod-
els will differ only in their spectral densities J11.

From a mathematical point of view, the simplest case
is a model with exponential dipolar correlation function,
C

exp
11 (t)= 〈δ2

〉e−t/τ , where τ is the correlation time. Then

J
exp
11 (s)=

〈
δ2
〉 1

s+ 1
τ

=

〈
δ2
〉
τ

1
sτ + 1

, (65)

and Eq. (64) becomes

Lexp =
〈
δ2
〉

diag

(
1

λ1+
1
τ

,
1

λ2+
1
τ

,
1

λ3+
1
τ

)
. (66)

All dashed black lines labeled “liquid” in Fig. 3 were calcu-
lated using Eq. (66) with τ = 12 ns.

Comparing v+ and pv− (Fig. 3, third and fourth rows) be-
tween the solid and liquid cases, we see that at Q, W and
J bands, the fluctuations of the dipolar interaction have sub-
stantially broadened the lines centered at the canonical solid-
effect offsets �≈±ωI and have reduced the peak enhance-
ments in liquids compared to solids (fifth row). At X band,
where the two lines had already merged in the solid case, the
effect of fluctuations is qualitatively different, although line
broadening is also visible. Most strikingly, the rate v+ is seen
to become negative at offsets larger than ωI , which leads to
a nuclear polarization factor (Eq. 9) that exceeds 1 (Fig. 3,
bottom row).

4 Closer look at liquids

4.1 Translational diffusion of hard spheres

A mono-exponential dipolar correlation function is a poor
model of translational diffusion in liquids. The so-called
force-free hard-sphere (FFHS) model, which assumes spher-
ical molecules that contain the spins at their centers, is
a more realistic yet analytically tractable model (Ayant
et al., 1975; Hwang and Freed, 1975). It is universally em-
ployed in the analysis of diverse magnetic-resonance mea-
surements, including nuclear relaxation by paramagnetic im-
purities (Okuno et al., 2022) and DNP via the Overhauser
effect (Franck et al., 2013).

Because the spins are taken to be at the centers of the
spherical molecules, the FFHS model has only two parame-
ters: the coefficient of translational diffusion, D, and the dis-
tance of the spins upon contact of the spherical molecules,

b. These two parameters form the characteristic motional
timescale of the model (Ayant et al., 1975):

τ = b2/D. (67)

The Laplace transform of the dipolar correlation function of
this model is (Ayant et al., 1975, Eqs. 51 and 55)

J ffhs
11 (s)= 〈δ2

〉τ
(sτ )

1
2 + 4

(sτ )
3
2 + 4(sτ )+ 9(sτ )

1
2 + 9

. (68)

Using J ffhs
11 in Eq. (64) we calculated numerically the same

properties as in Fig. 3 but for the FFHS model. The results
are shown with colored solid lines in Fig. 4. For comparison,
the model with mono-exponential correlation function from
Fig. 3 is also reproduced in Fig. 4 with dashed black lines.

The general observation from Fig. 3 that the fluctuation
of the dipolar interaction broadens the solid-effect lines at
�≈±ωI is even more relevant for the FFHS model. In-
deed, for the same dipolar timescale τ , the FFHS lines are
much broader and, correspondingly, much smaller in peak
amplitude than the lines of the exponential model. Hence,
the FFHS model predicts significantly smaller DNP enhance-
ments (Fig. 4, second last row) compared to the exponential
model with the same timescale τ . At X band, the negative
values of v+ are still present, but their magnitude is substan-
tially reduced (third row). The corresponding offsets where
the nuclear polarization factor, pX, is larger than 1 are simi-
lar in the two models, but again the deviation from 1 is much
smaller in the FFHS model (last row).

Overall, pX in liquids is very close to 1 (last row of Fig. 4,
FFHS model), which indicates that v+ is very small com-
pared to R1I . In such cases, the solid-effect DNP enhance-
ment (Eq. 9) is well approximated by Eq. (10). This explains
why the enhancement in the fifth row of Fig. 4 is essentially
a rescaled version of the row directly above it.

The substantial reduction of the peak intensities at the
solid-effect offsets �≈±ωI is accompanied by a smaller
but still appreciable increase of the intensities at small offsets
(�≈ 0). This trend is visible both in the transition from the
solid case to a mono-exponential correlation function (Fig. 3,
second row) and in the further transition to the FFHS model
(Fig. 4). The significance of this observation will become
clear in Sect. 4.4, where we compare our calculations with
the experiments of Kuzhelev et al. (2022).

4.2 Approximate matrix inversion

Since B is a 3× 3 matrix, its eigenvalues and eigenvectors
are easily determined numerically, as we did when calculat-
ing the exponential and FFHS models in Fig. 4. Neverthe-
less, to gain insight into the eigenvalue problem that is being
solved, here we analyze Eq. (55) using perturbation theory.
The analysis reveals that the eigenvalue problem is related to
the effective magnetic field and the associated “tilted” coor-
dinate frame (Wenckebach, 2016).
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Figure 4. Same as Fig. 3 for the model with exponential time-correlation function (dashed black lines) and the FFHS model (colored solid
lines) both with τ = T2S/5= 12 ns.

Let us introduce the matrix

B0 =

R2S + iωI � 0
−� R2S + iωI ω1

0 −ω1 R2S + iωI

 , (69)

where R1S in the lower right corner of B (Eq. 13) has been
replaced by R2S . The three eigenvalues of B0 are

λ0,0 = R2S + iωI , λ0,∓ = R2S + i (ωI ∓ωeff) , (70)

where the frequency

ωeff =

√
�2+ω2

1 (71)

corresponds to the effective magnetic field in the rotating
frame. This field is tilted away from the z axis by an angle α

such that

cosα =�/ωeff = c, sinα = ω1/ωeff = s. (72)

With the sine and cosine of α abbreviated as s and c, the right
eigenvectors of B0 are

U0 =

s −c/
√

2 −c/
√

2
0 i/

√
2 −i/

√
2

c s/
√

2 s/
√

2

 , (73)

where the first column corresponds to λ0,0, the second to
λ0,−, and the third to λ0,+. By inspection, U−1

0 = UH
0 , where

the superscript “H” denotes Hermitian conjugation.
We treat the difference B−B0 as a perturbation to B0. To

first order in the perturbation, the eigenvalues of the original
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matrix B are λ̃n = λ0,n+u
H
0,n(B−B0)u0,n, where u0,n is the

nth column of U0. Using this expression we find the corrected
eigenvalues

λ̃0 = R̃1+ iωI , λ̃∓ = R̃2+ i (ωI ∓ωeff) , (74)

with

R̃1 = R1S(cosα)2
+R2S(sinα)2

R̃2 = R2S[1− (sinα)2/2] +R1S(sinα)2/2. (75)

Collecting the eigenvalues (Eq. 74) in the diagonal matrix
D̃ = diag(λ̃0, λ̃−, λ̃+), we have B−1

≈ U0D̃−1UH
0 . As an ex-

ample, the element in the lower right corner of the inverse
matrix is

B−1
33 = Fz ≈ (cosα)2λ̃−1

0 +
1
2

(sinα)2
(
λ̃−1
− + λ̃

−1
+

)
. (76)

(This approximation of Fz was used in Sezer (2023a) without
proof.)

From Eq. (76), and using the first equality in Eq. (22), we
immediately find

Ti ≈ Re
{

c2λ̃−1
0 + s2

(
λ̃−1
− + λ̃

−1
+

)
/2
}
. (77)

To obtain v+, we need to subtract T 0
i from Ti (Eq. 24). Since

ω1 = 0 implies s = 0 and c = 1,

T 0
i = Re

{
(R1S + iωI )−1

}
, (78)

which is identical to the exact result in Eq. (25). Hence,

v+/δ
2
≈ Re

{
s2
(
λ̃−1
− + λ̃

−1
+

)
/2+ c2λ̃−1

0 − (R1S + iωI )−1
}
. (79)

One can similarly obtain the rate constant v− as a linear com-
bination of the reciprocals of the approximate eigenvalues λ̃0
and λ̃∓. The result is

Tx =
ω1

ω2
eff

Re{iX}, (80)

with

X = R2S λ̃
−1
0 −

1
2

(R2S + iωeff) λ̃
−1
−
−

1
2

(R2S − iωeff) λ̃
−1
+
. (81)

Recall that v−/δ2
= (ω1fx)Tx (Eq. 24).

The first eigenvalue in Eq. (74) does not depend on the
offset �. The other two eigenvalues depend on the offset
through ωeff. Let us consider sufficiently large offsets such
that |�| � ω1, and so ωeff ≈ |�|. This condition is satisfied
at the solid-effect offset positions�≈±ωI at W and J bands
but may be entirely inapplicable to X band at large mw pow-
ers, as discussed in Sezer (2023a). When the condition holds,
s≈ 0 and c≈ 1, and the eigenvalues in Eq. (74) become
λ̃0 ≈ R1S+iωI and λ̃∓ ≈ R2S+i(ωI∓|�|). Thus λ̃−1

∓ corre-
spond to complex-valued Lorentzians centered at �=±ωI

and with widths equal to the homogeneous EPR line width
(without power broadening). These are the Lorentzians that
we see as narrow lines at W and J bands in the second and
third rows of Fig. 3 (orange and red solid lines).

In the case of motion, assuming mono-exponential corre-
lation function for simplicity, each eigenvalue is replaced by
λ̃n+1/τ . This amounts to increasing the widths of the solid-
effect Lorentzians from R2S to R2S+1/τ . The resulting mo-
tional broadening is the reason for the differences between
the “solid” and “liquid” lines in the second and third rows of
Fig. 3.

For a general motional model, we have the approximate
L̃= diag(J11(λ̃0),J11(λ̃−),J11(λ̃+)), which yields the ap-
proximation ULU−1

≈ U0L̃UH
0 to be used in Eq. (61). For

the spectral density of the FFHS model, the perturbative ex-
pressions are compared with the exact numerical calculation
in Fig. 5. The former are plotted with dashed–dotted black
lines and the latter with colored solid lines, like in Fig. 4.
We see that the perturbative analysis is satisfactory in gen-
eral, at least for the specific choice of parameters that were
used. It gives excellent predictions for v− (Fig. 5, fourth row)
and, because the two are related by a global scaling factor
(Eq. 10), also for the DNP enhancement (fifth row). At the
same time, it is seen to consistently fail for the rate v+ at
small offsets in the vicinity of the origin (third row).

We should mention that the perturbative approximation
becomes progressively better when R2S approaches R1S (not
shown), as it is exact for R2S = R1S .

Leaving the approximation quality of the perturbative
analysis aside, we observe that the enhancement profiles in
the fifth row of Fig. 5 reveal the emergence of a novel feature
at small offsets. At W band, this feature appears as a shoulder
in the broadened lines, and at J band it is already separated
from the canonical solid-effect peaks. Comparison with the
lines in the first row of Fig. 5 makes it clear that this new fea-
ture in the DNP spectrum coincides with the extrema of the
dispersive component of the power-broadened EPR line. For
saturating mw powers, where ω1� R1SR2S , these extrema
are at

�1/2 = ω1
√
T1S/T2S . (82)

(The subscript 1/2 was selected because these are also the
offset positions where the electronic saturation factor equals
one half.) The factor pv− in the fourth row of Fig. 5 is
obtained as the product of the first and second rows, as
elaborated in Sezer (2023a). When the solid-effect lines at
�≈±ωI (second row) become sufficiently broad, their am-
plitude at �1/2 gets large enough for the peak of the disper-
sive EPR line (first row) to be visible in the DNP spectrum.
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Figure 5. Comparison between the exact (solid colored lines) and perturbative (dashed black lines) calculations of the FFHS model. All
parameters as in Fig. 4. The eigenvalue problem of the generalized Bloch matrix B has a simple closed-form solution when T1S = T2S . The
perturbative approximation uses these analytical eigenvectors and corrects the eigenvalues to first order in the difference 1/T1S − 1/T2S .

4.3 Motional suppression and broadening

Let us examine more closely the suppression of the lines at
the solid-effect offsets and the concurrent increase of their
intensity at�1/2. We will limit the discussion to J band where
the condition ωI � ω1 holds, and the solid-effect offsets are
�=±ωI . Using the perturbative eigenvalues in Eq. (74), we
see that only the real parts of λ̃∓ survive at these offsets. The
peak amplitudes of the solid-effect lines are then proportional
to J11(R2S).

The limits τ � T2S and τ � T2S correspond to, respec-
tively, very fast and very slow diffusive motion relative to the
electronic T2. In the slow limit τ � T2S , we have

lim
R2Sτ→∞

J11 (R2S)/
〈
δ2
〉
→ T2S (83)

for both the mono-exponential and FFHS motional mod-
els. This means that, in solids, the peaks increase with the
electronic T2. In the opposite limit of very fast motion, i.e.,
τ � T2S , we find

lim
R2Sτ→0

J11 (R2S)〈
δ2
〉 →

{
τ exponential

4
9τ FFHS

(84)

which means that, in liquids, the peak amplitudes are propor-
tional to the dipolar correlation time τ . In other words, faster
fluid diffusion (i.e., smaller τ ) corresponds to smaller peaks
and thus smaller solid-effect enhancement at the canonical
offsets. We also see that for the same τ the peaks of the
FFHS model are less than half of the peaks of the exponential
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Figure 6. Multiplicative deviation of Tx (�) from the solid limit
at (a) the solid-effect offsets �=±ωI and (b) the offsets �1/2 =
±ω1
√
T1S/T2S for the exponential and FFHS models.

model, which is in agreement with Fig. 4 (second and third
rows).

To describe the transition between the fast and slow limits,
we define the reduction factor

ρ(τ )=
1
T2S

J11(R2S;τ )
〈δ2〉

(85)

which equals one in the solid limit and approaches zero for
small τ . Since it quantifies how much smaller the peaks are
compared to the solid case, ρ is a measure of how “solid-
like” the liquid is.

Figure 6a shows the reduction factors of the exponential
and FFHS models against the relative motional timescale
τ/T2S . For the exponential model, the solid-effect peaks drop
to half of their maximum values at τ = T2S . In the case of the
FFHS model, this happens already at τ ≈ 4T2S (see inset).
In other words, appreciable reduction compared to the solid
limit occurs even for exceedingly long diffusive timescales,
several-fold compared to the electronic T2. For identical τ ’s
the exponential model is seen to be more solid-like than
the diffusive FFHS model across the entire motional range.
Hence, realistic translational diffusion suppresses the solid-
effect peaks more effectively than mono-exponential decay.

As a quantitative measure of the motional broadening, let
us consider the magnitude of Tx (Fig. 5, second row) at the
locations of the extrema of the dispersive EPR line (first row).

Since the intensity at these small offsets increases when go-
ing from the solid to the liquid case, we define the magnifi-
cation factor

µ(τ )=
T

liquid
x (�1/2;τ )
T solid
x (�1/2)

. (86)

This factor is shown in Fig. 6b. For the FFHS model, the in-
tensity at �1/2 is 2 to 3 orders of magnitude larger than the
solid case across a broad range of motional timescales, be-
tween τ = T2S and τ = 0.01T2S . Hence the peak of the dis-
persive EPR line should be magnified 100- to 1000-fold in
liquids compared to the solid limit. It is also magnified for
the mono-exponential dipolar correlation function, although
not to the same extent.

In the light of these observations, next we analyze the DNP
field profile of recent experiments with the free radical BDPA
in DMPC lipid bilayers at 320 K (Kuzhelev et al., 2022).

4.4 Comparison with experiment

The DNP experiments of Kuzhelev et al. (2022) were car-
ried out at J band (260 GHz/400 MHz). For the acyl chain
protons of the DMPC lipids, the peak DNP enhancements at
the canonical solid-effect offsets were ±12 (Kuzhelev et al.,
2022). Two additional enhancement peaks of ±8 were also
observed at much smaller offsets. These were attributed to
thermal mixing. Here we argue that they correspond to the
extrema of the dispersive component of the EPR line.

The enhancements in Kuzhelev et al. (2022) were for a
BDPA-to-lipid ratio of 1 : 10 at a temperature of about 320 K.
The room-temperature EPR spectrum of BDPA at J band for
this relatively high radical concentration was very narrow
(Kuzhelev et al., 2022, Fig. 2). The transverse relaxation time
implied by this narrow line is T2S = 215 ns. For the same rad-
ical concentration, the nuclear spin-lattice relaxation time at
J band was 50 ms at 298 K (Kuzhelev et al., 2022). Although
the experimental T1I and T2S are for 298 K, below we use
these values to fit the DNP spectrum at 320 K. We also use
B1 = 6 G, as estimated in Kuzhelev et al. (2022).

In addition to these parameters with experimental support,
three more parameters are needed for the calculation of the
DNP enhancement: T1S , τ and N/3b3. We will treat these as
fitting parameters. Let us introduce the ratios

r1 =
T1S

T2S
, r2 =

T2S

τ
, r3 =

N/3b3

Nref/3b3
ref
. (87)

The ratio r1 expresses the unknown electronic T1 relax-
ation time in terms of the known electronic T2. From phys-
ical considerations, r1 ≥ 1. The ratio r2 relates the diffusion
timescale τ to the electronic T2. Since T2S is rather long, we
expect τ to be shorter and hence r2 ≥ 1. Finally, the ratio r3
expresses the actual factor N/3b3, which is unknown, as a
multiple of this same factor for arbitrarily selected reference
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valuesNref and bref. In principle, r3 can be any positive num-
ber.

The mean volume per particle at a concentration of 1 M
is 1.66 nm3 and corresponds to a cube with side length of
1.18 nm. From molecular modeling, the “radius” of a BDPA
molecule is about 0.6 nm, so it barely fits in the above cube.
The partial molecular volume of a DMPC lipid in a lipid bi-
layer is 1.1 nm3 (Greenwood et al., 2006). Thus, the concen-
tration of one BDPA when surrounded by 10 DMPC lipids
cannot exceed Nref = 0.1 M but is also likely close to this
value. Additionally taking bref = 1 nm in the last equality of
Eq. (87), we anticipate r3 > 1.

From Eq. (10), the expected dependence of the DNP en-
hancement on the three fitting parameters can be written as

εSE ≈ p(r1)v−(r1, r2)r3〈δ2
ref〉T1I |γS |/γI , (88)

where 〈δ2
ref〉 is calculated according to Eq. (27) using Nref

and bref. The ratio r1, which determines �1/2 (Eq. 82), will
influence the electronic polarization factor (or, equivalently,
saturation factor). Together with the ratio r2, it will also in-
fluence the forbidden transition rate v−, although the effect
of r1 is expected to be small. From the previous discussion,
we expect that r2 will mostly be responsible for the width of
the solid-effect lines that comprise v−. Finally, r3 will serve
as a global scaling factor that will adjust the amplitude of
the overall enhancement. Since the three fitting parameters
are responsible for different features of the DNP spectrum, it
should be possible to determine them uniquely.

The top plot in Fig. 7 shows the experimental enhance-
ments (red circles) together with the best fit obtained using
the FFHS model with B1 = 6 G (solid black line). The solid
green line in this plot is the difference between the experi-
mental data and the fit. The corresponding fitting parameters
are shown in the first row of Table 1. Note that the fits were
performed numerically using the exact expressions of p, v±,
and the DNP enhancement (Eq. 9) and were not restricted
to the dependencies on the fitting parameters ri (i = 1,2,3)
that are indicated in Eq. (88). (For example, the general de-
pendence of the electronic polarization factor p on T1S and
T2S is not limited to the ratio T1S/T2S .)

After the fits converged, we used the final values of the
fitting parameters to calculate the dispersive component of
the EPR line sss

x = pω1fx s
eq
z , and the factor Tx , such that

(pω1fx)Tx = pv−. These are shown in the lower plot of
Fig. 7, where sss

x (blue) and Tx (orange) are scaled indepen-
dently along the vertical axis. Their product (dotted–dashed
black line) is also scaled independently along the y axis.
Since pX ≈ 1 in our case, the product pv− is itself propor-
tional to the solid-effect enhancement. Hence the black lines
in the upper and lower plots of Fig. 7 are directly comparable.
We can thus visually conclude that the unusual enhancement
peaks at small offsets are a direct manifestation of the disper-
sive component of the power-broadened EPR line.

Figure 7. Experimental DNP field profile at J band (red circles)
and fit with the FFHS model using B1 = 6 G (solid black line). The
central peaks in the enhancement profile follow the dispersive com-
ponent of the power-broadened EPR line (solid blue line).

Because the mw field in the experiment is not known pre-
cisely, we also attempted fits with smaller B1. The best fits
were practically identical to the one shown in Fig. 7 but with
different values of the fitting parameters (Table 1). (The fit
for B1 = 2 G is shown in Fig. A1 as an example.)

From Table 1 we see that all fits resulted in the same
value of the parameter r2, implying τ = 7.1 ns for the mo-
tional timescale of the FFHS model. This parameter is very
robust because it directly reflects the width of the experimen-
tal solid-effect lines at �=±ωI . Although, normally, their
line width should depend on both T2S and τ , the exception-
ally narrow EPR line puts us in the regime τ � T2S where
the influence of T2S is negligible. As a result, the motional
broadening of the solid-effect lines in the DNP spectrum re-
ports directly on the diffusive timescale of BDPA in the lipid
environment.

The fitting parameter r1 adjusts the extrema of the dis-
persive EPR line (solid blue line in Fig. 7), which are at
�1/2 =±ω1

√
r1 (Eq. 82). By monitoring the product of

√
r1

and B1 in the last column of Table 1, we see that, each time
B1 is modified, the fitted r1 changes such that �1/2 remains
unchanged, as required by the positions of the non-canonical
enhancement peaks in the experimental data. However, be-
cause r1 has to increase quadratically to compensate for the
reduction of B1, the implied electronic T1 times become ex-
ceedingly long (tens of microseconds) at the smaller values
of B1 (1–2 G).

When B1 is reduced, the fitting parameter r3 also increases
quadratically to compensate for the dependence of the overall
enhancement on ω2

1. Assuming Nref = 0.1 M is a good esti-
mate of the actual concentration of BDPA in the lipid bilayer,

https://doi.org/10.5194/mr-4-153-2023 Magn. Reson., 4, 153–174, 2023



170 D. Sezer: Solid effect in liquids

Table 1. Fitting parameters ri (i = 1,2,3) and implied timescales (T1S and τ ) and contact distance (b). For different mw fields, r1 changes
such that B1

√
r1 remains constant.

B1 (G) r1 r2 r3 T1S (µs) τ (ns−1) b (nm∗) B1
√
r1

6 7.2 30.4 8.9 1.5 7.07 0.482 16.088
5 10 30.4 13 2.2 7.08 0.427 16.065
4 16 30.3 20 3.5 7.09 0.368 16.047
3 29 30.3 36 6.1 7.10 0.304 16.034
2 64 30.3 80 14 7.10 0.232 16.025
1 257 30.3 321 55 7.11 0.146 16.022

∗ Assuming radical concentration N = 0.1 M.

Figure 8. Same as Fig. 7 for the model with mono-exponential
dipolar correlation function and B1 = 6 G (solid black line). The
fit parameters r1 = 3.6, r2 = 89 and r3 = 7.7 correspond to T1S =
0.77 µs, τ = 2.4 ns and b = 0.507 nm (assuming N = 0.1 M).

it is possible to calculate a contact distance, b, from the fit-
ted value of r3. The deduced contact distances are given in
the second last column of Table 1. Only the values for large
B1 (5–6 G) are in qualitative agreement with the molecular
structure of BDPA.

In Fig. 8 we show a fit to the same experimental data us-
ing a mono-exponential dipolar correlation function. While
the difference between the data and the fit (green line in top
panel of Fig. 8) is not much worse than what we had for the
FFHS model, it is apparent that the exponential model strives
to find the right balance between the broadening of the solid-
effect lines and the tails of these lines at the lower offsets,
ultimately producing too broad solid-effect lines and too nar-
row non-canonical peaks. (An exponential fit with B1 = 4 G
is shown in Fig. A2.) We thus see that the J-band DNP spec-
trum clearly differentiates between two alternative motional
models, ruling out the less realistic one.

The most certain outcome of the fits with the FFHS model
is the deduced motional timescale τ , as it comes directly
from the width of the solid-effect lines (T2S is too long to
contribute). The deduced value of T1S is somewhat less cer-
tain since it is accessed relative to T2S and also depends
on the mw field B1. Nevertheless, with reasonable choices
of T2S and B1, the fit to the non-canonical extrema in the
DNP spectrum restricts T1S to a meaningful window between
1.5 and 2.5 µs (Table 1). Least certain is the estimate of the
contact distance b since, in addition to B1, it requires pre-
cise knowledge of the radical concentration and the nuclear
spin-lattice relaxation time. Although the latter is accessible
experimentally, its value was measured at 298 K, while the
DNP measurements are at 320 K.

In spite of the uncertainty in the estimated value of the
distance parameter b, let us use τ and b in Eq. (67) to
calculate the coefficient of relative translational diffusion.
With b = 0.482 nm (Table 1, first row) and τ = 7.1 ns, we
getD = b2/τ = 0.033nm2 ns−1

= 33×10−12 m2 s−1. Alter-
natively, with b = 0.427 nm (Table 1, second row) and τ =
7.1 ns, we findD = 26×10−12 m2 s−1. The first value corre-
sponds to B1 = 6 G and the second to B1 = 5 G.

For comparison, the coefficient of lateral diffusion of
phospholipids in oriented DMPC bilayers, as determined
from pulsed field gradient NMR, is about 11× 10−12 m2 s−1

at 308 K, 20× 10−12 m2 s−1 at 323 K and 27× 10−12 m2 s−1

at 333 K (Filippov et al., 2003, Fig. 5b, 0 mol % cholesterol).
As the temperature of the DNP measurements is closer to the
middle value, our two estimates ofD are seen to be larger by
a factor of 1.65 and 1.3, respectively.

However, the D of the FFHS model corresponds to the
relative translational diffusion of the electronic and nuclear
spins, i.e., D =DS +DI , where DS and DI denote the co-
efficients of translational diffusion of the two spin types.
Disregarding all complicating factors, one could thus take
DI = 20× 10−12 m2 s−1 from the literature value and ratio-
nalize the values that we deduced from the width of the solid-
effect DNP lines as implying either DS = 13×10−12 m2 s−1

or DS = 6× 10−12 m2 s−1 for the diffusion coefficient of the
free radical BDPA in the lipid bilayer. As the obtained nu-
merical values are rather plausible, we conclude that the
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quantitative analysis of the J-band DNP spectrum leads to
meaningful molecular properties. Without the theoretical
framework developed in this paper, neither the molecular dis-
tance b nor the diffusion coefficient D would be accessible
from a solid-effect DNP spectrum in the liquid state.

5 Concluding discussion

Erb, Motchane and Uebersfeld had the hunch that the disper-
sive component of the EPR line is reflected in the solid-effect
DNP enhancement (Erb et al., 1958a). A theoretical justifica-
tion of their intuition was provided in the companion paper
(Sezer, 2023a). Here, the formalism was extended to the solid
effect in liquids. Our theoretical predictions were compared
with recent DNP measurements at high field (Kuzhelev et al.,
2022). The comparison demonstrated that, under appropriate
conditions, the dispersive component of the EPR line is lit-
erally visible in the field profile of the DNP enhancement.
Provided that seeing is believing, we have thus closed the
circle.

The DNP mechanism which became known as the solid-
state effect due to Abragam (Abragam and Proctor, 1958)
had been observed in liquids from the very beginning (Erb
et al., 1958a, b). Nevertheless, perhaps because it yielded
comparatively smaller absolute enhancements and often co-
existed with the Overhauser effect (Leblond et al., 1971b),
the solid effect has remained less explored in liquids com-
pared to solids. The recent use of this DNP mechanism as a
new modality for probing the molecular dynamics in ionic
liquids (Neudert et al., 2017; Gizatullin et al., 2021b) and
its first applications at high magnetic field (Kuzhelev et al.,
2022) indicate that the potential of the solid effect in the liq-
uid state is yet to be harvested. A theoretical understanding
of the mechanism in liquids is clearly going to be helpful in
these endeavors. Developing the needed theory has been the
main aim of the companion and current papers.

Admittedly, a theoretical description of the solid effect in
liquids was developed more than 50 years ago by Korringa
and colleagues (Papon et al., 1968; Leblond et al., 1971a). In
fact, their analysis was much more ambitious than ours, as
it aimed to quantify the DNP spectrum during the transition
from the Overhauser effect to the solid effect upon reduc-
tion of the experimental temperature (Leblond et al., 1971b).
Thus, in addition to the secular terms of the dipolar inter-
action that we considered here and in Sezer (2023a), their
Hamiltonian also contained the non-secular terms, which are
important for the cross-relaxation rates of the Overhauser ef-
fect, as well as the orientation-dependent part of the elec-
tronic Zeeman interaction, which determines the electronic
relaxation rates and thus the degree of saturation. Following
the prescription of second-order time-dependent perturbation
theory, Korringa et al. derived equations for the deviations of
both the electronic and nuclear polarizations from their val-
ues at thermal equilibrium (Papon et al., 1968).

The analytical framework of Korringa and colleagues had
two additional aspects. First, as is well known, the semi-
classical description of spin-lattice relaxation relaxes the
system to infinite temperature. The usual way of correct-
ing for this shortcoming in magnetic resonance is to sub-
tract the correct thermal equilibrium from the right-hand side
of the dynamical equation of the density matrix (Abragam,
1961). Instead, Korringa (1964) imposed the correct tem-
perature by writing the equation of motion of the density
matrix for complex-valued time, whose imaginary part was
proportional to the inverse temperature. This mathematical
trick exploits the fact that a quantum-mechanical propaga-
tor with imaginary time becomes a Boltzmann factor. The
analytical continuation to complex time modified the famil-
iar Liouville–von Neumann equation of the density matrix to
a form that is not common in magnetic resonance. Second,
as an integral part of their formalism, Korringa et al. (1964)
modeled the stochastic modulation of the spin Hamiltonian
as rotational diffusion of one coordinate frame with respect
to another, which led to an exponential correlation function
with single decay time τ . It is not straightforward to see how
their final analytical expressions should be modified if one
were to use the FFHS model, for example.

In this context, it is worth mentioning that the mono-
exponential model did not accurately fit the experimental
data of Leblond et al. (1971b), and the authors took a Gaus-
sian distribution for lnτ (Leblond et al., 1971a). In Fig. 8 we
also observed that an exponential motional model did not fit
the experimental DNP spectrum at J band (Kuzhelev et al.,
2022), whereas the FFHS model with a single motional pa-
rameter did (Fig. 7). One should remember, however, that
the analysis of Leblond et al. (1971b) was performed 4 years
before the spectral density of the FFHS model was solved
analytically (Ayant et al., 1975; Hwang and Freed, 1975).

In spite of the differences between the analytical frame-
work of Korringa and colleagues (Papon et al., 1968;
Leblond et al., 1971a) and our approach, which hamper a di-
rect comparison of the results, we observe that the derivations
in their first paper (Papon et al., 1968) assumed isotropic
electronic relaxation, i.e., T1S = T2S . As we saw in Sect. 4.2,
in this case the matrix B (Eq. 13) becomes equal to B0
(Eq. 69) and the eigenvalue problem of the latter has a simple
closed-form solution. All quantities of interest then become
linear combinations of the reciprocals of the eigenvalues. In-
deed, the final expressions of Papon et al. (1968) are linear
combinations of Lorentzian spectral densities, which contain
the effective frequency ωeff (Eq. 71).

The assumption of equal longitudinal and transverse elec-
tronic relaxation rates was relaxed in the second paper
(Leblond et al., 1971a). Sadly, this second paper has been
cited only five times, and although all of the citing papers re-
port new experiments, they do not use the theoretical expres-
sions of Leblond et al. (1971a) to analyze the experimental
data. One can only hope that, by being less ambitious, the
theory developed in the current paper fares differently.
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Appendix A: Additional figures

Figure A1. Same as Fig. 7 (FFHS model) for B1 = 2 G (solid black
line). The fit parameters are given in the second last row of Table 1.

Figure A2. Same as Fig. 8 (exponential model) for B1 = 4 G (solid
black line). The fit parameters r1 = 8.1, r2 = 90, r3 = 17 corre-
spond to T1S = 1.7µs, τ = 2.4 ns, b = 0.387 nm (assuming N =
0.1 M).

Code availability. The code used to generate the fig-
ures is at https://github.com/dzsezer/solidDNPliquids
(https://doi.org/10.5281/zenodo.7990757, Sezer, 2023b).

Data availability. The analyzed data are at
https://github.com/dzsezer/solidDNPliquids/data
(https://doi.org/10.5281/zenodo.7990757, Sezer, 2023b).
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