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Abstract. In this paper, we provide an analytical description of the performance of the cross-polarization (CP)
experiment, including linear ramps and adiabatic tangential sweeps, using effective Hamiltonians and simple
rotations in 3D space. It is shown that radiofrequency field inhomogeneity induces a reduction in the transfer
efficiency at increasing magic angle spinning (MAS) frequencies for both the ramp and the adiabatic CP ex-
periments. The effect depends on the ratio of the dipolar coupling constant and the sample rotation frequency.
In particular, our simulations show that for small dipolar couplings (1 kHz) and ultrafast MAS (above 100 kHz)
the transfer efficiency is below 40 % when extended contact times up to 20 ms are used and relaxation losses
are ignored. New recoupling and magnetization transfer techniques that are designed explicitly to account for
inhomogeneous radiofrequency fields are needed.

1 Introduction

Cross-polarization (CP) is a remarkable experiment with
a very long history (Schaefer, 2007). Hartmann and Hahn
(1962) presented the theory of magnetization transfer in
a two-spin system under conditions of double radiofre-
quency (RF) irradiation of a static sample. Pines et al. (1973)
published their seminal work on proton-enhanced solid-state
NMR of dilute spins such as 13C and 15N. While magic
angle spinning (MAS) was already introduced by Andrew
et al. (1958) and independently by Lowe (1959), it was
only in 1977 that cross-polarization was successfully com-
bined with sample rotation. The necessary modification of
the Hartmann–Hahn conditions was described in Stejskal
et al. (1977). After that, many modifications with variable
amplitude irradiations on one or both RF channels were de-

veloped. Among them, simple linear ramps (Metz et al.,
1994) and adiabatic sweeps (Hediger et al., 1995) became the
most popular. Ramp CP was originally introduced to broaden
the Hartmann–Hahn (HH) matching condition and to ob-
tain uniform signal amplitudes. In the original publication,
low MAS frequencies (below ∼ 10 kHz) were used, and the
sweep could cover several HH conditions. At the same time,
it was realized that the largest enhancement in signal inten-
sity is obtained when the sweep covers only one HH con-
dition (Metz et al., 1994). The RF amplitude sweep implies
a partially adiabatic inversion of the spins and compensates
for RF field inhomogeneities (Peersen et al., 1994; Hediger
et al., 1995).

Until now, cross-polarization remains the main pulse se-
quence building block for magnetization transfers. At very
high MAS frequencies, it becomes difficult to achieve HH
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zero-quantum matching where the difference between the
two applied RF amplitudes is equal to the MAS frequency.
Instead, the HH double-quantum matching condition must
be used, in which the sum of the RF amplitudes equals the
MAS frequency. The spin dynamics remain the same with
the exception that negative intensities are obtained (Meier,
1992). Cross-polarization is thus applied over an excep-
tionally wide range of conditions: from experiments using
static samples to MAS experiments with rotation frequencies
above 100 kHz.

The most widespread coil design used by all vendors in
most of the MAS solid-state NMR probes is a solenoid.
Its simple design, large filling factor, high conversion ratio
from RF power to RF field and its possibility of being inte-
grated into circuits tuned to multiple frequencies are among
the major benefits. The main drawback is its inhomogeneous
RF field, which quickly decays towards the end of the coil,
where the RF amplitude is reduced to about 50 % of the value
achieved in the coil center. Several other strategies have been
proposed to design NMR coils that are compatible with MAS
and provide improved RF field homogeneity. Variable pitch
coils were proposed by Idziak and Haeberlen (1982) and re-
cently explored by Martin and coworkers, who proposed 3D-
printed templates for easy manufacturing (Kelz et al., 2019).
An interesting alternative was proposed by Privalov et al.
(1996) using variable ribbon-width coils that improve RF ho-
mogeneity not only along the coil axis but also in the radial
direction. Another type of coil was designed for so-called E-
free probes, which minimize sample heating effects induced
by high-power RF irradiation. These coils also show im-
proved RF field homogeneity (Krahn et al., 2008). All strate-
gies have benefits and disadvantages. Variable-pitch coils
provide a lower RF conversion ratio and thus lower sensitiv-
ity. E-free probes consist of separated coils for the high- and
low-frequency RF channels, which potentially leads to differ-
ent RF field profiles and imbalances between these channels.
Worth mentioning is the recent cryo-CP-MAS probe technol-
ogy that is reported to provide excellent RF field homogene-
ity (Hassan et al., 2020).

RF field inhomogeneity is a concern for the performance
of virtually all NMR experiments. Specifically, it affects the
sensitivity of the cross-polarization experiment, since the
Hartmann–Hahn matching is violated at different positions
within the sample as a consequence of the modulation of
the RF amplitudes due to inhomogeneity. An experimen-
tal example of this volume-selective behavior of the cross-
polarization experiment is presented in the work of Tošner
et al. (2018). In biomolecular applications, it is difficult to
prepare large quantities of isotopically labeled samples, and
only limited amounts of material are available that do not al-
low us to completely fill the MAS rotor. To yield the highest
possible sensitivity, samples are typically packed around the
center of the coil, and the problem of RF field distribution
is reduced. However, the rotors for ultrafast MAS are small
and can be completely filled with sample. Under these con-

ditions, RF inhomogeneity comes up as a concern in its full
range. With faster MAS and correspondingly smaller rotors
that contain less material, we again face sensitivity issues.
It is obviously desirable that the whole sample contributes
to the NMR signal. At this point, it appears that the inho-
mogeneity of the RF field is the prevailing challenge for the
development of new solid-state NMR methods.

In this tutorial article, we summarize the principles of the
cross-polarization (CP) experiment and focus on the effect
of RF field inhomogeneity. For demonstration purposes we
limit our treatment to an isolated heteronuclear pair of spin-
1/2 nuclei that are coupled via the dipole–dipole interac-
tion. We assume that there is no chemical shift interaction.
Using average Hamiltonian theory and simple 3D rotations
we explain the process of magnetization transfer assuming
different amplitude-swept CP variants. We show that the to-
tal signal measured after the CP transfer decreases with in-
creasing MAS frequency. The effect is amplified for small
dipolar couplings. We numerically optimize linear ramp and
adiabatic tangential sweep experiments to identify the con-
ditions for the best performance as a function of the dipolar
coupling constant, contact time and MAS frequency. Neither
of these techniques under any condition fully compensates
for RF field inhomogeneities. The most striking example of
low efficiency is the CP transfer between a 15N nucleus di-
rectly bonded to a 13C atom involving a dipolar coupling con-
stant of about 1 kHz. With the forthcoming MAS technology
in mind that can reach MAS frequencies of up to 200 kHz,
we predict that only 20 % of the sample will contribute to
the NMR signal after a CP mixing time of 10 ms. It clearly
calls for the development of alternative magnetization trans-
fer techniques that are suitable for ultrafast MAS NMR ex-
periments.

2 Theory

A theoretical description of the cross-polarization phe-
nomenon can be found in many solid-state NMR textbooks.
Here, we revisit the relevant parts and focus on visualiza-
tion of the magnetization transfer process during variable-
amplitude sequences, following the description presented by
Rovnyak (2008). In the following, we assume an isolated
spin pair. A more general description that considers the sur-
rounding spins and homonuclear interactions within an INS
spin system can be found, for example, in the work of Vega
and coworkers (Marks and Vega, 1996; Ray et al., 1998).
This issue has been reviewed in the context of ultrafast MAS
by Emsley and coworkers (Laage et al., 2009), concluding
that the perturbation effects of homonuclear interactions di-
minish with increasing spinning rate. The authors infer that
the behavior of the CP experiment at very fast spinning in a
INS spin system is reminiscent of a 13C–15N spin pair, which
we would like to analyze in the following in detail.
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Table 1. Fictitious spin-1/2 operators in zero-quantum and double-
quantum subspaces.

Zero quantum Double quantum
I

ZQ
x = IxSx + IySy I

DQ
x = IxSx − IySy

I
ZQ
y = IySx − IxSy I

DQ
y = IySx + IxSy

I
ZQ
z =

1
2 (Iz− Sz) I

DQ
z =

1
2 (Iz+ Sz)

Inverted relations
Iz = I

DQ
z + I

ZQ
z Sz = I

DQ
z − I

ZQ
z 2IxSx = I

DQ
x + I

ZQ
x

2.1 Hamiltonian decomposition into zero-quantum (ZQ)
and double-quantum (DQ) subspaces

We start with the Hamiltonian that contains the dipole–dipole
interaction and the radiofrequency fields with amplitudes ωI
and ωS applied on resonance to spins I and S, respectively.

H = ωI Ix +ωSSx + dIS(t)2IzSz (1)

The dipolar term is time dependent due to magic angle
spinning (angular frequency ωR) and can be expressed as

dIS(t)= g1cos(ωRt + γ )+ g2cos(2ωRt + 2γ ), (2)

g1 =−
1
√

2
2πbISsin(2β), (3)

g2 =
1
2

2πbISsin2(β), (4)

where bIS is the dipolar coupling constant (bIS =

−
µ

4π
γI γS}
r3
IS

1
2π ) in units of hertz and β and γ are the

Euler angles relating the orientation of the dipolar vector
r IS to the rotor axis (the α angle is irrelevant as the dipolar
coupling tensor has a vanishing asymmetry).

Subsequently, the reference frame is transformed into the
tilted frame where the radiofrequency fields are linear with
Iz and Sz, while the dipolar term becomes transversal. This
transformation is represented by a π/2 rotation around (Iy +
Sy) and we obtain

H ′ = ωI Iz+ωSSz+ dIS(t)2IxSx . (5)

This form of the Hamiltonian allows decomposition of
the spin dynamics problem into two separate subspaces, the
zero-quantum (ZQ) and the double-quantum (DQ) subspace.
The ZQ and DQ subspaces can be represented using fictitious
spin-1/2 operators that are defined in Table 1.

The Hamiltonian can then be written as

H ′ =HZQ
+HDQ, (6)

HZQ
= (ωI −ωS)IZQ

z + dIS(t)IZQ
x , (7)

HDQ
= (ωI +ωS)IDQ

z + dIS(t)IDQ
x . (8)

2.2 Magnetization transfer in the static CP experiment

The magnetization transfer process in the tilted frame is de-
scribed by a transition from Iz into Sz. The action of RF
pulses and the dipolar interaction on the spin state Iz in
the tilted frame are evaluated independently in the ZQ and
DQ subspace, working with the initial spin states IZQ

z and
I

DQ
z , respectively. If the sample is static, the zero-quantum

Hartmann–Hahn condition is ωI −ωS = 0 and the Hamilto-
nian in Eq. (7) reduces to HZQ

= dISI
ZQ
x (dIS is time inde-

pendent). The spin state represented by the operator IZQ
z is

rotated around the IZQ
x axis as a consequence of the dipolar

interaction. Simultaneously, the spin state IDQ
z evolves in the

DQ subspace. We can assume that ωI +ωS is much larger
than dIS. The effective rotation axis is thus oriented along
I

DQ
z ; see Eq. (8). As a result, HDQ has no effect on the IDQ

z

state. This is summarized in the following equations.

IZQ
z

HZQ
−→IZQ

z cos(dISt)− IZQ
y sin(dISt)

=
1
2

(Iz− Sz)cos(dISt)− (IySx − IxSy)sin(dISt)

(9)

IDQ
z

HDQ
−→ IDQ

z =
1
2

(Iz+ Sz) (10)

Iz = I
ZQ
z + I

DQ
z

HZQ
+HDQ
−→ Iz

1
2
[cos(dISt)+ 1]

+ Sz
1
2
[1− cos(dISt)] − (IySx − IxSy)sin(dISt)

(11)

The Iz spin state is transformed into Sz when cos(dISt)=
−1, resulting in a full inversion of the IZQ

z operator.
For the double-quantum Hartmann–Hahn condition ωI +

ωS = 0, the rotation occurs in the DQ subspace. By analogy
with the previous case, we assume |ωI −ωS | � dIS. Under
this precondition, the ZQ spin state is not changed.

IZQ
z

HZQ
−→ IZQ

z =
1
2

(Iz− Sz) (12)

IDQ
z

HDQ
−→IDQ

z cos(dISt)− IDQ
y sin(dISt)

=
1
2

(Iz+ Sz)cos(dISt)− (IySx + IxSy)sin(dISt)

(13)

Iz = I
ZQ
z + I

DQ
z

HZQ
+HDQ
−→ Iz

1
2
[cos(dISt)+ 1]

− Sz
1
2
[1− cos(dISt)] − (IySx + IxSy)sin(dISt)

(14)
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For cos(dISt)=−1, the IDQ
z operator is inverted resulting

in the generation of the operator −Sz. Note that the double-
quantum Hartmann–Hahn condition yields negative signal
intensity.

The dipolar coupling is an orientation-dependent interac-
tion. To yield the magnetization transfer dynamics for a pow-
der sample, the ensemble of all possible crystallite orienta-
tions has to be accounted for. The powder-averaged inversion
efficiency is lower since the condition of a complete transfer,
cos(dISt)=−1, will hold only for a single orientation.

2.3 Magic angle spinning and average Hamiltonians

In the case of MAS, the Hamiltonians become time depen-
dent. The analysis is then performed using average Hamilto-
nian theory (AHT) employing the Magnus expansion. A tuto-
rial on AHT principles was presented by Brinkmann (2016).
To retain fast convergence of the Magnus series, the Hamilto-
nian is expressed in an appropriate interaction frame. Equa-
tion (2) implies four resonance conditions upon transforma-
tion into a new rotating frame in which the periodic modula-
tions of dIS(t) are removed by application of RF fields. These
resonance conditions are associated with the characteristic
frequencies nωR with n=±1,±2. We choose n=+1 and
focus on the ZQ subspace. In general, transformation to a
new reference frame is described using a propagator UT(t).
This propagator transforms the Hamiltonian according to

H ′ = U+T (t)HUT(t)− iU+T (t)
d
dt
UT(t). (15)

In this case, UT(t)= exp(−iωRtI
ZQ
z ). The transformation

can be regarded as a rotation around IZQ
z with a frequency

−ωR. The second term in Eq. (15) is a Coriolis term which
introduces the term −ωRI

ZQ
z into the transformed Hamilto-

nian.

HZQ′
= (ωI −ωS −ωR)IZQ

z

+ dIS(t)
(
IZQ
x cos(ωRt)− IZQ

y sin(ωRt)
)

(16)

The first-order Hamiltonian is the time average over the
modulation period τR = 2π/ωR

H
ZQ
=

1
τR

τR∫
0

HZQ′dt. (17)

The integral over the time-dependent parts in Eq. (16) is
evaluated as follows (making use of trigonometric identities):

1
τR

τR∫
0

[g1cos(ωRt + γ )+ g2cos(2ωRt + 2γ )]

×

(
IZQ
x cos(ωRt)− IZQ

y sin(ωRt)
)

dt =

=
1
τR

τr∫
0

{
g1

1
2
[cos(2ωRt + γ )+ cos(γ )]

+ g2
1
2
[cos(3ωRt + 2γ )+ cos(ωRt + 2γ )]

}
dtIZQ

x +

−
1
τR

τr∫
0

{
g1

1
2
[sin(2ωRt + γ )− sin(γ )]

+ g2
1
2
[sin(3ωRt + 2γ )− sin(ωRt + 2γ )]

}
dtIZQ

y =

=
1
2
g1cos(γ )IZQ

x +
1
2
g1sin(γ )IZQ

y .

We thus obtain the first-order average Hamiltonian in the
ZQ subspace as

H
ZQ
= (ωI −ωS −ωR)IZQ

z

+
1
2
g1

(
cosγ IZQ

x + sinγ IZQ
y

)
. (18)

The Hartmann–Hahn condition is corrected to account for
the rotation of the sample and has the form ωI −ωS = ωR. In
this case, the component ofH

ZQ
along the IZQ

z axis vanishes
and the dipolar interaction results in a rotation around an axis
in the transversal plane, with a phase depending on γ . For
each crystallite, the spin state IZQ

z is flipped away from the
z axis generating a transversal component. These transversal
components are equally distributed with respect to the γ an-
gle and average to 0 in a powder sample. Only the projection
on the IZQ

z axis is relevant, and we can therefore arbitrarily
set γ = 0.

The calculation can be repeated for other choices of n and
the following zero-quantum average Hamiltonians are ob-
tained:

H
ZQ
= (ωI −ωS − nωR)IZQ

z +
1
2
gnI

ZQ
x . (19)

The fast convergence of the Magnus expansion is main-
tained and the proper description of spin dynamics by an av-
erage Hamiltonian is valid in the vicinity of the Hartmann–
Hahn condition (ωI −ωS−nωR = 0). The RF amplitudes ωI
and ωS may become time dependent if a linear ramp or an
adiabatic sweep is applied. In any case, we assume that RF
changes are slow compared to the MAS frequency to ensure
the validity of this treatment.
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The analysis is completed by inspecting the spin dynamics
in the DQ subspace. We apply the same procedure as for the
ZQ subspace, yielding

H
DQ
= (ωI +ωS − nωR)IDQ

z +
1
2
gnI

DQ
x . (20)

For the zero-quantum condition, it is assumed that the IDQ
Z

term dominates the average Hamiltonian H
DQ

; i.e., ωI +
ωS−nωR� dIS for all n=±1,±2. Under these conditions,
the initial state IDQ

z remains unchanged. However, these con-
ditions might be violated for large RF amplitude sweeps or
in the case of substantial RF field inhomogeneity.

2.4 CP matching profiles

For constant RF amplitudes, the magnetization transfer pro-
cess can be analytically described to derive the so-called
CP matching profiles (sometimes dubbed Hartmann–Hahn
fingers). This derivation was previously published in Levitt
(1991) and Wu and Zilm (1993). It is assumed that both the
ZQ and DQ Hartmann–Hahn conditions are independent. We
reiterate the calculation for the matching condition and focus
first on the ZQ Hamiltonian given in Eq. (19). We proceed
with the final transformation into the effective field of the
Hamiltonian. The Hamiltonian H

ZQ
can be represented as

a vector in the xz plane. This vector has an angle φ with the
x axis. The transformation into the effective field is described
by a rotation around IZQ

y by an angle−φ, which is equivalent
to the application of the propagator UT = exp(−iφIZQ

y ). It
makes the x axis of the new frame coincide with the effective
Hamiltonian vector. Note that the Coriolis term in Eq. (15) is
absent because UT is time independent. The effective Hamil-
tonian can be written as

H
ZQ
eff = ω

ZQ,n
eff I eff

x , (21)

ω
ZQ,n
eff =

√
(ωI −ωS − nωR)2+

1
4
g2
n, (22)

tanφ =
ωI −ωS − nωR

1
2gn

. (23)

The initial spin state ρZQ(0)= IZQ
z transforms into

ρeff(0)= U+T ρ
ZQ(0)UT = cosφI eff

z +sinφI eff
x in the effective

field frame and evolves with a frequency ωZQ,n
eff around the

effective field axis I eff
x :

ρeff(t)= cosφ
(
I eff
z cos(ωZQ,n

eff t)− I eff
y sin(ωZQ,n

eff t)
)
+ sinφI eff

x

= sinφI eff
x − cosφsin(ωZQ,n

eff t)I eff
y + cosφcos(ωZQ,n

eff t)I eff
z .

(24)

The result is transformed back from the effective field
frame into the ZQ subspace as ρZQ(t)= UTρ

eff(t)U+T . This

yields

ρZQ(t)= sinφ
(
IZQ
x cosφ+ IZQ

z sinφ
)
− cosφsin(ωZQ,n

eff t)IZQ
y

+ cosφcos(ωZQ,n
eff t)

(
IZQ
z cosφ− IZQ

x sinφ
)

= sinφcosφ
[
1− cos(ωZQ,n

eff t)
]
IZQ
x − cosφsin(ωZQ,n

eff t)IZQ
y

+

[
sin2φ+ cos2φcos(ωZQ,n

eff t)
]
IZQ
z .

(25)

Equation (25) describes the trajectory of the IZQ
z opera-

tor in the ZQ subspace under the influence of the RF pulses
applied in the CP experiment. For evaluation of the magneti-
zation transfer process, only the projection on the IZQ

z axis
is important. We assume that there is no evolution in the
DQ subspace; i.e., ρDQ(t)= IDQ

z . The initial Iz operator thus
evolves as (recall Iz = I

ZQ
z + I

DQ
z )

ρZQ(t)+ ρDQ(t)=
(

sin2φ+ cos2φcos(ωZQ,n
eff t)

)
×

1
2

(Iz− Sz)+
1
2

(Iz+ Sz). (26)

We obtain the CP transfer efficiency in the vicinity of the
zero-quantum condition (n) by collecting the terms in front
of the Sz operator:

εZQ,n
=

1
2

(
1− sin2φ− cos2φcos(ωZQ,n

eff t)
)

=
1
2

(
cos2φ− cos2φcos(ωZQ,n

eff t)
)

=
cos2φ

2

(
1− cos(ωZQ,n

eff t)
)

εZQ,n
=

1
2

1
4g

2
n

(ωI −ωS − nωR)2+ 1
4g

2
n

[
1− cos(ωZQ,n

eff t)
]
.

(27)

A similar calculation for the double-quantum Hartmann–
Hahn condition yields

εDQ,n
=−

1
2

1
4g

2
n

(ωI +ωS − nωR)2+ 1
4g

2
n

[
1− cos(ωDQ,n

eff t)
]
,

(28)

ω
DQ,n
eff =

√
(ωI +ωS − nωR)2+

1
4
g2
n. (29)

Note the negative sign of the transferred magnetization
for the double-quantum Hartmann–Hahn transfer. Equa-
tions (27) and (28) are identical to the result of an alternative
derivation presented by Marica and Snider (2003). The CP
MAS matching profile has the form of a Lorentzian function
with a width that is dependent on the dipolar coupling bIS and
the crystallite orientation (Euler angle β) that are included
in the gn factors. In powders, a quantitative magnetization
transfer is not possible as a consequence of the dependence of
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Figure 1. Dipolar coupling scaling factors g1(β) (solid blue line)
and g2(β) (dashed blue line) defined in Eqs. (3) and (4). The red
curve represents the relative probability of finding a specific orien-
tation in a powder sample. This weighting factor is employed for the
calculation of the transfer efficiencies ε in Eq. (30). β angles with
β = 15 and 45◦ are used for the visualization of the spin dynamics
in the “Results and discussion” section.

the size of the effective dipolar coupling on orientation. The
magnetization transfer efficiency under MAS is independent
of the γ angle. This property is referred to as γ encoding.
The powder average is obtained by evaluation of the integral:

〈εZQ,n
〉powder =

1
2

π∫
0

εZQ,nsinβdβ. (30)

2.5 Radiofrequency field inhomogeneity

Radiofrequency fields in MAS probes are realized using
solenoid coils. However, a solenoid produces a rather inho-
mogeneous distribution of magnetic fields across the sam-
ple (Tošner et al., 2017). Moreover, as the sample rotates,
individual spin packets travel along circles through a spa-
tially inhomogeneous RF field which is determined by the
helical geometry of the solenoid coil. This RF inhomogene-
ity introduces periodic modulations of both the RF ampli-
tude and phase. For the special case of the CP experiment,
it was recently shown that these temporal modulations have
a negligible effect (Aebischer et al., 2021) and will be ig-
nored in the present treatment. In addition, the distribution of
the RF fields depends on the frequency (Engelke, 2002) and
can be influenced by different balancing of the RF circuitry
on different channels (Paulson et al., 2004). For simplicity,
we assume the RF field distributions to be equal for the I
and S spins and disregard the radial dependency. The effect
of RF field inhomogeneity on the CP experiment was previ-
ously studied by Paulson et al. (2004) and Gupta et al. (2015).
An example of the distribution of the RF field along the coil
axis, denoted ξ (z), is shown in Fig. 2. As noted by Gupta
et al. (2015), the profile deviates from a Gaussian function
and is described well by a power law dependence. In our
study, we use the B1 profile calculated according to Engelke
(2002).

Figure 2. RF field inhomogeneity profile along the axis of a
solenoid coil. The profile is calculated according to Engelke (2002)
assuming a coil length of 7.9 mm, a diameter of 3.95 mm and
seven turns (blue line). The dashed gray line represents a fit of the
RF profile assuming a Gaussian function suggested by Paulson et al.
(2004). The power law relation introduced by Gupta et al. (2015)
yields a perfect fit of the theoretical behavior and exactly matches
the blue curve. Values ξ = 0.6, 0.8 and 1.0 are used in the “Results
and discussion” section to visualize spin dynamics.

The distribution of RF field amplitudes enters the formulas
of the CP experiment using the substitution

ωI
replace
−→ ξ (z)ωNOM

I ,

ωS
replace
−→ ξ (z)ωNOM

S , (31)

where ωNOM
I and ωNOM

S refer to the nominal RF amplitudes
realized in the center of the coil (z= 0 where ξ (0)= 1). The
overall experimental efficiency corresponds to the integral
over the sample volume weighted by the detection sensitiv-
ity of the coil. According to the reciprocity theorem (Hoult,
2000), the sensitivity is proportional to the RF field. We as-
sume that the sample extends over a length l and is placed
symmetrically within the solenoid coil.

〈εZQ,n
〉
rf-inh
powder =

1
w

+l/2∫
−l/2

〈εZQ,n
〉powderξ (z)dz (32)

The normalization factor w is given as

w =

+l/2∫
−l/2

ξ (z)dz. (33)

It is not possible to match the Hartmann–Hahn condi-
tions for the whole sample volume. Assuming that the zero-
quantum condition is fulfilled for the nominal RF amplitudes,
i.e., ωNOM

I −ωNOM
S = nωR, we get

ωI −ωS − nωR = ξ (z)
(
ωNOM
I −ωNOM

S

)
− nωR

= ξ (z)nωR− nωR = nωR[ξ (z)− 1]

and

H
ZQ
= nωR[ξ (z)− 1]IZQ

z +
1
2
gnI

ZQ
x . (34)
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Equation (34) shows that in the case of an inhomogeneous
RF field, the prevailing component along the IZQ

z opera-
tor in the effective Hamiltonian H

ZQ
is proportional to the

MAS frequency ωR, multiplied by the order of the recoupling
condition n. The effect of RF amplitude mismatch on spin
dynamics is more pronounced for small dipolar couplings,
bIS, which is reflected in the width of the CP MAS matching
profiles derived above. Thus, we could analytically derive a
dependence of the performance of the CP experiment on the
MAS frequency.

2.6 Linear ramp and adiabatic sweep

The most popular way to overcome the limitations of the con-
stant amplitude CP and the RF mismatch at different posi-
tions of the sample is the use of a linear ramp or an adiabatic
tangential sweep on one of the RF channels. We can define

ωNOM
I = ω0

I + f (t), (35)

where the function f (t) describes the sweep from −1/2 to
+1/2 over time t ∈ 〈0,T 〉. The function f (t) can be defined
for the linear ramp as

f (t)=1
(
t

T
−

1
2

)
(36)

and for a tangential sweep as

f (t)= btan
[(

2t
T
− 1

)
arctan

1

2b

]
, (37)

where b parameterizes the curvature of the sweep. Values
for b are typically in the range of 1

1000 < b <1. For b =
1

1000 , f (t) is almost constant except for the end points where
the function changes rapidly. For b =1, f (t) approaches the
linear ramp. The influence of b on the shape is illustrated in
Fig. 3. During a truly adiabatic transfer, the effective field is
aligned with the initial magnetization along the +IZQ

z axis
and changes its orientation slowly towards −IZQ

z . The spin
state is locked along the effective field and is inverted as well
(Hediger et al., 1995). The adiabaticity condition is given as

d
dt
φ(t)� ωeff, (38)

where ωeff is defined in Eq. (22) and the angle φ is given
in Eq. (23). Adiabatic inversion pulses have been an inte-
gral part of the NMR toolbox for a long time (Baum et al.,
1985). There is, however, a substantial difference between
broadband inversion pulses and cross-polarization. Inversion
pulses allow us to manipulate the effective field along z and
x directions, corresponding to offset and RF amplitude, re-
spectively. In the CP experiment, the x axis component of
the effective Hamiltonian is fixed and is determined by the
dipolar coupling; see Eqs. (19) and (20). In addition, perfect
alignment of the effective field with the initial state is difficult
to achieve as the RF amplitudes are restricted to the vicinity
of the Hartmann–Hahn condition.

Figure 3. RF amplitude sweeps employed in cross-polarization
experiments for (a) a linear ramp and (b) an adiabatic tangential
sweep. Equations (36) and (37) mathematically describe the time-
dependent RF amplitude. The parameter b determines the curvature
of the adiabatic tangential shape.

2.7 RF amplitude sweeps and RF field inhomogeneity

In the following, we aim to include RF field inhomogeneity
in the description of the RF amplitude sweep of Eq. (35).
We assume that the zero-quantum Hartmann–Hahn matching
conditions are fulfilled in the middle of the sweep and in the
center of the coil for the nominal RF field amplitudes, i.e., for
ω0
I −ω

NOM
S = nωR. The IZQ

z component of the Hamiltonian

H
ZQ

then becomes

ωI −ωS − nωR = ξ (z)
[
ωNOM
I −ωNOM

S

]
− nωR

= ξ (z)
[
ω0
I + f (t)−ωNOM

S

]
− nωR

= ξ (z)[f (t)+ nωR] − nωR

= ξ (z)f (t)+ nωR[ξ (z)− 1] (39)

and

H
ZQ
= {ξ (z)f (t)+ nωR[ξ (z)− 1]}IZQ

z +
1
2
gnI

ZQ
x . (40)

Now, the sweep function f (t) is scaled by the RF field in-
homogeneity factor ξ (z). At the same time, the center of the
sweep is shifted by an amount proportional to the MAS fre-
quency ωR. In Fig. 4, the sweep range is depicted in green
as a function of position along the coil axis. Spins located
in volume elements towards the ends of the coil where the
RF field is smaller experience RF amplitude sweeps that do
not cover the recoupling condition at all (e.g., for ξ = 0.8 in
Fig. 4a). This is another example of how increased MAS fre-
quencies impact the cross-polarization experiment and cause
a decrease in performance.

When setting the numerical values of RF amplitudes ω0
I ,

ωNOM
S and the sweep range 1, it can happen that double-

quantum conditions are fulfilled in some places within the
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Figure 4. Visualization of the RF sweep ranges as a function of
the position of a particular spin packet along the coil axis. The
Hartmann–Hahn resonance condition is artificially defined for a
sweep frequency 0 kHz. (a) The sweep range (green area) is evalu-
ated according to Eq. (39) for n=+1 and assuming a MAS fre-
quency of 50 kHz. The blue arrows indicate the direction of the
sweep for an RF inhomogeneity factor of ξ = 0.8 and 1.0. The
sweep amplitude 1 corresponds to 10 and 30 kHz in (a) and (b),
respectively. (c) Overlay of the RF amplitude sweeps evaluated
for the ZQ (n=+1) matching condition (Eq. 39, green) and DQ
(n=+2) matching condition (Eq. 41, red) with nominal RF am-
plitudes ωNOM

I
/2π = 95 kHz and ωNOM

S
/2π = 45 kHz. These val-

ues were selected to demonstrate that the ZQ matching condition
is satisfied in the center of the coil, and simultaneously a DQ is
encountered for spin packets in regions of the sample where the
RF amplitudes are scaled down by the RF field inhomogeneity.

sample when the values are scaled by the RF field inhomo-
geneity. The double-quantum conditions are governed by the
formula

ωI +ωS − nωR = ξ (z)
[
ωNOM
I +ωNOM

S

]
− nωR

= ξ (z)
[
ω0
I + f (t)+ωNOM

S

]
− nωR

= ξ (z)f (t)+ ξ (z)
(
ω0
I +ω

NOM
S

)
− nωR, (41)

which is represented in red in Fig. 4c. While the values ω0
I

and ωNOM
S do satisfy the zero-quantum n=+1 condition

around the center of the coil, at the same time, they satisfy
the double-quantum n=+2 condition towards the ends of
the coil (places where the red area crosses the zero value).
As a result, there are parts of the sample that produce a posi-
tive magnetization transfer and parts that experience a nega-
tive transfer. Thus, the overall efficiency of the experiment is
decreased.

Figure 5. Properties of the constant amplitude CP experiment as-
suming homogeneous RF fields. (a) The width of the CP match-
ing profile around the zero-quantum (n=+1) Hartmann–Hahn
matching condition depends on the dipolar coupling strength bIS.
(b) Magnetization buildup of the transferred magnetization for
the n=+1 and n=+2 matching condition. Independently of the
MAS frequency and bIS, the n=+2 condition reaches the same
maximum, however, at longer mixing times. The curves were cal-
culated using Eqs. (27) and (30).

3 Results and discussion

3.1 CP matching profile

Experimentally, optimal cross-polarization conditions are
found in experiments in which the RF amplitude on one of
the RF channels is systematically varied to yield the high-
est sensitivity. If the Hartmann–Hahn recoupling condition
is very narrow, this can be difficult as many repetitions with
a small increment in the RF amplitude are required. In the
Theory section, we derived analytical formulas for the CP
matching profiles for constant RF amplitudes. We have found
that for a homogeneous RF field distribution, the width at half
height of the recoupling condition is governed by the size of
the dipolar coupling and can be estimated as 0.468bIS after
powder averaging. Both the width and the maximal transfer
efficiency are independent of the MAS frequency. A maxi-
mum transfer of 73 % is achieved for mixing times satisfying
the condition tbIS = 1.7 for the n=± 1 recoupling condi-
tions. The same efficiency is obtained for the n= ± 2 condi-
tions. However, due to the different spatial dependence and
scaling factors in g1 and g2 terms (Eqs. 3 and 4), the max-
imum is achieved there for mixing times tbIS = 2.4. These
facts are well known and are presented graphically in Fig. 5.
Figure 5a shows the CP matching profile calculated using
Eqs. (27) and (30) for n=+1 and assuming a dipolar cou-
pling constant bIS of 1, 10 and 20 kHz, which are the charac-
teristic values for 13C–15N, 1H–15N and 1H–13C spin pairs,
respectively. 〈εZQ,1

〉powder is represented as a function of the
RF amplitude mismatch δM/2π = ωI−ωS−ωR with respect
to the exact Hartmann–Hahn.

For inhomogeneous RF fields, the CP matching profile can
be quantitatively described by inserting Eq. (31) into Eq. (27)
and taking the average in Eq. (32). Figure 6a shows the in-
fluence of inhomogeneous RF fields and the induced asym-
metric broadening of the matching profile 〈εZQ,+1

〉
rf-inh
powder.
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Clearly, the maximal transfer efficiency substantially de-
creases with increasing MAS frequency.

A closer inspection of the CP matching profiles in Fig. 6a
reveals that the maximum overall transfer efficiency is not
reached for the exact ZQ (n=+1) condition with ωNOM

I −

ωNOM
S = ωR, corresponding to δM= 0. In practice, it is ad-

vantageous to set ωNOM
I a little higher and thus shift the

volume element where the Hartmann–Hahn condition is
matched away from the center of the coil. This allows us to
partially compensate for the destructive effect of the RF field
inhomogeneity. This mismatch δM of the Hartmann–Hahn
matching condition is naturally found during the experimen-
tal setup when the RF fields are optimized to experimentally
yield the best efficiency. However, the mismatch is small (a
few kHz at most) and generally decreases with decreasing
MAS frequency (see the dashed line in Fig. 6a). Similarly,
the RF field inhomogeneity has a subtle effect on the buildup
of the transferred magnetization. Figure 6b shows that max-
imum transfer occurs at shorter mixing times for increased
MAS frequencies.

Figure 6c shows how decreasing dipolar couplings re-
sult in a diminished Hartmann–Hahn transfer efficiency.
The calculations are carried out for three typical dipo-
lar coupling values and for MAS frequencies in the range
of 20 to 200 kHz. Strikingly, for ωR/2π = 200 kHz and
bIS= 1 kHz, the maximum transfer is only about 7 %.

We used numerical simulations in SIMPSON (Bak et al.,
2000; Tošner et al., 2014) to verify the predictions of the
analytical model. To implement an experiment, specific val-
ues of ωI and ωS need to be selected. A consideration of
RF field inhomogeneity increases the complexity of this se-
lection process, since certain values of ωI and ωS can lead
to a situation in which ZQ and DQ recoupling conditions
are fulfilled simultaneously in different parts of the sample
(Fig. 4c). This phenomenon was explored experimentally by
Gupta et al. (2015). If this situation is avoided, we find per-
fect agreement between the analytical model and the numer-
ical simulations.

3.2 Visualization of the magnetization transfer
trajectories

In the following, we aim to visualize the spin trajectory dur-
ing the CP experiment in its basic form with constant RF
and with RF amplitude sweeps. We focus on the vicinity
of the ZQ (n=+1) Hartmann–Hahn condition and use the
effective Hamiltonian H

ZQ
given in Eq. (34) for the analy-

sis. We consider RF field inhomogeneity and assume nom-
inal RF amplitudes that match the recoupling condition in
the center of the coil: ωNOM

I −ωNOM
S = ωR. Figure 7 shows

the spin dynamics for two crystallite orientations (β = 15
and 45◦) and three positions within the coil (ξ = 0.6, 0.8
and 1.0). These conditions are highlighted in Figs. 1 and 2.
In the center of the coil where ξ = 1.0, the Hamiltonian H

ZQ

Figure 6. Transfer efficiency of the constant amplitude CP exper-
iment in the presence of RF field inhomogeneity and assuming a
dipolar coupling strength bIS= 10 kHz. For the calculation, a ro-
tor fully packed with material is assumed. (a) The maximum of
the CP matching profile decreases with increasing MAS frequency
for the zero-quantum (n=+1) condition. At the same time, the
width increases. A dashed gray line is used to indicate the posi-
tion of the maximum. The maximum of the CP matching profile
shifts to higher mismatch values δM for increased MAS frequencies.
(b) Magnetization buildup curves for different MAS frequencies.
The legend is indicated in panel (a). With increasing MAS frequen-
cies, magnetization reaches the maximum transfer at shorter mixing
times. (c) Maximum transfer efficiencies for the characteristic dipo-
lar coupling values bIS of 1, 10 and 20 kHz for different MAS fre-
quencies. Data were generated using Eqs. (27), (31) and (32).

(blue vector) is aligned with the IZQ
x axis. The spin state vec-

tor ρZQ(t) (red vector) rotates in circles within the yz plane
with an angular velocity that depends on the crystallite orien-
tation (Fig. 7c and f). This situation corresponds to the case
without RF field inhomogeneity.

Depending on the position within the coil, a mismatch
contribution in the effective Hamiltonian H

ZQ
along the

I
ZQ
z axis is obtained, which is according to Eq. (34) propor-

tional to the MAS frequency. The effective rotation axis is
tilted away from the IZQ

x direction by an angle φ (Eq. 23).
The effective rotation frequency ωZQ,+1

eff (Eq. 22) increases
with increasing mismatch. Likewise, the IZQ

x component of
H

ZQ
decreases with the decreasing effective dipolar cou-

pling. This amplifies the effect of the RF field inhomogeneity
on the orientation of the effective Hamiltonian axis. The state
vector rotates on the surface of a cone (Fig. 7a, b and d, e). As
a consequence, the inversion becomes inefficient. Only the
central part of the sample yields a high transfer efficiency.
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Figure 7. Visualization of the spin state trajectories for the constant amplitude cross-polarization experiment evaluated for two crystal
orientations. (a–c) Crystallite orientation β = 15◦; (d–f) β = 45◦. The calculations were carried out for three positions along the coil axis
that correspond to RF field scaling values of ξ (z)= 0.6 (panels a and d), 0.8 (panels b and e) and 1.0 (panels c and f). The state vector, ρZQ,
is represented by a red vector. The effective Hamiltonians are represented by blue vectors. ρZQ rotates around HZQ on the surface of a cone
(shaded area). In the simulation, a MAS frequency of 50 kHz and bIS= 10 kHz was assumed.

3.3 RF amplitude sweeps in the absence of RF field
inhomogeneity

Continuous RF amplitude sweeps are used to improve
the cross-polarization efficiency. In this case, the effective
Hamiltonian changes its orientation in the course of the pulse
sequence. An adiabatic inversion is achieved if two condi-
tions are fulfilled: (i) the initial state vector is aligned with
the initial effective field vector and (ii) the effective field
changes its orientation slowly. We focus on the zero-quantum
(n=+1) condition assuming a dipolar coupling constant
bIS= 10 kHz. In the following, spin state trajectories are cal-
culated for two sweep amplitudes: 1= 10 and 30 kHz.

The spin state trajectories for the linear ramp are repre-
sented in Fig. 8. The IZQ

x component of the effective Hamil-
tonian is fixed in time and is given by the effective dipolar
coupling at a given orientation (Eq. 40, assuming ξ = 1.0).
The maximal value of 1

2g1(β) is reached for β = 45◦, which
together with the sweep amplitude of 1= 10 kHz and ac-
cording to Eq. (23) results in a tilt angle of the effective field
φ(t = 0,β = 45◦)= 54.7◦ at the beginning of the pulse se-
quence (Fig. 8b). Clearly, the initial state vector ρZQ(0)=
I

ZQ
z is not aligned with the effective field of H

ZQ
(t = 0).

However, the inversion efficiency is high due to the slow
change in the orientation of the effective field, dφ/dt , such
that the state vector can follow the effective field while it
is rotating around it in rather large circles (see evaluation

of the adiabaticity condition in Fig. 8f). For a smaller ef-
fective dipolar coupling (for example, β = 15◦ in Fig. 8a),
the angle φ is larger (close to 90◦). During the linear ramp,
the effective Hamiltonian amplitude ωZQ

eff (t) goes through a
minimum in the middle of the sweep at t = T/2, where its
value is solely determined by the effective dipolar coupling;
see Eq. (22). At the same time, dφ/dt reaches its maximum
(Fig. 8e). Under these conditions, the state vector keeps track
of the effective field (Fig. 8a). When a larger sweep ampli-
tude is employed, e.g., 1= 30 kHz, the orientation of the
initial effective field is closer to the IZQ

z axis, φ(t = 0,β =
45◦)= 76.7◦ (Fig. 8d). At the same time, the amplitude of
the effective Hamiltonian ωZQ

eff (t = 0) is increased as well.
For the crystallite orientation β = 15◦ (Fig. 8c), however, we
find that the adiabaticity condition is violated in the middle
of the pulse sequence (Fig. 8g). The state vector is not able
to follow the effective field as dφ/dt becomes too high. As
a consequence, the state vector keeps rotating near the Equa-
tor (Fig. 8c) and thus contributes little to the total transfer
efficiency.

Spin state trajectories for the adiabatic variant of the
CP experiment are shown in Fig. 9. The tangential sweep
has been suggested to keep the rate of change dφ(t)/dt
small compared to the effective field amplitude at all times
(Hediger et al., 1995). Initially, ωeff(t) is large implying
that dφ(t)/dt can be large. However, for small sweep am-
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Figure 8. Visualization of the spin state trajectories for the linear ramp cross-polarization experiment assuming a homogeneous RF field
distribution. For the simulation, a dipolar coupling bIS= 10 kHz was assumed. The CP contact time was set to T = 1 ms. The calculation
was carried out for two crystallite orientations (β = 15 and 45◦; panels a, c and b, d, respectively) and two sweep amplitudes (1= 10 kHz
and 1= 30 kHz; panels a, b and c, d, respectively). The blue-shaded areas represent the changing effective Hamiltonian. The blue arrow
indicates the effective Hamiltonian at the end of the pulse sequence at t = T . The component along the IZQ

z axis is time dependent, while
the IZQ

x axis component is fixed (see Eq. 40). The beginning of the trajectory is depicted as a yellow line which gradually turns red as the
trajectory progresses. The final state of the spin state vector (initially oriented along IZQ

z ) is drawn as a red arrow. Panels (e–h) display
dφ(t)/dt and ωZQ

eff (t). In (c, g), the adiabaticity condition dφ/dt < ωeff is violated during the sweep.

plitudes such as 1= 10 kHz, the effective field changes too
rapidly for a portion of crystallites at the beginning and at
the end of the sweep so that the adiabaticity condition is vi-
olated (Fig. 9e). Most of the dynamics take place when the
tangential function goes through the central plateau, where
the RF amplitudes do not change significantly over an ex-
tended period of time. The state vector rotates in large circles
around the effective Hamiltonian that is oriented predomi-
nantly along the IZQ

x axis. When a larger sweep amplitude
1= 30 kHz is used, the adiabatic regime is restored for most
crystallite orientations and an improved transfer efficiency is
obtained.

Figure 10 compares the magnetization transfer during the
RF sweep for the examples discussed above. The transfer
process is fast when the change in the effective field orienta-
tion is fast: in the middle of the linear ramp and at the begin-
ning and at the end of the tangential sweep, provided the adi-
abaticity condition is maintained (Fig. 10a and b). Figure 10c
and d shows the transfer efficiency as a function of crystal-
lite orientation. Note that the spin state inversion cannot be
achieved for crystallite orientations with an effective dipolar
coupling that is vanishing, i.e., for β = 0 and 90◦. The portion
of crystallites yielding low transfer depends on the ratio of

the sweep amplitude 1 and the dipolar coupling bIS. For the
linear ramp, 1= 10 kHz is preferable, while the tangential
sweep using an amplitude 1= 30 kHz yields high efficiency
for most of the crystallites under the conditions investigated
here. After powder averaging, the magnetization transfer ef-
ficiency is on the order of 90 % for the tangential sweep. We
would like to note that all predictions based on the ZQ av-
erage Hamiltonian agree well with exact simulations using
SIMPSON.

3.4 RF amplitude sweeps in the presence of an
inhomogeneous RF field

In the following paragraph, RF field inhomogeneities are in-
cluded in the analysis. For simplicity, we assume that the
RF field varies along the solenoid coil axis as described
in Fig. 2 and the variation is the same for both RF chan-
nels. We disregard time modulations induced by sample ro-
tation in a spatially inhomogeneous RF field. We assume
that the Hartmann–Hahn condition is fulfilled for the nom-
inal RF amplitudes in the middle of the coil. The RF ampli-
tude sweep is applied to the I channel. We again examine
the zero-quantum (n=+1) recoupling condition. The drive
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Figure 9. Visualization of the spin state trajectories for the adiabatic tangential sweep cross-polarization experiment assuming a homoge-
neous RF field distribution. For the simulation, a dipolar coupling bIS= 10 kHz was assumed. The CP contact time was set to T = 1 ms. The
calculation was carried out for two crystallite orientations (β = 15 and 45◦; panels a, c and b, d, respectively) and two sweep amplitudes
(1= 10 kHz and 1= 30 kHz; panels a, b and c, d, respectively, b =1/50). The blue-shaded areas represent the changing effective Hamil-
tonian. The blue arrow indicates the effective Hamiltonian at the end of the pulse sequence at t = T . The component along the IZQ

z axis
is time dependent, while the IZQ

x axis component is fixed (see Eq. 40). The beginning of the trajectory is depicted as a yellow line which
gradually turns red as the trajectory progresses. The final state of the spin state vector (initially oriented along IZQ

z ) is drawn as a red arrow.
Panels (e–h) display dφ(t)/dt and ωZQ

eff (t). In (a, e) and (b, f), the adiabaticity condition dφ/dt<ωeff is violated during the sweep.

Figure 10. Powder-averaged buildup of the transferred magneti-
zation during the mixing time of the CP experiment (a, b) and the
final transfer efficiency as a function of crystallite orientation (c, d)
for an RF amplitude sweep using a linear ramp (a, c) and a tan-
gential shape (b, d). The blue and red curves correspond to sweep
amplitudes of 10 and 30 kHz, respectively. In all simulations, a ho-
mogeneous RF field distribution is assumed.

HamiltonianH
ZQ

is given by Eq. (40). Sweeping the RF am-
plitude makes the IZQ

z component of the effective Hamilto-
nian time dependent. The range over which it varies depends
on the position along the coil axis, and it is visualized in
Fig. 4. The center of the sweep is shifted away from the exact
matching condition towards the ends of the coil by an amount
that depends on the MAS frequency. As discussed above, the
evolution in the double-quantum subspace can be neglected,
since H

DQ
has a dominant component along IDQ

z axis which
is much larger than the effective dipolar coupling. This can
be achieved by choosing a proper value for ωNOM

S . At the
same time, we have chosen conditions that avoid simultane-
ous matching of different Hartmann–Hahn conditions within
the sample volume.

The previous description of the RF-amplitude-modulated
CP is valid at the center of the coil where ξ = 1.0. The situa-
tion is quite different in volume elements towards the ends
of the coil. Figure 11 illustrates the spin state trajectories
for the linear ramp CP experiment, assuming a crystallite
angle β = 45◦, a MAS frequency of ωR/2π = 50 kHz and a
dipolar coupling constant of bIS= 10 kHz. The scaling factor
ξ = 0.8 is realized for z=±0.36l (where l is the coil length)
around the center of the coil. When the sweep amplitude is
1= 10 kHz, the effective field does not get inverted during
the sweep (Figs. 4a and 11a) and therefore cannot invert the
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Figure 11. Visualization of the spin state trajectory for a linear ramp cross-polarization experiment assuming an inhomogeneous RF field
distribution. For the simulation, a dipolar coupling bIS= 10 kHz was assumed. The CP contact time was set to T = 1 ms. The calculation
was carried out for one crystallite orientation (β = 45◦) and two positions along the coil axis with RF field scaling factors ξ = 0.8 and 1.0
(panels a, c and b, d) and two sweep amplitudes 1= 10 kHz and 1= 30 kHz (panels a, b and c, d). The blue-shaded areas represent the
changing effective Hamiltonian. The blue arrow indicates the effective Hamiltonian at the end of the pulse sequence at t = T . The component
along the IZQ

z axis is time dependent, while the IZQ
x axis component is fixed (see Eq. 40). The beginning of the trajectory is depicted as

a yellow line which gradually turns red as the trajectory progresses. The final state of the spin state vector (initially oriented along IZQ
z )

is drawn as a red arrow. Panels (e–h) display dφ(t)/dt and ωZQ
eff (t) to appreciate whether the adiabaticity condition dφ/dt<ωeff is violated

during the sweep.

spin state, regardless of its adiabaticity (Fig. 11e). Increas-
ing the sweep amplitude to 1= 30 kHz yields better results
as the effective field approaches the Hartmann–Hahn recou-
pling condition towards the end of the sweep period (Figs. 4b
and 11c).

For a tangential sweep, the spin state trajectories are de-
picted in Fig. 12. Initially, and towards the end of the sweep-
ing period, the RF amplitude changes rapidly and so does
the effective field orientation. This can lead to a violation of
the adiabaticity condition, as encountered for the calculation
with a sweep amplitude of 1= 30 kHz (Fig. 12c and g). De-
spite the fact that the Hartmann–Hahn matching condition is
included within the sweep range, the state vector does not
follow the effective field. These parts of the sample yield a
low transfer efficiency.

The buildup of the transferred magnetization integrated
over the sample volume and detected by the NMR coil for
both the linear ramp and the tangential sweep is presented
in Fig. 13a and b. It is not obvious which sweeping method
will yield a higher total transfer efficiency. Of the four se-
tups discussed so far, the linear ramp with1= 30 kHz yields
the best result. When comparing efficiency profiles along the
coil axis (Fig. 13c and d), we observe that a tangential sweep
is more efficient near the center of the coil but quickly loses
efficiency when going towards the ends. However, a linear
ramp yields equal transfer over a larger sample volume.

3.5 Numerical optimizations of linear and tangential
sweeps

In this section, we discuss which parameters of a linear ramp
and a tangential sweep yield the best transfer efficiency. We
address this problem by a numerical optimization. The cal-
culations are repeated for a range of dipolar couplings and
MAS frequencies. In the case of the linear ramp, the sweep
amplitude 1 and the offset δM from the exact Hartmann–
Hahn condition are optimized. In the case of the tangen-
tial sweep, the curvature parameter b is considered in ad-
dition (Fig. 3). The offset parameter δM corresponds to the
mismatch of the recoupling condition in the middle of the
coil due to RF inhomogeneity and reflects the experimental
optimization procedure where the amplitude ωNOM

S is kept
constant and the amplitude ω0

I is optimized around the ex-
pected recoupling condition. To ensure that no more than one
matching condition is encountered during the sweep, the am-
plitude 1 was restricted to values within ±ωR/2 (Hediger
et al., 1995). The dynamics were evaluated using the effective
Hamiltonian H

ZQ
given in Eq. (40). The optimized parame-

ters correspond to the best transfer efficiency obtained from
100 repetitions initiated by random guess. As expected, we
obtain a different set of optimal parameters for each contact
time, dipolar coupling and MAS frequency.

The optimized transfer efficiencies are summarized in
Fig. 14. Remarkably, we have not found any significant dif-
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Figure 12. Visualization of the spin state trajectory for an adiabatic tangential sweep cross-polarization experiment assuming an inhomoge-
neous RF field. For the simulation, a dipolar coupling bIS= 10 kHz was assumed. The CP contact time was set to T = 1 ms. The calculation
was carried out for one crystallite orientation (β = 45◦) and two positions along the coil axis with RF field scaling factors ξ = 0.8 and 1.0
(panels a, c and b, d) and two sweep amplitudes 1= 10 kHz and 1= 30 kHz, assuming b =1/50 (panels a, b and c, d). The blue-shaded
areas represent the changing effective Hamiltonian. The blue arrow indicates the effective Hamiltonian at the end of the pulse sequence at
t = T . The component along the IZQ

z axis is time dependent, while the IZQ
x axis component is fixed (see Eq. 40). The beginning of the

trajectory is depicted as a yellow line which gradually turns red as the trajectory progresses. The final state of the spin state vector (initially
oriented along IZQ

z ) is drawn as a red arrow. Panels (e–h) display dφ(t)/dt and ωZQ
eff (t) to appreciate whether the adiabaticity condition

dφ/dt<ωeff is violated during the sweep.

Figure 13. Powder-averaged buildup of transferred magnetization
during the mixing time of the CP experiment (a, b) and the final
powder-averaged transfer efficiency as a function of the position
along the coil axis (c, d) for a linear ramp (a, c) and a tangential
shape (b, d). The blue and red curves correspond to sweep ampli-
tudes of 1= 10 kHz and 1= 30 kHz, respectively. In the calcula-
tion, an inhomogeneous RF field is assumed.

ferences in the performance of the linear ramp with respect
to the tangential sweep. Both sweep methods yield the same
total transfer efficiency, although they use different sweep
parameters. An example of the best sweep shapes obtained
for a dipolar coupling bIS= 10 kHz and a MAS frequency of

50 kHz is presented in Fig. 15. The tangential sweeps tend
to have a larger sweep amplitude 1 and a smaller offset val-
ues δM when compared to the linear ramp.

We observe that very long contact times are required to
obtain high transfer efficiencies. For calculations involving
different dipolar coupling strengths bIS the same range of the
reduced time parameter T bIS is used. In this way, longer mix-
ing times T are maintained for smaller dipolar couplings bIS.
Better performance is obtained for cases with higher dipo-
lar couplings, which correlates with the width of Hartmann–
Hahn conditions in CP matching profiles. On the other hand,
the transfer efficiency decreases at higher MAS frequencies
due to increased volume selectivity. Small dipolar couplings
are the most challenging, on the order of 1 kHz, and ultra-
fast MAS (> 100 kHz), which are typical of 15N–13C spin
pairs in proteins studied by proton-detected MAS solid-state
NMR experiments. To more efficiently average proton dipo-
lar interaction, MAS probe development aims at smaller-
diameter rotors to achieve higher MAS rotation frequencies.
Currently, 0.4 mm MAS probes are in development that can
reach MAS frequencies of up to 200 kHz. Our predictions
suggest that only 20 % of the sample will contribute to the
detected NMR signal after a 10 ms 15N–13C CP mixing step
at a MAS frequency of 200 kHz; i.e., up to 80 % of the signal
is lost in a single magnetization transfer step. The efficiency
increases to ca. 40 % when a 40 ms long mixing period is
used, provided that there are no signal losses due to relax-
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Figure 14. Maximum achievable transfer efficiencies in the cross-polarization experiment as a function of contact time and MAS frequency
using numerical optimizations. Similar efficiencies are obtained for both the linear ramp and the tangential sweep, although different shape
parameters have to be employed. Dipolar couplings of 1, 10 and 20 kHz are used in the simulations for panels (a–c), respectively.

Figure 15. Comparison of optimal linear ramp (blue) and tangential sweep (red) shapes obtained by numerical optimizations at different con-
tact times T = 0.15, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0 and 4.0 ms in panels (a–h), respectively. For the optimization, a dipolar coupling bIS= 10 kHz
was assumed. The calculations were performed assuming a MAS frequency of 50 kHz and a realistic RF inhomogeneity distribution. Al-
though the two shapes are different, they yield virtually identical total transfer efficiencies.

ation. However, note that the sensitivity in a pulse sequence
with multiple CP transfer elements depends on all previous
transfer steps. The first CP element preselects a volume that
is maintained or further restricted in subsequent transfer ele-
ments.

We find that there is no difference between the linear
ramp and the tangential shapes in terms of total transfer
efficiency. In Fig. 16, we compare these two methods (to-
gether with a constant amplitude CP) with respect to the
width of the CP matching profile (Fig. 16a), the magnetiza-
tion transfer buildup (Fig. 16b) and the sample volume selec-
tivity (Fig. 16c). As expected, the RF amplitude sweep sig-
nificantly improves the width and the height of the matching
profile. The most important difference is that the tangential
sweep yields higher efficiency near the center of the coil and
lower efficiency at edges of the coil. Use of RF pulses and
other recoupling elements can potentially result in a prese-
lection of a particular sample volume that cannot be utilized
by the linear ramp for a further transfer. Therefore, transfer
elements should be optimized within the framework of the

whole pulse sequence to minimize a differential preselection
of the sample volume during calibration experiments.

The linear ramp and the adiabatic tangential sweeps
were calculated for the ZQ (n=+1) condition. However,
the shapes are equally applicable to any other n=± 1
Hartmann–Hahn condition, as the corresponding effective
Hamiltonian has the same form. The n=± 2 Hartmann–
Hahn conditions suffer from increased RF field inhomogene-
ity (factor of 2 in Eq. 40) and have different powder averag-
ing properties implied by the g2(β) term. Thus, a decreased
CP transfer efficiency for the n=± 2 matching condition is
expected.

The transfer efficiencies of all pulse sequences were
verified using numerical simulations in SIMPSON. To
avoid overlap of the different Hartmann–Hahn match-
ing conditions, the zero-quantum (n=+1) condition with
ωNOM
S /2π = 60 kHz was selected using MAS frequencies

of 20 and 50 kHz, while the double-quantum (n=+1) condi-
tion with ωS/2π = 30 kHz was used for a MAS frequency of
100 kHz. The agreement between SIMPSON and the effec-
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Figure 16. Comparison of the matching profiles (a), magnetization transfer buildups (b) and contribution to the transfer efficiency of
individual volume elements along the coil axis (c) for an optimized linear ramp (blue), a tangential sweep (red) and a constant amplitude CP
(green). For the optimization, a dipolar coupling bIS= 10 kHz was assumed. The calculations were performed assuming a MAS frequency
of 50 kHz and a realistic RF inhomogeneity distribution. The CP contact time was set to T = 1 ms. In (a) and (c), the constant amplitude CP
was evaluated after 160 µs when it reaches maximum transfer efficiency.

tive Hamiltonian calculations is excellent except for a simu-
lation in which a dipolar coupling of 20 kHz and a MAS fre-
quency of 20 kHz was assumed. In this case, the numeri-
cally evaluated transfer efficiencies are about 10 % lower. A
plausible explanation is that the first-order average Hamil-
tonian approximation does not provide the full description
of the spin dynamics when the dipolar coupling and the
MAS frequency are of similar value (in other cases it holds
bIS� ωR/2π ).

4 Conclusions

We have analyzed the magnetization transfer efficiency of
the CP experiment as a function of the MAS frequency in
the presence of RF field inhomogeneity of a solenoid coil.
We show that a sweep of the RF amplitude through the
Hartmann–Hahn matching conditions using either a linear
ramp or a tangential shape improves the performance in a
comparable way. We do not observe a difference in the total
transfer efficiency between these two methods. We find that
magnetization transfer using a CP recoupling element be-
comes inefficient in particular for small dipolar couplings for
ultrafast MAS experiments with rotation frequencies above
100 kHz. New recoupling methods that are designed explic-
itly to account for inhomogeneous RF fields and ultrafast
MAS conditions are needed to overcome this issue in the fu-
ture.
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