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Abstract. In spite of its name, the solid effect of dynamic nuclear polarization (DNP) is also operative in
viscous liquids, where the dipolar interaction between the polarized nuclear spins and the polarizing electrons is
not completely averaged out by molecular diffusion on the timescale of the electronic spin–spin relaxation time.
Under such slow-motional conditions, it is likely that the tumbling of the polarizing agent is similarly too slow to
efficiently average the anisotropies of its magnetic tensors on the timescale of the electronic T2. Here we extend
our previous analysis of the solid effect in liquids to account for the effect of g-tensor anisotropy at high magnetic
fields. Building directly on the mathematical treatment of slow tumbling in electron spin resonance (Freed et al.,
1971), we calculate solid-effect DNP enhancements in the presence of both translational diffusion of the liquid
molecules and rotational diffusion of the polarizing agent. To illustrate the formalism, we analyze high-field
(9.4 T) DNP enhancement profiles from nitroxide-labeled lipids in fluid lipid bilayers. By properly accounting
for power broadening and motional broadening, we successfully decompose the measured DNP enhancements
into their separate contributions from the solid and Overhauser effects.

1 Introduction

The sensitivity of NMR experiments is greatly increased by
dynamic nuclear polarization (DNP)1, where the much larger
static polarization that is available to electronic spins is trans-
ferred to nuclear spins (Atsarkin, 2011; Wenckebach, 2016).
For the transfer to take place, the electronic and nuclear spins

1Abbreviations used in the text: 1,3-bisdiphenylene-2-
phenylallyl (BDPA), continuous wave (cw), 1,2-dimyristoyl-
sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-
3-phosphocholine (DOPC), double quantum (DQ), dynamic
nuclear polarization (DNP), electron paramagnetic resonance
(EPR), force-free hard sphere (FFHS), microscopic order macro-
scopic disorder (MOMD), microwave (mw), nuclear magnetic
resonance (NMR), Overhauser effect (OE), 1-palmitoyl-2-stearoyl-
sn-glycero-3-phosphocholine (PSPC), solid effect (SE), stochastic
Liouville equation (SLE), slowly relaxing local structure (SRLS),
4-Hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL), zero
quantum (ZQ).

should be able to flip simultaneously (Abragam and Gold-
man, 1978). Such concerted flips correspond to the zero-
quantum (ZQ) and double-quantum (DQ) transitions of the
electron–nucleus spin system, which are enabled by inter-
spin interactions. Among the four DNP mechanisms, i.e., the
Overhauser effect (OE), the solid effect (SE), the cross effect
and thermal mixing, only the first two have been conclusively
shown to be operative in the liquid state, where the spin–spin
interactions change randomly in time due to the thermal mo-
tions of the molecules.

In OE-DNP, the ZQ and DQ transitions are in fact possible
because the dipole–dipole and contact interactions are mod-
ulated by molecular motions. In SE-DNP, on the other hand,
the ZQ and DQ transitions are driven directly by mw exci-
tation, and the modulation of the dipolar interaction is detri-
mental because it constantly modifies the matching condition
that the mw frequency should satisfy in order to resonantly
drive these transitions.
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The initial theoretical treatments of OE (Solomon, 1955)
and SE (Abragam and Proctor, 1958) modeled the ZQ and
DQ transitions by expressing the transition probabilities per
unit time using Fermi’s golden rule. As the mathemati-
cal description of (semi-classical) relaxation theory matured
around the same time (Redfield, 1957; Abragam, 1961),
Fermi’s golden rule was promptly replaced in the theory of
OE-DNP in liquids (Hausser and Stehlik, 1968) with the cor-
relation function of the dipolar interaction (or its Laplace
transform, which is known as spectral density). Because the
time-domain description of relaxation leads to a correlation
function in a very general way (Abragam, 1961), the same
formalism works naturally with different spectral densities
(e.g., for rotational or translational diffusion). As an example,
the improved analytical treatment of isotropic translational
diffusion achieved in 1975 was immediately applied to para-
magnetic relaxation in liquids (Ayant et al., 1975; Hwang and
Freed, 1975).2

During the same time period, it also became possible to
account for spin dephasing and relaxation beyond second or-
der (Anderson, 1954; Kubo, 1954), which is important for
understanding spectral line shapes outside the regime of fast
averaging (Kubo, 1969). These initial ideas were transformed
into a powerful tool for the calculation and analysis of slow-
motional EPR spectra by Freed (Freed et al., 1971; Freed,
1976).

When first presented, Abragam’s quantitative description
of SE-DNP in terms of mixing of the Zeeman energy lev-
els by the dipolar interaction (Abragam and Proctor, 1958)
conclusively explained that the NMR signal is maximally en-
hanced when the mw frequency is shifted from the electronic
resonance by ±ωI , where ωI is the Larmor frequency of the
polarized nuclear spin. Abragam’s perturbative analysis also
correctly predicted that the effect should drop quadratically
with the magnitude of the static magnetic field, which has
lasting implications for SE-DNP at high magnetic fields. In
spite of these successes, however, the perturbative approach
to SE is practically impossible to integrate with other rele-
vant spin phenomena whose mathematical treatment matured
subsequently.

Recently, Sezer (2023a) presented a time-domain descrip-
tion of SE which, like semi-classical relaxation theory, al-
lows for different dynamical processes to modulate the rel-
evant spin interactions. By interfacing this description with
the spectral density of isotropic translational diffusion (Ayant
et al., 1975; Hwang and Freed, 1975), it was possible to treat
SE-DNP in the presence of molecular translation as relevant
to homogeneous liquids (Sezer, 2023b). The requirement that
the dipolar interaction should not be completely averaged out
by the molecular dynamics during the electronic T2 restricts

2Surprisingly, this improved treatment is not mentioned by
Müller-Warmuth and Meise-Gresch (1983), who continue to use the
older, deficient expression of spectral density for translational dif-
fusion.

liquid-state SE-DNP to viscous media, where the tumbling
of the polarizing agent may similarly be too slow to aver-
age the anisotropies of its magnetic tensors. The current pa-
per accounts for the effect of g-tensor anisotropy on SE in
this slow-tumbling regime. To this end, the time-domain de-
scription of SE-DNP in liquids is interfaced here with the
established mathematical treatment of slow-motional EPR
spectra (Freed et al., 1971). For the illustrative purposes of
the current paper, we only consider free (i.e., unrestricted)
rotational diffusion with an isotropic diffusion coefficient.
Nevertheless, the treatment can be analogously extended to
anisotropic diffusion in an orienting potential by building on
the general mathematical formalism of the MOMD (micro-
scopic order macroscopic disorder) and SRLS (slowly relax-
ing local structure) models (Meirovitch et al., 1984; Poli-
meno and Freed, 1995).

To motivate the presented theoretical analysis, in Sect. 2
we formulate one specific practical problem that it addresses.
There we also introduce the experimental EPR and DNP data
that are analyzed subsequently in Sect. 5 using the developed
theory. The needed background from Sezer (2023a, b) is pre-
sented in Sect. 3. Building on this, in Sect. 4 we adapt the
slow-motional formalism of Freed et al. (1971) to the treat-
ment of SE in the liquid state. Our conclusions are in Sect. 6,
and several supporting figures are left to the Appendix.

2 Motivation

DNP aims to increase the longitudinal nuclear magnetiza-
tion, iz, beyond its equilibrium Boltzmann value, ieq

z . This
is done by doping the sample with unpaired electrons, whose
spins are then subjected to near-resonance mw irradiation.
In cw-DNP, which is the only variety that we consider here,
a steady-state magnetization iss

z is reached after the mi-
crowaves have been applied for a sufficiently long time. The
enhancement of iz under such steady-state conditions is

ε =
iss
z

i
eq
z

− 1, (1)

where ε = 0 corresponds to the absence of DNP.
In both OE and SE, ε is directly proportional to the ra-

tio of the gyromagnetic factors of the electronic and nuclear
spins, γS and γI . For OE (Hausser and Stehlik, 1968; Müller-
Warmuth and Meise-Gresch, 1983),

εOE = scf
|γS |

γI
, (2)

where s, c and f are, respectively, the electronic saturation
factor, the coupling factor and the leakage factor. The first is
defined as

s = 1− sss
z /s

eq
z (3)

and reflects the deviation of the longitudinal electronic mag-
netization at steady state, sss

z , from its equilibrium value, seq
z .
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The other two factors, c and f , quantify the interaction be-
tween the electronic and nuclear spins. Specifically, the leak-
age factor

f = 1− T1I /T
0

1I (4)

compares the nuclear T1s in the presence (T1I ) and absence
(T 0

1I ) of the polarizing agent. In DNP, T1I is typically (much)
shorter than T 0

1I due to the elevated concentration of the elec-
tronic spins, and hence f ≈ 1.

Similarly, the SE enhancement can be expressed as (Sezer,
2023a)

εSE = pv−T1I

(
1

1+ v+T1I

)
|γS |

γI
, (5)

where p = 1− s quantifies how “non-saturated” the elec-
tronic transition is, and the rate constants v+ and v− are re-
lated to the ability of the microwaves to excite simultaneous
flips of the electronic and nuclear spins. These concerted flips
correspond to the “forbidden” ZQ and DQ transitions, which
are enabled by the dipolar interaction. In fact,

v± = v2± v0, (6)

where v0 and v2 denote, respectively, the ZQ and DQ tran-
sition rate constants. In liquids, where the dipolar interac-
tion is partially averaged, the contribution of the mw exci-
tation to the nuclear relaxation rate R1I = 1/T1I , which is
quantified by v+, is generally negligibly small. As a result,
v+/R1I � 1, and the expression in parentheses in Eq. (5) is
essentially 1. Then the SE enhancement acquires the follow-
ing multiplicative form:

εSE ≈ pv−T1I
|γS |

γI
(v+� R1I ), (7)

which is analogous to εOE with the factors s, c and f be-
ing replaced with the factors p, v− and T1I , respectively. In
the numerical work presented in Sect. 5 we use the approx-
imation in Eq. (7). The condition v+T1I � 1 is validated at
the end of the analysis by comparing the estimated v+ to the
measured T1I .

In the current paper we study the dependence of the DNP
enhancement on the displacement from the electronic reso-
nance. Following Gizatullin et al. (2022), we call the pro-
file of ε against the offset from resonance a “DNP spec-
trum”. Because DNP experiments in the liquid state are car-
ried out with a mw resonator (Erb et al., 1958a, b; Leblond
et al., 1971b; Neudert et al., 2016; Gizatullin et al., 2021a;
Kuzhelev et al., 2022, 2023), off-resonance conditions are
achieved by varying the stationary magnetic field at a con-
stant mw frequency (i.e., field sweep). In theoretical analy-
sis, however, it is more convenient to work with a fixed B0
and a variable mw frequency. Thus, when comparing calcu-
lations and experiments, we will convert the horizontal axis
of the experiments from units of magnetic field to units of
offset frequency.

In the case of εOE (Eq. 2), the entire offset dependence is
due to the saturation factor s, as the factors c and f are prac-
tically constant over such a narrow frequency range. In the
case of εSE (Eq. 5), both pv− and v+ are functions of the
offset. For a single, homogeneously broadened EPR line the
saturation factor can be obtained in closed analytical form
from the Bloch equations (as we review below in Sect. 3.1).
Recently, Sezer (2023a) showed that the SE spin dynam-
ics is described by two coupled Bloch equations, whose
steady state can similarly be solved analytically to obtain
closed-form expressions for the rate constants v± (reviewed
in Sect. 3.2). In liquids, where the random molecular mo-
tion modulates the dipolar interaction between the electronic
and nuclear spins, these rate constants are no longer avail-
able analytically but can be calculated numerically for mo-
tional models with known dipolar spectral densities (Sezer,
2023b), as reviewed below in Sect. 3.3.

Liquid-state SE-DNP is restricted to viscous media, where
the dipolar interaction is not averaged out completely on the
decoherence timescale of the electronic spins. Under these
conditions, the tumbling of the polarizing agent is also ex-
pected to be too slow to average the anisotropies of its mag-
netic tensors on the timescale of the electronic T2. One thus
expects substantial deviations from the Lorentzian EPR line
shape of the Bloch equations. Such deviations are unavoid-
able in the case of nitroxide-based polarizing agents whose g
and A tensors are rather anisotropic. A recent SE-DNP study
at 9.4 T demonstrated that even the narrow-line radical trityl
exhibited g-tensor broadening in liquid glycerol (Kuzhelev
et al., 2023).

This paper extends the theoretical description of SE-DNP
to the regime of slow radical tumbling, where the cw-EPR
line shape is not Lorentzian. Given our long-standing efforts
in liquid-state DNP at 9.4 T, here we focus on high magnetic
fields, where the width of the EPR spectrum is dominated by
the anisotropy of the g tensor. We will thus completely ne-
glect the hyperfine tensor. This possibility greatly simplifies
the needed adjustments to the Lorentzian case (Sect. 4).

To illustrate the practical problem that motivated this the-
oretical work, we now turn to the experimental data in Fig. 1.
The characterized samples comprised liposomes of hydrated
lipid bilayers composed of DOPC (1,2-dioleoyl-sn-glycero-
3-phosphocholine) lipids. As the phase transition tempera-
ture of DOPC is about −17 ◦C, the lipids were in their fluid,
liquid-crystalline phase in the experiments at ≈ 320 K. The
DOPC lipids were mixed at a ratio of 20 : 1 with PSPC lipids
spin-labeled either at position 10 (1-palmitoyl-2-stearoyl-
(10-doxyl)-sn-glycero-3-phosphocholine) or at position 16
along one of their aliphatic chains. Both the EPR spectra
(Fig. 1a, b) and the DNP enhancements (Fig. 1c, d) were
recorded in our home-built Fabry–Pérot resonator at 9.4 T
equipped with a temperature control (Denysenkov et al.,
2022). While the target temperature of the experiments was
320 K, an extra temperature rise of less than 10 ◦C can be ex-
pected at the maximum mw power of 5.5 W that was used
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for DNP (Denysenkov et al., 2022). Details about the exper-
iments and the sample preparation will be published else-
where.

The cw-EPR spectrum of 10-Doxyl-PC in Fig. 1a (or-
ange line) is seen to deviate substantially from (the deriva-
tive of) a Lorentzian line shape. At this high magnetic field,
the EPR line width is expected to be dominated by the large
anisotropy of the nitroxide g tensor, with a comparatively
much smaller contribution from the nitroxide hyperfine ten-
sor. (These expectations are tested and verified below in
Sect. 5.1.) For comparison, in Fig. 1b we show the cw-EPR
spectrum of the sample doped with 16-Doxyl-PC. Visually,
this narrower spectrum more closely resembles a homoge-
neous Lorentzian line, although it still deviates from it (as
discussed in Sect. 5.2).

In Fig. 1c we show the DNP spectrum (filled red circles)
of the sample containing 10-Doxyl-PC as a polarizing agent.
The enhanced NMR signal belongs to the acyl chain protons
of the lipids. Thanks to the high magnetic field of the ex-
periment, it was possible to resolve the NMR signal of these
non-polar protons from the polar protons of water and of the
lipid head groups. The DNP spectrum is seen to have a com-
plex line shape, with positive enhancement values at offsets
of about +400 MHz demonstrating a contribution from SE.
At the same time, the comparatively larger negative enhance-
ments in the vicinity of the electronic resonance (i.e., around
0 MHz) point to a contribution from OE. Such coexistence
of SE and OE is well documented for nitroxide free radicals
at the classical EPR fields of about 0.35 T (Leblond et al.,
1971b; Neudert et al., 2017; Gizatullin et al., 2021a, b). Ev-
idently, it also persists at 9.4 T. The DNP spectrum of 16-
Doxyl-PC in Fig. 1d also exhibits a mixture of SE and OE.

More than half a century ago, Korringa and coworkers
developed a rigorous theoretical framework to predict such
mixed DNP spectra in viscous liquids (Papon et al., 1968;
Leblond et al., 1971a). Likely because of its complexity and
its neglect of translational diffusion, their formal analysis has
not been applied to recent DNP data. As a simple and prac-
tical alternative, Neudert et al. (2017) disentangled the OE
and SE components of such mixed DNP spectra using only
the integral of the measured cw-EPR signal. Their approach
is based on the following insightful observations: (i) up to an
overall scaling factor, the EPR line shape is equal to the satu-
ration factor and thus to the OE enhancement (Eq. 2); (ii) up
to an overall scaling factor, the SE enhancement lines at±ωI
are shifted versions (and flipped for the ZQ transition) of the
same EPR line shape. One can thus identify the contributions
of OE and SE to the DNP spectrum by placing the integrated
cw-EPR spectrum at, respectively, zero and ±ωI offsets and
independently adjusting the magnitudes of the two compo-
nents.

This approach is illustrated in Fig. 1c and 1d, where the
dashed–dotted blue lines are the integrals of the cw-EPR
spectra from Fig. 1a and 1b, respectively (flipped here to re-
flect the dipolar nature of OE), and the dashed green lines are
the same EPR spectra but centered at −400 and +400 MHz.
The sum of the OE and SE contributions determined in this
way is shown with a dotted black line. This sum is seen
to agree closely with the DNP spectrum of 10-Doxyl-PC
(Fig. 1c) and to capture well the overall shape of the DNP
spectrum of 16-Doxyl-PC (Fig. 1d).

In spite of the good general agreement between the exper-
imental DNP spectra and the dotted black lines in Fig. 1c
and 1d, some persistent differences remain. In particular, (i)
the OE feature in the experiment appears to be consistently
broader than the EPR line and (ii) the enhancement between
the central OE feature and the negative SE feature is consis-
tently larger than what is predicted by the overlap of the two
copies of the EPR line shape. Both of these aspects are espe-
cially clear in the case of 16-Doxyl-PC (Fig. 1d). The theory
presented below (Sect. 4) aims to address these deficiencies
of the simple approach.

In fact, the first deficiency is easy to rationalize. Cw-EPR
spectra are recorded at low mw power, and their widths re-
flect mechanisms contributing to the electronic T2 relaxation.
The DNP spectrum, on the other hand, is recorded at high
mw power, where the EPR line width experiences power
broadening that also depends on the electronic T1 relaxation.
That the OE-DNP spectrum “represents an indirect observa-
tion of the electron resonance when greatly saturated” was
understood early on (Carver and Slichter, 1956, Fig. 6). To
properly model the contribution of OE to mixed DNP spec-
tra, therefore, it is necessary to calculate the cw-EPR spec-
trum under saturating conditions. How to rigorously do that
in the regime of slow radical tumbling is known (Freed et al.,
1971).

While power broadening affects OE, it is not immediately
clear whether one should also take it into account when mod-
eling SE. (We address this point in Sect. 4.4.) Even leaving
power broadening aside, however, we know that in liquids
the SE lines of the DNP spectrum should also be broader
than the EPR line width because of the fluctuations of the
dipolar interaction (Sezer, 2023b). Although Sezer (2023b)
showed how to quantify this additional motional broadening
in the case of translational molecular diffusion, the theoret-
ical treatment there assumed a Lorentzian EPR line and is
thus not directly applicable to the experiments in Fig. 1. In
the current paper, we extend the formalism to slow radical
tumbling and g-tensor anisotropy (Sect. 4). In Sect. 5 we ap-
ply the developed theory to the analysis of the experimental
spectra in Fig. 1, disentangling the contributions of SE and
OE to the observed DNP. The needed theoretical background
from Sezer (2023a, b) is reviewed next.
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Figure 1. Experimental cw-EPR spectra (a, b) and DNP spectra (c, d) of spin-labeled lipids in DOPC lipid bilayers at 9.4 T and≈ 320 K. The
nitroxide spin label (Doxyl) is either at position 10 (a, c) or at position 16 (b, d) of the aliphatic lipid chain. The integrated cw-EPR spectra
(dashed–dotted blue lines in panels a and b) are used to decompose the DNP spectra (c and d) into contributions from OE (dashed–dotted
blue lines) and SE (dashed green lines). The sum of these two contributions is indicated with a dotted black line.

3 Theoretical background

The classical Bloch equations describe the dynamics of the
electronic magnetization, including under saturating condi-
tions. In Sect. 3.1 we recall the relationship between the
steady-state solution of the Bloch equations and cw-EPR.
Then, in Sect. 3.2, closed-form expressions are obtained for
the rate constants of the forbidden transitions that are driven
by the microwaves in SE-DNP. These expressions, derived in
this form for the first time (Eqs. 33 and 34), are similar to the
steady-state solutions of the Bloch equations but additionally
contain (i) the strength of the electron–nucleus dipolar inter-
action and (ii) the Larmor frequency of the polarized nuclear
spin (Sezer, 2023a). Finally, in Sect. 3.3 we remind the reader
how these expressions should be modified in the presence of
random modulation of the dipolar interaction, as relevant for
liquids (Sezer, 2023b).

The reviewed results, which apply to a single Lorentzian
line, will be extended in Sect. 4 to the regime of slow radical
tumbling and an anisotropic g tensor. In the process, some
of the scalar variables that appear below, like the offset fre-
quency and the electronic relaxation rates, will be replaced
with square matrices, as we explain in Sect. 4.1 and 4.2. The
generalization of Sect. 3.1, 3.2 and 3.3 along these lines is
carried out in, respectively, Sect. 4.3, 4.4 and 4.5.

3.1 Bloch equations

The evolution of the expectation values of the electronic spin
operators Si (i = x,y,z), which we denote by si , is described
by the classical Bloch equations (in the rotating frame)[
ṡx (t)
ṡy (t)
ṡz(t)

]
=−

[
R2 1 0
−1 R2 ω1

0 −ω1 R1

][
sx (t)
sy (t)
sz(t)

]
+R1

[ 0
0
s

eq
z

]
. (8)

Here, the dot above the variable indicates differentiation with
respect to time, R2 and R1 are the reciprocals of the elec-
tronic relaxation times T2 and T1, respectively, and3

1= ω0−ω (9)

is the offset between the Larmor frequency of the electronic
spins, ω0, and the (angular) frequency of the oscillating mag-
netic field, ω. In the case of an isotropic g factor, g0,

ω0 = g0µBB0/}, (10)

where µB is the Bohr magneton and } is the reduced Planck
constant.

At steady state, R2 1 0
−1 R2 ω1

0 −ω1 R1

sss
x

sss
y

sss
z

= R1

 0
0
s

eq
z

 . (11)

3In Sezer (2023a, b), the frequency offset was denoted by �.
Here we denote the offset by 1 and reserve the symbol � for the
orientation of the polarizing agent (Sect. 4).
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Solving these algebraic equations for the variables sss
i , one

can calculate the cw-EPR spectrum and the electronic satu-
ration profile. Making use of the zeros in the first and last
rows of the Bloch matrix in Eq. (11), we first express sss

x and
sss
z in terms of sss

y :

sss
x =−1T2s

ss
y , sss

z = ω1T1s
ss
y + s

eq
z . (12)

The middle row of the matrix then yields

sss
y =−ω1P

−1
0 s

eq
z , (13)

where we defined

P0 = R2+ω
2
1T1+1

2T2. (14)

The in-phase (absorptive) and out-of-phase (dispersive) com-
ponents of the cw-EPR signal are then found to be

abs= sss
y /s

eq
z =−ω1P

−1
0 ,

dsp= sss
x /s

eq
z =−1T2 abs. (15)

From the longitudinal component at steady state, we simi-
larly find

s = 1− sss
z /s

eq
z =−ω1T1 abs, (16)

which shows that the saturation factor is directly proportional
to the absorptive EPR line shape. This proportionality holds
for all mw powers, including the large powers used in DNP.
In Sect. 4.3 we show that this also remains valid in the case
of g-tensor anisotropy and isotropic rotational diffusion.

When generalizing the Bloch equations to an anisotropic
g tensor, we will need to work with high-dimensional ab-
stract vectors. To distinguish these vectors from the vectors
in 3D space, we will denote the latter by placing an arrow
above their symbols and will use bold symbols for the for-
mer. (A 3D unit vector will be indicated with a hat rather than
an arrow.) Additionally, we will use capital hollow letters to
denote 3× 3 matrices that act on the 3D vectors. With this
understanding, we will write the Bloch equations in Eq. (8)
as
−→
ṡ (t)=−B0

−→
s (t)+R1k̂s

eq
z , (17)

where

−→
s (t)=

sx(t)
sy(t)
sz(t)

 , k̂ =

0
0
1

 , (18)

B=

R2+ iωI 1 0
−1 R2+ iωI ω1

0 −ω1 R1+ iωI

 , (19)

and B0 = B(ωI = 0). The iωI that has been added to the main
diagonal of the matrix B will be needed for the dynamical
description of the solid effect (see Sect. 3.2). The subscript
of B0 is intended as a reminder that B is evaluated at ωI = 0,
where ωI is the Larmor frequency of the polarized nuclear
spin.

3.2 Solid effect in solids

SE relies on the dipolar interaction between the electronic
and nuclear spins whose coupling is

A1 =Ddip
−3cosθ sinθ

r3 eiφ . (20)

Here Ddip = (µ0/4π )}γSγI is the dipolar constant, which
equals approximately 2π (79 kHz nm3) for protons, and
(r,θ,φ) are the spherical polar coordinates of the inter-spin
vector.

In liquids, A1 changes in time because of molecular dif-
fusion. The treatment of SE-DNP for a time-dependent A1
in Sezer (2023b) was developed under the assumption that
the nuclear T1 is orders of magnitude larger than the correla-
tion time of the electron–nucleus dipolar interaction, which
is practically always the case in liquids. For the same analysis
to apply to solids, nuclear spin diffusion, which analogously
to molecular diffusion in liquids spreads out the nuclear po-
larization across the sample, should be much faster than the
nuclear T1. Although this condition is not necessarily sat-
isfied in the solid state, for the mathematical description in
terms of a dipolar correlation function to apply, we will as-
sume that spin diffusion is fast when referring to solids. Sim-
ilarly, when accounting for g-tensor anisotropy below, we
will assume that the tumbling of the radical is much faster
than the nuclear T1. This assumption is clearly violated in
solids, where “tumbling” is infinitely slow. Nevertheless, for
the purposes of comparison, we will refer in the following
to “solids” with the understanding that the correlation time
of the dipolar interaction is much shorter than the nuclear
T1 (in order to treat nuclear spin diffusion on the level of a
translational correlation function) but much longer than all
other relaxation timescales (in order to treat the electron–
nucleus dipolar interaction as constant). Because we will
keep all other parameters, including the timescale of radical
tumbling, the same when comparing “solids” and liquids, it
should be kept in mind that our treatment is not a good model
for the solid state (hence the quotation marks).

For SE-DNP, in addition to the Bloch equations, it is
necessary to consider the following dynamical equations
of the electron–nucleus coherences gi = 〈SiI+〉 (i = x,y,z)
(Sezer, 2023a):ġx(t)
ġy(t)
ġz(t)

=−B
gx(t)
gy(t)
gz(t)

− 1
4
A1

 sy(t)
−sx(t)

0


− i

1
4
A1

 0
0
iz(t)

 . (21)

Again, we are only interested in the steady state of the dy-
namics where

B

gss
x

gss
y

gss
z

=−1
4
A1

 sss
y

−sss
x

0

− i 1
4
A1

 0
0
iss
z

 . (22)
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The rate constants pv− and v+ needed to calculate the SE
enhancement (Eq. 5) are determined from gss

z using the fol-
lowing equality, which combines Sezer (2023a, Eq. 31) and
Sezer (2023b, Eq. 42):

i̇z|
ss
coh =−Re{iA∗1g

ss
z } = −R

A
1I i

ss
z − v+i

ss
z −pv−s

eq
z . (23)

(Re{} takes the real part of its argument.) The term propor-
tional to RA1I on the right-hand side of Eq. (23) accounts for
the contribution of the coherences gi to the nuclear T1 re-
laxation in the absence of mw excitation. This contribution
should be removed when calculating the mw-related rates v+
and pv−.

To a good approximation, the electronic spin dynamics is
independent of the dipolar interaction with the nuclear spins,
as other mechanisms are more efficient at causing electronic
relaxation, especially in liquids. As a result, the steady-state
expressions from Sect. 3.1 can be used when solving Eq. (22)
for gss

z .
Inverting the matrix B in Eq. (22) and using sss

x,y from be-
fore, we find

gss
z = ω1

1
4
A1([B−1

]zx +1T2[B−1
]zy)P−1

0 s
eq
z

− i
1
4
A1[B−1

]zzi
ss
z , (24)

where [B−1
]ij is the ij th matrix element of B−1. Substitut-

ing this gss
z into Eq. (23), we identify the desired SE rate

constants

RA1I = δ
2Re{[B−1

ω1=0]zz},

v+ = δ
2Re{[B−1

]zz}−R
A
1I ,

pv− =−δ
2ω1P

−1
0 Im{[B−1

]zx +1T2[B−1
]zy}, (25)

where

δ2
= (A∗1A1)/4 (26)

reflects the strength of the dipolar interaction. (Im{} takes the
imaginary part of its argument.)

In liquids, where A1 is time-dependent, we will need to
modify the matrix B−1 in Eq. (25) without changing the
structure of these expressions (Sect. 3.3). In the case of solids
(i.e., when A1 does not change with time), it is possible to
carry out the inversion of B by expressing gss

x and gss
z in terms

of gss
y , analogously to our treatment of the Bloch equations

in the previous subsection.
From the upper and lower rows of B in Eq. (22), we find

gss
x =−1(R2+ iωI )−1gss

y −
1
4
A1(R2+ iωI )−1sss

y ,

gss
z = ω1(R1+ iωI )−1gss

y − i
1
4
A1(R1+ iωI )−1iss

z . (27)

Substituting this gss
z into Eq. (23), we obtain

i̇z|
ss
coh =−ω1Re{iA∗1(R1+ iωI )−1gss

y }

− δ2Re{(R1+ iωI )−1
}iss
z . (28)

The first term on the right-hand side of Eq. (28) vanishes
when ω1 = 0. In contrast, the term in the second line is inde-
pendent of ω1 and thus also contributes in the absence of mw
excitation. We thus identify this second term with the thermal
relaxation rate

RA1I = δ
2Re{(R1+ iωI )−1

}. (29)

Since we are not interested in this rate, the second summand
in Eq. (28) can be dropped at this stage. The rate constants
v+ and pv− will thus be identified using only the first line in
Eq. (28):

ω1Re{iA∗1(R1+ iωI )−1gss
y } = v+i

ss
z +pv−s

eq
z . (30)

Substituting gss
x and gss

z from Eq. (27) into the middle
equality of Eq. (22) and using the electronic steady state, we
find

gss
y =

1
4
A1ω11P

−1
0 [R

−1
2 + (R2+ iωI )−1

]P−1 s
eq
z

+ i
1
4
A1ω1(R1+ iωI )−1P−1 iss

z , (31)

where

P = R2+ iωI +ω2
1(R1+ iωI )−1

+12(R2+ iωI )−1 (32)

generalizes Eq. (14) such that P0 = P (ωI = 0). Finally, us-
ing this gss

y in Eq. (30), we obtain

v+ =−δ
2ω2

1 Re

 (R1+ iωI )−2

R2+ iωI +
ω2

1
R1+iωI

+
12

R2+iωI

 (33)

and

pv− =−δ
2ω2

1
1

R2+ω
2
1T1+12T2

× Im

 [R−1
2 + (R2+ iωI )−1

](R1+ iωI )−1

R2+ iωI +
ω2

1
R1+iωI

+
12

R2+iωI

 . (34)

In these expressions we have written down the combina-
tions P and P0 explicitly in order to show in closed form how
v+ and pv− depend on all the parameters. For example, we
immediately see that pv− is odd in the offset 1, while v+ is
even. Because the SE-DNP enhancement is proportional to
the ratio of these two rates (Eq. 5), it has the characteristic
odd (i.e., antisymmetric) dependence on the offset from the
electronic resonance.

When generalizing the SE spin dynamics to g-tensor
anisotropy, we will write the dynamical equations (Eq. 21)
as
−→
ġ (t)=−B−→g (t)−

1
4
A1G−→s (t)− i

1
4
A1k̂iz(t) (35)

with

−→
g (t)=

gx(t)
gy(t)
gz(t)

 , G=

 0 1 0
−1 0 0
0 0 0

= ∂B
∂1

. (36)
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3.3 Solid effect in liquids

The modulation of the dipolar interaction by translational dif-
fusion was described in Sezer (2023b) on the level of the
spectral density of the motional model, which was denoted
by J11(s) since this is the Laplace transform of the autocor-
relation function of the dipolar interactionA1 (hence the dou-
ble subscript of J ). As an example, the spectral density of the
FFHS model of translational diffusion is (Ayant et al., 1975;
Hwang and Freed, 1975)

J ffhs
11 (s)= 〈δ2

〉τ
(sτ )

1
2 + 4

(sτ )
3
2 + 4(sτ )+ 9(sτ )

1
2 + 9

. (37)

Here, the parameter

τ = b2/Dtrans (38)

is the diffusive timescale of the model, which depends on the
contact distance of the electronic and nuclear spins, b, and on
the coefficient of their relative translational diffusion, Dtrans,
and

〈δ2
〉 =D2

dip
6π
5
N

3b3 (39)

is the average of the dipolar interaction strength δ2 over
the sample volume times the concentration of the electronic
spins, N .

It is convenient to write J11, which has units of angular
frequency, as

J11(s)= 〈δ2
〉j11(s), (40)

where j11(s) has units of time. This factorization confines the
effect of the parameters N and b and the constantDdip to the
scaling factor 〈δ2

〉. The factor j11(s) then fully accounts for
the line shape of the SE-DNP spectrum, which results from
the interplay between the offset frequency and the timescale
of the translational motion.

According to Sezer (2023b), the modification from solids
to liquids amounts to replacing the matrix B−1 in Eq. (25)
with the matrix

Q= j11(B) (41)

and also replacing δ2 with 〈δ2
〉. The desired SE rate constants

in liquids are thus

RA1I = 〈δ
2
〉Re{[Qω1=0]zz},

v+ = 〈δ
2
〉Re{[Q]zz}−RA1I ,

pv− =−〈δ
2
〉ω1P

−1
0 Im{[Q]zx +1T2[Q]zy}. (42)

We now clarify the meaning of Eq. (41). Following the
definition of the function of a matrix, one should first solve
the eigenvalue problem of B, i.e., BU= U3, where the diag-
onal matrix3= diag(λ1,λ2,λ3) contains the three eigenval-
ues and the columns of U contain the corresponding (right)

eigenvectors. Then one should evaluate the spectral density
at the three eigenvalues: `n = j11(λn). Finally, one should
form the diagonal matrix L= diag(`1,`2,`3) and calculate
Q= ULU−1. Comparing this expression of Q with B−1

=

U3U−1, we see that, in the transition from solids to liquids,
where B−1 is replaced with Q, we essentially “process” the
eigenvalues of B with the spectral density function j11. This
step prevents us from eliminating the variables gss

x,z in the
way we did previously for solids (Sect. 3.2). Because of that,
the rate constants in liquids (Eq. 42) need to be calculated
numerically.

Nonetheless, it is still possible to simplify the expression
for RA1I , since when ω1 = 0, the zz component of B is decou-
pled from the rest of the matrix. One then finds

RA1I = 〈δ
2
〉Re{j11(R1+ iωI )}. (43)

Clearly, the time dependence of the dipolar interaction mod-
ifies all rate constants, including RA1I (cf. Eq. 29).

4 Slow-motional EPR and DNP spectra for an
anisotropic g tensor

In this section we show how to account for g-tensor
anisotropies when the tumbling of the radical is slow. Be-
cause our description of SE is built around the Bloch equa-
tions (Sezer, 2023a, b), we first adapt the treatment of
isotropic rotational diffusion of Freed et al. (1971) to our
needs (Sect. 4.1, 4.2 and 4.3) and then generalize it to SE-
DNP (Sect. 4.4 and 4.5). If needed, further generalization to
anisotropic diffusion and an orienting potential can be car-
ried out analogously, following the mathematical treatment
of the MOMD and SRLS models for slow-motional EPR
(Meirovitch et al., 1984; Polimeno and Freed, 1995).

4.1 Stochastic Liouville equation for isotropic tumbling

Following Freed et al. (1971), we account for the effect of
tumbling on the EPR spectrum using the SLE formalism
(Anderson, 1954; Kubo, 1954). We describe the rotational
state of the radical statistically with the probability density
P (�,t), which quantifies the likelihood that at time t the
molecular system of coordinates in which the g tensor is di-
agonal will have orientation � with respect to the laboratory
system of axes defined by the magnetic fields B0 and B1. In
the case of isotropic rotation, this probability evolves with
the Fokker–Planck equation

∂

∂t
p(�,t)=Drot∇

2
�p(�,t), (44)

where Drot is the rotational diffusion constant of the radical
and the Laplace differential operator ∇2

� acts on the orienta-
tion variable �. The operator

K� =−Drot∇
2
� (45)
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satisfies the following eigenvalue problem:

K�D`
mn(�)=Drot`(`+ 1)D`

mn(�), (46)

where the eigenfunctions D`
mn(�) are the Wigner rotation

matrix elements, which are orthogonal to each other:∫
DL∗
MN (�)D`

mn(�) d�=
8π2

2L+ 1
δL`δMmδNn. (47)

From Eq. (46) it is clear that the time derivative on the left-
hand side of Eq. (44) vanishes for the equilibrium probability

peq(�)=
1

8π2 =
1

8π2D
0
00(�). (48)

In the presence of g-tensor anisotropy, the electronic Lar-
mor frequency depends on the orientation � of the radical as
follows:4

ω(�)= ω0+ γ
2
0 D

2
00(�)+ γ 2

2 [D
2
−20(�)+D2

20(�)], (49)

with the angular frequencies (Freed et al., 1971)

γ 2
0 =

2
3

[
gzz−

1
2

(gxx + gyy)
]
µBB0/},

γ 2
2 =

1
√

6
(gxx − gyy)µBB0/}. (50)

These are formed from the components gxx , gyy and gzz of
the g tensor in the molecular frame. In Eq. (49), the first in-
dex in the subscripts of the Wigner rotation matrix elements
refers to the molecular system of axes, while the second in-
dex refers to the laboratory system. The second indices are
zero here because we only consider the secular terms, which
are proportional to Sz.

Since the electronic Larmor frequency depends on �, the
offset frequency 1 also becomes a function of the molecular
orientation. As an example, for a fixed �, the Bloch equa-
tions (Eq. 17) should be modified as

−→
ṡ (t)=−[B0+F(�)]−→s (t)+R1k̂s

eq
z , (51)

where the orientation dependence is confined to the 3×3 ma-
trix

F(�)=
{
γ 2

0 D
2
00(�)+ γ 2

2 [D
2
−20(�)+D2

20(�)]
}
G. (52)

(The matrix G was introduced in Eq. 36.) It should be
stressed, however, that Eq. (51) is not a legitimate equation
of motion, as it does not account for the dynamics of the ori-
entation �.

The SLE formalism remedies this deficiency by intro-
ducing the orientation-conditioned averages −→s (�,t), whose

4We follow Freed et al. (1971) and consider the effect of the g-
tensor anisotropy only on the secular terms in the electronic spin
Hamiltonian, i.e., those proportional to the spin operator Sz. The
response of the non-secular terms to the g anisotropy is neglected.

spatial part evolves according to the Bloch equations (Eq. 51)
and whose � dependence evolves according to the diffusion
equation (Eq. 44):

∂

∂t

−→
s (�,t)=−(K�⊗E+E�⊗B0)−→s (�,t)

−E�⊗F(�)−→s (�,t)+R1k̂s
eq
z p

eq(�). (53)

Here E is the 3×3 identity matrix in 3D space and E� is the
identity operator in the same abstract space asK�. The outer
product ⊗ is needed to create a combined operator that acts
simultaneously in both of these spaces.

Since the functions D`
mn(�) form a complete set, we ex-

pand −→s (�,t) as follows:

−→
s (�,t)=

1
8π2

∞∑
`=0

∑̀
m=−`

∑̀
n=−`

D`
mn(�)−→s `mn(t). (54)

The coefficients −→s `mn, which contain the time dependence,
can be obtained from −→s (�,t) using the orthogonality of
D`
mn(�) (Eq. 47):

−→
s LMN (t)= (2L+ 1)

∫
DL∗
MN (�)−→s (�,t) d�. (55)

Ultimately, the only property that we care about is the inte-
gral of the SLE variable −→s (�,t) over all the orientations:∫
−→
s (�,t) d�=

∫
D0

00(�)−→s (�,t) d�=−→s 0
00(t). (56)

In that sense, the (vector) coefficient −→s 0
00(t) is the main ob-

ject of interest, while all the other coefficients −→s `mn(t) play
an auxiliary, bookkeeping role.

Substituting −→s (�,t) from Eq. (54) into Eq. (53), multi-
plying both sides by DL∗

MN (�) and integrating over�, we get

−→
ṡ LMN (t)= R1k̂s

eq
z δL0δM0δN0

− [DrotL(L+ 1)+B0]
−→
s LMN (t)

−

∑
`mn

(
2L+ 1

8π2

∫
DL∗
MN (�)D`

mn(�)F(�) d�
)
−→
s `mn(t).

(57)

Clearly, the terms proportional to K� and B0 in Eq. (53) do
not mix coefficients−→s LMN with different values of L,M and
N . In other words, these two operators are diagonal in the
selected representation. The term proportional to F(�), on
the other hand, mixes coefficients with different L and M
(but not N , as we discuss below).

The integral in the last line of Eq. (57) contains the prod-
uct of three Wigner rotation matrix elements. These can
be expressed in terms of the Clebsch–Gordan coefficients
CLM`1m1`2m2

. Specifically, for the D2
K0(�) in Eq. (52), we have

2L+ 1
8π2

∫
DL∗MN (�)D2

K0(�)D`mn(�) d�= CLM2K`mC
LN
20`n, (58)
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which leads to
−→
ṡ LMN (t)= R1k̂s

eq
z δL0δM0δN0

− [DrotL(L+ 1)+B0]
−→
s LMN (t)

−

∑
`mn

[γ 2
0 C

LM
20`m+ γ

2
2 (CLM2−2`m+C

LM
22`m)]CLN20`nG

−→
s `mn(t). (59)

In Eq. (59), the sum over ` mixes only expansion coeffi-
cients with `= L,L±2 (Freed et al., 1971) because all three
Wigner rotation matrix elements in F have L= 2 (Eq. 52).
Since we need −→s 0

00 at the end, it is sufficient to consider
only coefficients with even values of `. Furthermore, as the
Wigner rotation matrix elements in F have M = 0± 2 and
N = 0, the sum over m mixes only coefficients whose values
m are either equal to M or differ from it by two units, while
the sum over n does not mix any coefficients with n differ-
ent fromN . These considerations imply that the triple sum in
Eq. (59) will only go over −→s `m0 with even ` and m. Finally,
because the Wigner rotation matrix elements withM = 2 and
M =−2 appear in a symmetrical way in F, it becomes pos-
sible to work with the symmetrized coefficients (Freed et al.,
1971)

−→
s LM =

1
2

(−→s L
−M0+

−→
s LM0), (60)

thus restricting M to non-negative values (0≤M ≤ L). The
lowest-order coefficients that are coupled by the SLE dynam-
ics are thus −→s 00, −→s 20, −→s 22, −→s 40, −→s 42, −→s 44, −→s 60, etc.

4.2 Matrix representation of the SLE dynamics

While the above considerations greatly reduce the needed
coefficients, there are still an infinite number left. In any
practical work, this infinite set is truncated by selecting a
maximum value of L to account for and setting to zero the
coefficients with L > Lmax. Since the total number of even
L such that L≤ Lmax is nL = Lmax/2+ 1, the total num-
ber of remaining coefficients−→s LM is ntot = nL(nL+1)/2=
L2

max/8+ 3Lmax/4+ 1. For the smallest non-trivial choice
of Lmax = 2, ntot = 3 (with −→s 00, −→s 20 and −→s 22). The num-
ber of coefficients increases quadratically with Lmax (e.g.,
ntot = 15,28,45 for Lmax = 8,12,16, respectively).

To compactly write down how these coefficients are mixed
by the SLE dynamics, we introduce the following abstract
vectors with ntot elements:

100
=


1
0
0
...

 , si(t)=


s00
i (t)
s20
i (t)
s22
i (t)
...

 (i = x,y,z), (61)

where the former is needed for the first term on the right-hand
side of Eq. (59). The SLE dynamics then becomesṡx(t)

ṡy(t)
ṡz(t)

=−B0

sx(t)
sy(t)
sz(t)

+R1

 0
0

100

seq
z , (62)

where

B0 =

R2 1 0
−1 R2 ω1E

0 −ω1E R1

 (63)

is a 3ntot× 3ntot matrix, and E, R1, R2 and 1 are ntot× ntot
matrices.

The first three of these sub-matrices are purely diagonal:
E is the identity matrix and

R1,2 = R1,2E+DrotCD, (64)

with the diagonal elements of CD being equal to L(L+ 1).
For the simplest case ofLmax = 2 with only three coefficients
(−→s 00, −→s 20 and −→s 22),

E=

1
1

1

 , CD =

0
6

6

 . (65)

In Eq. (63), the diagonal matrices R1,2 and E, which origi-
nate from the second line of Eq. (59), do not mix coefficients
with different L and M . Only the sub-matrix 1, which is of
the form

1=1E+ γ 2
0 C0+ γ

2
2 C2, (66)

mixes coefficients of different orders. In fact, the mixing is
due to the matrices C0,2, which modify the frequency offset
1 in proportion to the g-tensor anisotropies γ 2

0 and γ 2
2 . For

Lmax = 2,

C0 =

0 1
5 0

1 2
7 0

0 0 −
2
7

 , C2 =

0 0 1
5 × 2

0 0 −
2
7 × 2

1 −
2
7 0

 . (67)

(The factors of 2 in the last column of C2 arise from the fact
that coefficients with M = 0 pose an exception to the sym-
metrization in Eq. 60.) The matrix elements of these two ma-
trices in the most general case are

[C0]LM,`m = C
LM
20`mC

L0
20`0,

[C2]LM,`m = (CLM2−2`m+C
LM
22`m+ δM0C

LM
22`m)CL0

20`0, (68)

where the summand proportional to δM0 in the second line
accounts for the factor of 2 that is needed by the coefficients
−→
s L0.

Selecting Lmax = 0 in the above formalism amounts to re-
taining only the (3D vector) coefficient −→s 00. Then the ma-
trix B0 in Eq. (63) reduces to B0, and Eq. (62) reduces to
the classical Bloch equations for a homogeneous line. For
Lmax > 0, the diagonal matrices R1 and R2 cause the coef-
ficients sLMz and sLMx,y , respectively, to decay exponentially,
with those with larger L being suppressed more strongly by
the tumbling. Analogously to the Bloch equations, the mw
excitation mixes the y and z components of −→s LM without
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mixing their LM dependence. The latter is mixed only by
the offset matrix 1, as elaborated above.

By building the SLE dynamics on top of the classical
Bloch equations, we have arrived at a rather intuitive pic-
ture of how the g-tensor anisotropy is incorporated into the
spin dynamics. Specifically, every element of the Bloch ma-
trix B0 (Eq. 19 with ωI = 0) is replaced with a matrix in the
space ofLM indices (Eq. 63). In this replacement, all the ele-
ments except the frequency offset become diagonal matrices
in the LM space, with the mixing in this space being entirely
due to the offset. Since we describe the solid effect by two
coupled Bloch equations, this intuition about the effect of g-
tensor anisotropy on the spin dynamics will be helpful when
adapting the approach to SE-DNP in Sect. 4.4 and 4.5.

4.3 EPR spectrum and saturation

The cw-EPR spectrum and the electronic saturation factor
under g-tensor anisotropy are obtained from the steady state
of Eq. (62),

B0

sss
x

sss
y

sss
z

= R1

 0
0

100

seq
z , (69)

which can be solved by inverting the 3ntot× 3ntot matrix B0
numerically. However, it is also possible to solve Eq. (69)
by inverting a single matrix with dimensions that are 3 times
smaller (i.e., ntot× ntot), as we show next.

First, taking advantage of the zeros in B0 (Eq. 63), we ex-
press sss

x and sss
z in terms of sss

y :

sss
x =−R−1

2 1sss
y ,

sss
z = ω1R−1

1 sss
y +R1R−1

1 100s
eq
z . (70)

Because only the first element of 100 is non-zero and the di-
agonal matrix R1 does not mix coefficients with different val-
ues of LM , the second equality in Eq. (70) becomes

sss
z = ω1R−1

1 sss
y + 100s

eq
z . (71)

For the 00th (i.e., first) element of sss
z , we thus have s00

z =

ω1T1s
00
y + s

eq
z , which is identical to the second equality in

Eq. (12). We thus conclude that the proportionality between
the electronic saturation factor and the in-phase EPR line
shape (Eq. 16) is not limited to a homogenous line but also
applies under g-tensor anisotropy, at least in the case of
isotropic rotational diffusion.

Second, from the middle row of the matrix B0 (Eq. 63) and
after substituting sss

x and sss
z from Eq. (70), we find

sss
y =−ω1P−1

0 100s
eq
z , (72)

where we have introduced the ntot× ntot matrix

P= (R2+ iωI )+ω2
1(R1+ iωI )−1

+1(R2+ iωI )−11 (73)

and P0 = P(ωI = 0). The matrix P0 generalizes P0 (Eq. 14),
and Eq. (72) generalizes Eq. (13) to the case of g-tensor
anisotropy.

From the 00th components of sss
y and sss

x , we find

abs=−ω1[P−1
0 ]11, dsp= ω1T2[1P−1

0 ]11, (74)

where we used the fact that R2 is a diagonal matrix. These
expressions generalize Eq. (15) to the case of g-tensor
anisotropy. The corresponding saturation factor as a function
of the offset is then (from Eqs. 16 and 74)

s(1)= ω2
1T1[P−1

0 (1)]11. (75)

As claimed, to solve for the steady state numerically, we
need to invert the matrix P0, whose dimensions are 3 times
smaller than those of B0. (The two matrix inversions needed
to calculate P0 itself involve the diagonal matrices R1,2.)

The cw-EPR spectrum in derivative mode can be calcu-
lated from the derivative of P0 with respect to the (scalar)
frequency offset 1:

∂P0

∂1
= R−1

2 1+1R−1
2 . (76)

The in-phase and out-of-phase derivative spectra are then ob-
tained from the first (i.e., 00th) components of the vectors

∂sy

∂1
= ω1P−1

0 (R−1
2 1+1R−1

2 )P−1
0 100s

eq
z ,

∂sx

∂1
=−R−1

2 (sy +1
∂sy

∂1
). (77)

These expressions are used in Sect. 5 to fit the experimental
EPR spectra from Fig. 1.

In Fig. 2 we show examples of (integral) EPR spectra
calculated using the presented approach for different tum-
bling times τrot. The different columns in the figure corre-
spond to different choices of Lmax. The g-tensor values used
in the simulations are characteristic of nitroxide spin labels.
We also selected a small mw magnetic field (B1 = 0.02 G)
to mimic the low-power conditions typical of cw-EPR. The
main message of this figure is that slower tumbling requires
larger Lmax. At the same time, we see that Lmax = 8 is al-
ready good enough for τrot ≤ 10 ns, which is the range of
rotational timescales of relevance to our experimental data
(Sect. 5). By selecting Lmax = 10, to be on the safe side, we
only need to invert a 21× 21 matrix at every frequency off-
set, which makes the calculation of g-broadened EPR spectra
very fast. This allows us to perform an automated search over
the various parameters and to fit the experimental cw-EPR
spectra in less than a minute.

4.4 Solid effect in “solids”

Extending the above treatment to SE-DNP, we combine the
spin dynamics in Eq. (35) with the rotational dynamics in
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Figure 2. Cw-EPR spectra for g = diag(2.00755,2.00555,2.0023) and different tumbling times τrot. A larger Lmax is necessary for slower
tumbling. The needed Lmax also depends on the anisotropies, which are (γ0,γ2)= (−373,107) MHz for B0 = 9.403 T. Other simulation
parameters were B1 = 0.02 G, T1 = 100 ns and T2 = 20 ns. Note that these are the values of T1 and T2 that are introduced by hand. The
rotational tumbling itself further shortens the actual spin–spin relaxation time T2.

Eq. (44) to form the following SLE:

∂

∂t

−→
g (�,t)=−(K�⊗E+E�⊗B)−→g (�,t)

−E�⊗F(�)−→g (�,t)

−
1
4
A1G−→s (�,t)− i

1
4
A1k̂iz(t)peq(�). (78)

As before, we introduce the expansion

−→
g (�,t)=

1
8π2

∞∑
`=0

∑̀
m=−`

D2
m0(�)−→g `m0(t), (79)

where we have set n= 0 from the start and find

−→
ġ LM0(t)=−[DrotL(L+ 1)+B]−→g LM0(t)

−

∑
`m

[γ 2
0 C

LM
20`m+ γ

2
2 (CLM2−2`m+C

LM
22`m)]CL0

20`nG
−→
g `m0(t)

−
1
4
A1G−→s LM0(t)− i

1
4
A1k̂ iz(t)δL0δM0.

(80)

Again, we switch to the symmetrized coefficients

−→
g LM =

1
2

(−→g L
−M0+

−→
g LM0) (81)

and form the following three ntot-dimensional vectors from
the spatial components of the 3D vectors −→g LM :

gi =


g00
i

g20
i

g22
i
...

 (i = x,y,z). (82)

The steady state of the resulting spin dynamics is then

B

gss
x

gss
y

gss
z

=−1
4
A1

 sss
y

−sss
x

0

− i
1
4
A1

 0
0

100

 iss
z , (83)
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where

B = B0+ iωI (84)

generalizes the matrix B0 from Eq. (63).
Our goal is to solve for gss

z , since its 00th component
should be used in Eq. (23) to calculate the rate constants pv−
and v+. After inverting B in Eq. (83), we find

gss
z =−

1
4
A1[B−1

]zxs
ss
y −

1
4
A1[B−1

]zy(−sss
x )

− i
1
4
A1[B−1

]zz100iss
z . (85)

Note that now [B−1
]ij denotes the ntot× ntot sub-matrix of

B−1 at position ij and not a scalar matrix element. Using
sss
x,y from the previous subsection, we find that the first com-

ponent of gss
z is

g00
z = ω1

1
4
A1[([B−1

]zx + [B−1
]zyR−1

2 1)P−1
0 ]11s

eq
z

− i
1
4
A1[[B−1

]zz]11i
ss
z . (86)

Substituting this result into Eq. (23), we obtain

RA1I = δ
2Re{[[B−1

ω1=0]zz]11},

v+ = δ
2Re{[[B−1

]zz]11}−R
A
1I ,

pv− =−δ
2ω1Im{[([B−1

]zx + [B−1
]zyR−1

2 1)P−1
0 ]11}. (87)

These expressions, which require the inversion of the
3ntot× 3ntot matrix B, are directly generalizable to liquids
(Sect. 4.5). In “solids”, it is possible to obtain alternative ex-
pressions that require the inversion of a smaller ntot× ntot
matrix. To this end, we express gss

x and gss
z in terms of gss

y

using the first and last rows of B:

gss
x =−(R2+ iωI )−11gss

y −
1
4
A1(R2+ iωI )−1sss

y ,

gss
z = ω1(R1+ iωI )−1gss

y − i
1
4
A1(R1+ iωI )−1100iss

z . (88)

Substituting the first (i.e., 00th) component of gss
z into

Eq. (23), we find

RA1I = δ
2Re{[(R1+ iωI )−1

]11}. (89)

Because R1 is a diagonal matrix, this result is identical to
Eq. (29), showing that RA1I is not affected by the anisotropy
of the g tensor in the case of isotropic rotation.

Similarly, from the middle part of B, we obtain

Pgss
y =

1
4
A1[s

ss
x −1(R2+ iωI )−1sss

y ]

+ω1i
1
4
A1(R1+ iωI )−1100iss

z . (90)

We first observe that (R1+ iωI )−1100
= 100(R1+ iωI )−1 be-

cause R1 is diagonal. Then we substitute sss
x,y from before to

get

gss
y = ω1

1
4
A1P−1

[R−1
2 1+1(R2+ iωI )−1

]P−1
0 100s

eq
z

+ω1i
1
4
A1P−1100(R1+ iωI )−1iss

z . (91)

Finally, substituting the 00th element of gss
y into Eq. (30), we

find

v+ =−δ
2ω2

1 Re{(R1+ iωI )−2
[P−1
]11},

pv− =−δ
2ω2

1Im{(R1+ iωI )−1

×[P−1(R−1
2 1+1(R2+ iωI )−1)P−1

0 ]11}. (92)

Observe how these expressions generalize Eqs. (33) and (34)
to the case of g-tensor anisotropy.

In the last two rows of Fig. 3 we show v+/δ
2 and pv−/δ2,

which have units of time. Although the electronic non-
saturation factor p and the rate constant v− always appear
together as pv−, it is helpful to separate these two factors
when rationalizing SE. We show p and v−/δ2 in the first two
rows of Fig. 3. Note that v+/δ2 and pv−/δ2 were calculated
directly from Eq. (92), whereas v−/δ2 was determined by
dividing pv−/δ2 by p = 1−ω2

1T1[P−1
0 ]11 (Eq. 75).

The columns in Fig. 3 reveal the effect of the g-tensor
anisotropy on the different factors relevant to SE. v+/δ2 in
the third row of the figure is composed of two SE lines cen-
tered at −ωI and +ωI . At the fastest tumbling (leftmost
column), each of these two lines is symmetric and approx-
imately Lorentzian. When the tumbling slows down, each
line broadens and becomes asymmetric. At the slowest tum-
bling rate (rightmost column), each line resembles a pow-
der EPR spectrum with an anisotropic g tensor. We see that
in the regime of slow tumbling the profile of v+/δ2 is no
longer symmetric (i.e., even) with respect to the electronic
resonance at zero offset frequency.

In the second row of Fig. 3 we show v−/δ
2 (orange line),

which is also composed of two SE lines centered at −ωI and
+ωI , with the former flipped with respect to the horizon-
tal axis. For comparison, in the second row we also plotted
v+/δ

2 and −v+/δ2 (dashed red lines). We see that, for all
the tumbling rates, the two SE lines comprising v−/δ2 ex-
actly match their counterparts in v+/δ2.

The first row of Fig. 3 shows the electronic satura-
tion under g-tensor anisotropy (we actually plot the “non-
saturation” p = 1− s). Because of the large B1 used in the
calculations (B1 = 5.5 G), appreciable electronic saturation
is achieved for all the shown tumbling rates. From the per-
spective of the solid effect, it is noteworthy that the satu-
ration is more localized to on-resonance conditions when
the g-tensor anisotropy is averaged out by the tumbling and
spreads to larger off-resonance frequencies when the tum-
bling slows down. This spread broadens the saturation profile
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Figure 3. Solid-effect rates v+ (red line) and pv− (green line) calculated at high mw power (B1 = 5.5 G) for static dipolar interaction (i.e.,
“solid”) and several different rates of rotational tumbling. The factorization of pv− into p (blue line) and v− (orange line) is also shown. All
other parameters are as in Fig. 2, and Lmax = 10. In particular, T1 = 100 ns.

and reduces its maximum. However, in spite of the substan-
tial increase in the spectral width of the saturation when go-
ing from τrot = 2 ns to τrot = 20 ns, the maximum decreases
only moderately, remaining close to 50 % at the slower tum-
bling rate.

Of course, the amplitude of the saturation profile depends
not only on B1, but also on the electronic T1 relaxation time.
To illustrate this dependence, we recalculated all the curves
in Fig. 3 after increasing T1 5-fold to 500 ns. The result,
which is shown in Fig. A1, demonstrates larger saturation for
all tumbling rates. At the same time, v−/δ2 and v+/δ2 (sec-
ond and third rows) remain entirely unaffected. This demon-
strates that, in our case of a high constant magnetic field, the
SE lines do not experience the power broadening that affects
the EPR spectrum.

Finally, the last row of Fig. 3 shows pv−/δ2 (solid green
line), which equals the product of the first and second rows.
From Eq. (7), we know that pv−/δ2 basically gives the SE-
DNP spectrum up to an overall scaling factor. Since pv− is
suppressed by the electronic saturation compared to v−, we
see that pv−/δ2 is somewhat reduced at offsets between the
canonical SE positions±ωI . Because both the electronic sat-
uration profile and the profile of v− are asymmetric in the
slow motional regime where the EPR line exhibits clear g
broadening, the line shape of the SE-DNP spectrum (propor-
tional to pv−) is no longer antisymmetric (i.e., odd) with re-
spect to the electronic resonance. This is most visible for the
green line in the lower rightmost corner of Fig. 3.

4.5 Solid effect in liquids

In the light of Sect. 3.3, the generalization to liquids consists
of calculating the matrix

Q= j11(B) (93)

and using it instead of B−1 in Eq. (87):

RA1I = 〈δ
2
〉Re{[[Qω1=0]zz]11},

v+ = 〈δ
2
〉Re{[[Q]zz]11}−R

A
1I ,

pv− =−〈δ
2
〉ω1Im{[([Q]zx + [Q]zyR−1

2 1)P−1
0 ]11}. (94)

Because the zz sub-block of B is diagonal and does not cou-
ple to the rest when ω1 = 0, we deduce that

RA1I = 〈δ
2
〉Re{j11(R1+ iωI )}, (95)

which is identical to Eq. (43). Thus, as we already observed
for “solids”, the expression for RA1I is not affected by the
anisotropy of the g tensor and the slow tumbling of the radi-
cal, in the case of isotropic rotational diffusion.

In Fig. 4 we show the same properties as in Fig. 3 but
now in the presence of translational diffusion treated by the
FFHS model with the motional timescale τffhs = 6 ns. Sev-
eral changes compared to “solids” (Fig. 3) are worth pointing
out.

In line with our previous understanding (Sezer, 2023b), the
SE lines comprising v+/〈δ2

〉 are broadened by the transla-
tional motion that modulates the dipolar interaction (red lines
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Figure 4. Same as Fig. 3 but for the FFHS model of translational diffusion with τffhs = 6 ns.

in the third row of Fig. 4). This motional broadening reduces
their maximum intensities compared to “solids” (Fig. 3, third
row). Previously, in the case of Lorentzian lines, the reduc-
tion in intensity in the transition from solids to liquids was
dramatic, by more than a factor of 10 (Sezer, 2023b, Figs. 3,
4 and 5). In contrast, the reduction in the presence of g-tensor
broadening is about a factor of 2 (compare the third rows of
Figs. 3 and 4). This observation may help rationalize why
the maximum SE-DNP enhancement in liquids, e.g., about
50 for trityl in glycerol at 320 K (Kuzhelev et al., 2023), is
not negligibly smaller compared to the enhancements that are
obtained in the solid state. We also point out that, while re-
ducing the maximum SE intensities in the vicinity of ±ωI ,
the motional broadening substantially increases the intensi-
ties at the smaller offsets around the electronic resonance.

Besides the motional broadening, the progression from left
to right in the third row of Fig. 4 demonstrates additional g-
tensor broadening, which was also present in “solids”. How-
ever, now the two SE lines are affected differently by the
g-tensor anisotropy, making the profile of v+/〈δ2

〉 at slow
tumbling rates rather irregular.

Moving on to the second row in Fig. 4, we see that the SE
lines that make up v−/〈δ2

〉 (orange) are now completely dif-
ferent from their counterparts in v+/〈δ2

〉 (dashed red). The
increased intensity in the vicinity of the electronic resonance
due to motional broadening is also manifested by v−/〈δ2

〉.
For the fastest tumbling in the figure (leftmost column), the
fluctuations of the dipolar interaction not only broaden the
SE lines, but also enable a new phenomenon, which is man-
ifested as near-resonance peaks that are comparable in mag-

nitude to the peaks at ±ωI but are clearly distinct from them
(orange line). These peaks reflect the multiplicative contri-
bution of the dispersive EPR signal to v− (Sezer, 2023a, b).
For faster translational diffusion, the near-resonance peaks
may become larger than the peaks at ±ωI , as can be seen
in the leftmost column of Fig. A3a (orange line). Because
they are more strongly suppressed by the electronic satura-
tion, however, these peaks do not exceed the SE peaks in the
final enhancement profile (Fig. A3a, leftmost column, green
line).

Up to an overall scaling factor, the green lines in the last
row of Fig. 4 correspond to the SE-DNP enhancement pro-
file. Because its middle part is suppressed by the electronic
saturation, this profile in the presence of g-tensor broaden-
ing becomes very non-symmetric and responds sensitively
to the tumbling of the polarizing agent. To further illustrate
the influence of the electronic saturation on the SE-DNP
spectrum, in Fig. A2 we show the same curves but calcu-
lated with a 5-fold longer electronic spin-lattice relaxation
time (T1 = 500 ns), which leads to larger saturation. Simi-
larly, to illustrate the effect of translational diffusion, we re-
calculated the curves in Fig. 4 for τffhs = 3 ns (2 times faster)
and τffhs = 12 ns (2 times slower). The results are presented
in Fig. A3. These additional simulations show that the SE-
DNP line shape is very sensitive to the timescales of molec-
ular motion.

In the next section, we systematically vary the degrees of
power broadening and motional broadening to match the ex-
perimental DNP profiles from Fig. 1.
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5 Disentangling the solid and Overhauser DNP
effects

Using the developed methodology, we now analyze the ex-
periments from Fig. 1. In the light of Eqs. (2) and (7) for
the OE and SE enhancements, we will identify the profile of
the electronic saturation (Fig. 4, first row) with εOE and the
profile of pv−/〈δ2

〉 (Fig. 4, last row, green line) with εSE.
The tumbling times to be used in the DNP calculations will
be obtained by fitting the experimental cw-EPR spectra. We
start with 10-Doxyl-PC (Fig. 1a, c) as its experimental spec-
tra were more amenable to unrestricted fits of all parameters.

5.1 Analysis of 10-Doxyl-PC

5.1.1 Fit to the cw-EPR spectrum

Derivative EPR spectra were calculated from the first (i.e.,
00th) components of the expressions in Eq. (77) for dif-
ferent values of the fitting parameters. In the fit, we var-
ied the timescale of tumbling, τrot, as well as the g-tensor
anisotropies γ 2

0 and γ 2
2 (Eq. 50). As we have no precise

knowledge of the field B0 at the sample, we freely shifted
the calculated spectra along the horizontal axis to achieve the
best match with the experiment. Since this leaves one of the
g-tensor components undetermined, we took gzz = 2.0023,
which is typical for nitroxides.

The numerical integrals of the derivative EPR spectra in
Fig. 1a and 1b (dotted–dashed blue lines) do not come down
exactly to zero at the end of the integration range at high-
frequency offsets. This points to the possibility that the in-
phase component, sy , is mixed slightly with the out-of-phase
component, sx . To account for this possibility, we fitted the
derivative EPR spectra by calculating

∂s00
y

∂1
cosφ+

∂s00
x

∂1
sinφ, (96)

where the angle φ controlled the degree of mixing.
All in all, not counting the shift along the horizontal axis,

we had four fitting parameters: γ 2
0 , γ 2

2 , τrot and φ. The best fit
to the cw-EPR spectrum of 10-Doxyl-PC is shown in Fig. 5a.
The corresponding fitting parameters are given in the upper
half of Table 1.

Encouragingly, our fitted spectrum shows rather good
agreement with the experiment, in spite of the simplifying
assumptions of the theoretical model, i.e., isotropic rotational
diffusion and the absence of hyperfine interaction. To check
the effect of the latter on the cw-EPR spectrum, we used
Easyspin (Stoll and Schweiger, 2006) to simulate spectra
with our fitted parameters but now also including a nitrox-
ide hyperfine tensor, A= diag(14,14,90) MHz. The result is
given in Fig. A4a. The modification due to the hyperfine in-
teraction, although small as expected at high magnetic fields,
is clearly visible. Nevertheless, the comparison of the inte-
grals of the cw-EPR spectra in Fig. A4b suggests that the

error made by neglecting the hyperfine interaction when cal-
culating the DNP spectrum should be small.

Regarding the values of the fitted parameters, it was en-
couraging to see that the fit resulted in a negligibly small
mixing angle of φ =−1.3◦, indicating that the measured
spectrum correctly reflects the in-phase EPR component.
With B0 = 9.4029 T and gzz = 2.0023, the fitted g-tensor
anisotropies that are given in Table 1 implied that

gxx = 2.00755, gzz = 2.00555. (97)

These values are rather reasonable for a nitroxide spin la-
bel. Finally, the fitted timescale of rotational diffusion was
τrot = 5.2 ns. For comparison, the same timescale for the ni-
troxide free radical TEMPOL in water is about 20 ps (Sezer
et al., 2009). However, unlike TEMPOL, our spin label is
covalently attached to the lipid chain.

5.1.2 Fit to the DNP spectrum

Fixing the g-tensor components and the tumbling time to the
values obtained from the fit to the cw-EPR spectrum, we pro-
ceeded to fit the DNP spectrum of 10-Doxyl-PC (Fig. 1c).
In the calculations, we fixed the mw field to B1 = 5.5 G,
which is our best estimate for the home-built Fabry–Pérot
resonator operating at maximum power (Denysenkov et al.,
2022). During the fits, we again allowed for global shift of
the calculation along the horizontal axis. In addition, we fit-
ted the electronic T1 time, which has a direct effect on the
electronic saturation profile, as well as the timescale of trans-
lational diffusion, τffhs, which is responsible for the motional
broadening of the SE lines.

In the fit, we calculated the electronic saturation factor
(Eq. 75) and the timescale pv−(1)/〈δ2

〉 (last equality in
Eq. 94) as functions of the offset frequency 1. Up to un-
known multiplicative factors, these correspond to, respec-
tively, the OE and SE enhancement profiles (Eqs. 2 and 7).
We then fit the experimental DNP spectrum by calculating

ε(1)= σOE× s(1)+ σSE×
pv−

〈δ2〉
(1), (98)

where the scaling parameters σOE and σSE were also allowed
to vary freely. As a result, not counting the shift along the
horizontal axis, our fit contained four fitting parameters: τffhs,
T1, σOE and σSE. The best fit to the DNP spectrum of 10-
Doxyl-PC is shown in Fig. 5b. It is noteworthy how the total
DNP enhancement (dashed black line) emerges from the sum
of the SE (green line) and OE (dotted–dashed blue line) con-
tributions. The corresponding fitting parameters are given in
the bottom half of Table 1.

In the case of 10-Doxyl-PC, the intuitive analysis of Neud-
ert et al. (2017) for identifying the OE and SE components
of a mixed DNP spectrum using the integrated cw-EPR line
shape already performed very well (Fig. 1c). It is, therefore,
not surprising that our analysis, which has more fitting pa-
rameters, agrees better with the experimental DNP spectrum
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Figure 5. Fits to the experimental cw-EPR spectrum (a) and DNP spectrum (b) of 10-Doxyl-PC. In both cases, our best fits are shown with
dashed black lines. The DNP spectrum in panel (b) is calculated by adding the contributions of SE (solid green line) and OE (dotted–dashed
blue line), both of which are affected by the g-tensor anisotropy. The fit parameters are given in Table 1.

Table 1. Parameters obtained from the fits to the experimental data. B1 = 0.02 G for EPR and 5.5 G for DNP. T2 = 20 ns was used for both
EPR and DNP.

Fit Parameter 10-Doxyl-PC 16-Doxyl-PC

EPR γ 2
0 ,γ

2
2 (MHz) −373, 107 From 10-PC

τrot (ns) 5.2 1.9
φ (◦) −1.3 −2

Shown in Fig. 5a Fig. 6a

DNP τffhs (ns) 6.4 From 10-PC 15.3
T1 (ns) 123 153 141
σOE (–) 2.43 2.385 2.57
σSE (ps−1) 1.51 1.35 1.09

Shown in Fig. 5b Fig. 6b Fig. 7

(Fig. 5b). Both deficiencies of the intuitive approach, i.e., too
narrow OE and SE contributions due to the lack of, respec-
tively, power broadening and motional broadening, appear to
be satisfactorily addressed.

On a more fundamental level, our simulation shows that,
due to the simultaneous power and motional broadening,
the OE and SE contributions to the DNP enhancement are
not only rather asymmetric, but also overlap extensively. It
should, therefore, be practically impossible to extract any
molecular information from the mixed DNP spectrum with-
out a complex, quantitative analysis. In our specific case, the
fit resulted in a translational timescale τffhs = 6.4 ns and sug-
gested that the electronic relaxation time should be about
T1 = 120 ns. At the high magnetic field of the experiment
(B0 = 9.4 T), this spin-lattice relaxation time is practically
impossible to measure in the liquid state.

In addition to τffhs and T1, the fit to the DNP spectrum of
10-Doxyl-PC also produced the following numerical values
for the two scaling parameters in Eq. (98): σOE = 2.4 and
σSE = 1.5 ps−1. These will be analyzed in Sect. 5.3 together
with the corresponding values for 16-Doxyl-PC.

5.2 Analysis of 16-Doxyl-PC

Because the g-tensor anisotropies are largely averaged in the
cw-EPR spectrum of 16-Doxyl-PC (Fig. 1b), we did not at-
tempt to fit them. Instead, we fixed all three components to
the values obtained from 10-Doxyl-PC. This left only the ro-
tational time, τrot, and the mixing angle, φ, as fitting param-
eters, not counting the shift along the horizontal axis. As the
automated fitting did not behave well, we varied these two
parameters manually. One satisfactory fit, obtained with the
parameters that are given in Table 1, is shown in Fig. 6a. We
mention that the relative heights of the two lines in the calcu-
lation were slightly improved by using a small mixing angle
of φ =−2◦.

Although, overall, the fit is not bad, the middle part of
the calculated spectrum changes too sharply, and its high-
frequency line is too narrow compared to the experiment.
We again used Easyspin to check whether these deficien-
cies are due to the lack of hyperfine interaction. The spec-
tra for τrot = 1.9 ns with and without hyperfine interaction
are shown in Fig. A5a. As the whole spectrum is narrower
than that of 10-Doxyl-PC, the effect of the hyperfine ten-
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sor is comparatively larger. Nonetheless, the integrated EPR
lines in Fig. A5b show that the extra width due to the hyper-
fine tensor should not compromise our subsequent analysis of
the DNP spectrum, which will experience additional power
broadening and motional broadening.

Moving on to the DNP spectrum, we observed that the free
fit of all the parameters resulted in a τffhs that was more than
2 times larger than that of 10-Doxyl-PC, as we explain below.
Considering this to be unrealistic, we fixed τffhs to the value
that was obtained from 10-Doxyl-PC. Thus, not counting the
horizontal translation of the calculated DNP spectrum, our
automated fit had three fitting parameters: T1, σOE and σSE.
The outcome is shown in Fig. 6b. The corresponding param-
eters are given in the second-last column of the lower half of
Table 1.

At 9.4 T the electronic Larmor precession timescale is
about 0.5 ps, which is 3 orders of magnitude less than the
rotational timescales inferred from the cw-EPR spectra. On
such sub-picosecond timescales, the local dynamics of the
spin labels at positions 10 and 16 should not be very differ-
ent from each other. Since the spin-lattice relaxation is de-
termined by dynamics on the electronic Larmor timescale,
we were satisfied that the fitted T1 = 150 ns was close to that
from 10-Doxyl-PC.

The performance of the simple analysis of Neudert et al.
(2017) was poorer for 16-Doxyl-PC (Fig. 1d). Compared
to it, our fit to the DNP enhancement profile is excellent
(Fig. 6b). The only parts of the DNP spectrum that our cal-
culation systematically underestimates are the five leftmost
experimental points. Although there are other individual ex-
perimental points that lie further from the calculated spec-
trum, these five points are persistently lower by about 0.2
enhancement units.

Observe that the downward shift in the fifth experimen-
tal point (together with the first four points) produces an en-
hancement peak at around −400 MHz. The only way our au-
tomated fit can create a pronounced peak at this offset is by
making the SE contribution (green line) more “solid-like”,
i.e., by increasing τffhs and reducing the motional broaden-
ing. (The lower-left corner of Fig. A3b provides an example
of such a more solid-like SE line shape.) We thus identify
the systematic displacement of the leftmost five points as re-
sponsible for the increase in τffhs when it is allowed to vary
freely during the fit.

The best fit that we obtained when τffhs was included
among the fitting parameters is shown in Fig. 7. (The result-
ing fit parameters are given in the last column of the lower
half of Table 1.) Indeed, with τffhs = 15.3 ns, the SE lines
(green) have become sharper, and a small enhancement peak
at−400 MHz has emerged (dashed black line). Although the
enhancement around +400 MHz has been compromised in
the process, the overall fit to all the experimental points is
improved compared to Fig. 6b.

The two alternative fits in Figs. 6b and 7 correspond to
very different timescales of translational diffusion. Neverthe-

less, within the variability of the measurements, they both
agree with the DNP data. Considering the experimental chal-
lenges of liquid-state DNP at such high magnetic fields and
large mw powers, further decreasing the experimental vari-
ability will be very hard. It is, therefore, important to analyze
together several different experimental constructs, like our
10- and 16-Doxyl-PC. The final decision of which fit to the
DNP spectrum of 16-Doxyl-PC is “better” can only be based
on the overall consistency of the fitted parameters across all
the analyzed data. We return to this point in Sect. 5.3.

The other two parameters that emerged from the fit to the
DNP spectrum of 16-Doxyl-PC were σSE and σOE. These de-
termine the amplitudes of the SE contribution (solid green
lines in Figs. 6b and 7) and OE contribution (dotted–dashed
blue lines) to the DNP enhancement (dashed black lines). We
now turn to the analysis of these scaling parameters.

5.3 Additional molecular parameters

Ultimately, the motivation to disentangle a mixed DNP spec-
trum into its OE and SE components lies in the desire to ex-
tract information about the molecular and spin properties that
the respective DNP mechanism depends on. The main advan-
tage of our procedure over the intuitive approach of Neudert
et al. (2017) is that our decomposition produces physically
interpretable parameters like τffhs and T1. In addition, our
scaling parameters σOE and σSE multiply, respectively, the
saturation factor and v−/〈δ2

〉, whose absolute magnitudes
are part of the calculation (Fig. 4, vertical axes). Thus, we can
extract further information from the fitted values of σOE and
σSE. In contrast, because the simple approach rescales the in-
tegrated cw-EPR spectrum whose amplitude is arbitrary, the
values of its scaling factors are not informative.

Using Eq. (2) for the OE enhancement, the coupling factor
c is readily expressed in terms of σOE:

c =
σOE

f

γI

|γS |
, (99)

where the leakage factor f can be obtained by measuring the
nuclear spin-lattice relaxation times (Eq. 4).

We measured the T1 values for the chain protons of DOPC
(without spin-labeled lipids) at 310 and 330 K using the
Fabry–Pérot probe. These are given in the T 0

1I column of
Table 2. Additionally, we measured the nuclear spin-lattice
relaxation times in the presence of either 10- or 16-Doxyl-
PC (column T1I of Table 2). The target temperature of the
DNP experiments (320 K) lies between the two temperatures
at which the nuclear T1 times were measured. However, con-
sidering the possibility of mild temperature rise by several
degrees, we expect the values at 330 K to closely reflect the
DNP conditions. Nonetheless, we carry out the following
analysis using the T1 values measured at both 310 and 330 K.

The leakage factors obtained from Eq. (4) are shown in
column f of Table 2. Using the values of σOE from Table 1
in Eq. (99), we arrived at the coupling factors in column c of
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Figure 6. Same as Fig. 5 but for 16-Doxyl-PC. The fitted parameters are given in the second-last column of Table 1. Because all fitted lines
in Figs. 5, 6 and 7 are calculated only at the experimental offsets, the green SE lines are not perfectly smooth.

Figure 7. Same as Fig. 6b but also fitting τffhs. The fitted param-
eters are given in the last column of Table 1. Observe that the OE
contribution to the DNP spectrum (dotted–dashed blue line) is nar-
rower (i.e., more “liquid-like”) than that of 10-Doxyl-PC (Fig. 5b),
while the SE contribution is more “solid-like” because the timescale
τffhs is 2.4 times longer.

Table 2. In the case of 16-Doxyl-PC, the analysis was per-
formed for the fit where τffhs was fixed at 6.4 ns (denoted as
16 in Table 2) as well as for the fit where τffhs was free to
change (denoted as 16*). (These two alternatives correspond
to the last two columns of Table 1.) For both choices, some-
what larger coupling factors were deduced for 16-Doxyl-PC
compared to 10-Doxyl-PC. The estimated coupling factors
are less than 2 times smaller than what we have obtained
previously for TEMPOL in DMSO and about 4 times smaller
than the coupling factors between TEMPOL and the protons
of toluene (Prisner et al., 2016; Sezer, 2013; Küçük et al.,
2015).

Turning now to SE, using the enhancement in Eq. (7), we
express the unknown strength of the dipolar interaction in

terms of the scaling parameter σSE as follows:

〈δ2
〉T1I = σSE

γI

|γS |
. (100)

The values of 〈δ2
〉T1I , which were calculated from the right-

hand side of Eq. (100), are about 2 ns−1 for 10, 16 and 16*
(Table 2). Since v+/〈δ2

〉 is about 1 ps (Fig. 4, third row),
we conclude that v+T1I � 1, which justifies our use of the
approximation in Eq. (7) throughout the analysis, including
during the fit to the DNP spectra.

From the expression of 〈δ2
〉 (Eq. 39), we can write the

contact distance of the translational FFHS model as

b3
=N

2π
5
D2

dip
T1I

σSE

|γS |

γI
, (101)

where N is the number density of the electronic spins.
Since, in principle, all parameters on the right-hand side of
Eq. (101) are measurable, we can determine b. To estimate
N , we note that the molecular volume of DOPC is 1.3 nm3

(Greenwood et al., 2006). Since there are 20 unlabeled lipids
for 1 labeled one, we estimate N = (20× 1.3 nm3)−1, which
corresponds to a molar concentration of 64 mM. Using this
number in Eq. (101), we obtained the values of b that are
given in the second-last column of Table 2.

When the values of b are interpreted literally as the “con-
tact distance” between the nitroxide spin label and the pro-
tons of the lipid chains, their substantial variation between
10- and 16-Doxyl-PC is disturbing. From that perspective, it
is clear that the parameter b of the FFHS model, which we
used to account for the fluctuations of the dipolar interac-
tion due to molecular translations, cannot reflect the actual
molecular distances of the closest approach.

Because b was obtained from the scaling parameter σSE,
only information about the amplitude of the SE enhance-
ment has been directly used in its estimate. In contrast, the
motional timescale τffhs (Table 1) encodes information about
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Table 2. Analysis of the scaling parameters σOE and σSE. Nuclear spin-lattice relaxation times with (T1I ) and without (T 0
1I ) spin labels

were measured at two different temperatures. These determine the leakage factor f . The coupling factor c is obtained from f and σOE using
Eq. (99). The magnitude of the dipolar interaction responsible for SE (〈δ2

〉), obtained from σSE using Eq. (100), provides information about
the effective contact distance (b). Combining b with τffhs from Table 1, we estimate the diffusion constant of the FFHS model (Dffhs).

Temperature Nuclear T1s Overhauser Solid effect

Doxyl-PC T (K) T 0
1I (ms) T1I (ms) f σOE c (‰) σSE (ps−1) 〈δ2

〉T1I (ns−1) b (nm) Dffhs (nm2 µs−1)

10
310 580 44 0.92

2.43
3.99

1.51 2.29
0.61 59

330 910 52 0.94 3.92 0.65 66

16
310 580 93 0.84

2.385
4.32

1.35 2.05
0.81 104

330 910 120 0.87 4.17 0.89 123

16*
310 580 93 0.84

2.57
4.65

1.09 1.66
0.87 50

330 910 120 0.87 4.50 0.95 59

the line shape of the SE enhancement. From these comple-
mentary features of the SE contribution to the DNP spectrum,
we have managed to determine both b and τffhs. Having ac-
cess to these two parameters, we can calculate the diffusion
constant of the FFHS model from Eq. (38). The results are
given in the last column of Table 2. To our surprise, we ob-
tained very similar values for 10 and 16*, while the diffusion
constant for 16 is 2-fold larger. (Given the variability in the
experimental data and the fact that the fits to the DNP spectra
are not unique, the differences between Dffhs of 10 and 16*
should not be seen as meaningful.)

In an effort to identify a potential candidate for the physi-
cal motion that the FFHS model emulates, we observed that
the coefficients of lateral translational diffusion for DOPC in
oriented bilayers are 20 nm2 µs−1 at 323 K and 26 nm2 µs−1

at 333 K (Filippov et al., 2003, Fig. 6a). These, we expect,
will bracket the value under our DNP conditions. The diffu-
sion in the FFHS model corresponds to the relative transla-
tion of the nuclear and electronic spins, i.e.,Dffhs =DI+DS .
Assuming that the lateral diffusion of spin-labeled PSPC in a
DOPC bilayer is similar to that of DOPC, from the measured
values given above we would expect Dffhs to be between 40
and 52 nm2 µs−1. This range is surprisingly close to the es-
timates of 10 and 16* in the last column of Table 2, which
suggests that the FFHS model in our analysis likely accounts
for the lateral diffusion of the lipids in the plane of the bi-
layer.

Since it leads to a diffusion constant that is similar to (i)
the known lateral diffusion of DOPC and (ii) the estimate
obtained for 10-Doxyl-PC, we conclude that the fit to the
DNP spectrum of 16-Doxyl-PC that is shown in Fig. 7 (i.e.,
the one that led to “unreasonably” large τffhs) is more realistic
than the one with fixed τffhs (Fig. 6b). From the perspective
of the diffusion constant, the longer translational timescale
of 16* compared to 10, which resulted in a more solid-like
SE line shape with less motional broadening, reflects the fact
that the “contact distances” in the two cases are different. In
retrospect, it is amazing how the independent estimates of

b and τffhs combine to yield practically identical diffusion
constants for the two spin-labeling positions.

At the moment, it is not clear to us how to properly inter-
pret the different values of b at positions 10 and 16. Atomistic
molecular dynamics simulations (Oruç et al., 2016) could, in
principle, be used to investigate whether these effective con-
tact distances reflect differences in proton density along the
normal of the lipid bilayer or arise for some other reason.

5.4 Limitations of the modeling

The calculated DNP spectra of 10-Doxyl-PC (Fig. 5b) and
16-Doxyl-PC (Fig. 7) agree well with the experiments in
spite of our simplistic treatment of the quantum and classical
dynamics. Specifically, when modeling the spin dynamics,
(i) we completely neglected the hyperfine interaction with
the nuclear spin of 14N, which is present in nitroxide spin la-
bels. In the case of the classical dynamics, (ii) we modeled
the reorientation of the spin labels at positions 10 and 16 of
the lipid chain as free, isotropic diffusion, and (iii) we mod-
eled the dynamics of the acyl protons relative to the unpaired
electron as isotropic translational diffusion that extends to
infinity in all three spatial directions. We now comment on
these deficiencies of the modeling.

Starting with the third point, it is clear that the transla-
tional diffusion of the polarized aliphatic protons (as well as
that of the chain-attached spin labels) must be confined to the
interior of the lipid bilayer and should not extend arbitrarily
far along the direction perpendicular to the bilayer plane. In
contrast, the FFHS model whose analytical correlation func-
tion we used in the calculations assumes isotropic diffusion
in all spatial directions. To properly address this deficiency of
the modeling, one would need to solve the diffusion equation
with boundary conditions that reflect the confining planar ge-
ometry of the lipid bilayer and then calculate the dipolar cor-
relation function for such confined diffusion (preferably in
closed, analytical form). In the meantime, one could argue
that, because the dipolar interaction drops rapidly with dis-
tance, an overwhelming contribution to the dipolar correla-
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tion function should come from configurations in which the
electron and nucleus are close to each other. In that case, the
unphysical configurations that place the acyl protons outside
the plane of the lipid bilayer (but are allowed in the FFHS
model) may contribute relatively little. To support this ar-
gument, we observe that the numerical values of the FFHS
parameter b in Table 2 indicate that the shortest relevant dis-
tances for SE are about 0.6 nm (for 10-Doxyl-PC) and 0.9 nm
(for 16-Doxyl-PC). These are 3 to 5 times smaller than the
hydrophobic thickness of the DOPC lipid bilayer, which is
about 3 nm (Kučerka et al., 2008).

Regarding the second deficiency, the problem here is that
the nitroxide spin label is covalently fused to the lipid chain;
thus, its possible orientations should reflect the preferred
alignment of the chain in the hydrophobic core of the bi-
layer. Furthermore, the fused nitroxide is not expected to
have identical diffusion rates for rotations about different
spatial directions. Clearly, both of these aspects (i.e., the ori-
entational preference and the anisotropy) are missing from
the free, isotropic rotational diffusion that we implemented.
It is, however, known how to account for them in a rigorous
and efficient way. Indeed, the MOMD model from the Freed
lab (Meirovitch et al., 1984) treats anisotropic rotational dif-
fusion in a restoring potential. In fact, this model has been ex-
tensively used to simulate high-field cw-EPR spectra of lipid
bilayers by Freed (Lou et al., 2001; Costa-Filho et al., 2003)
and Marsh (Livshits et al., 2004, 2006). The studies of Marsh
and colleagues have focused on DMPC lipid bilayers con-
taining appreciable amounts of cholesterol, which puts them
in a liquid-ordered phase. For DMPC with 40 mol % choles-
terol at 30 ◦C, 10-Doxyl-PC was deduced to be aligned with
the director (i.e., the direction normal to the bilayer plane)
with an order parameter S = 0.67 (Livshits et al., 2004). If
the orientational motion is imagined as being confined to a
cone (Lipari and Szabo, 1982), this order parameter would
correspond to a maximum possible deviation from the direc-
tor of θ0 = 40◦ in all directions. The lipid bilayers in our ex-
periments are composed of pure DOPC lipids and are in their
liquid-crystalline phase, where the ordering is substantially
reduced. The liquid-crystalline phase of pure DPPC lipid bi-
layers has been characterized in the studies of Freed and col-
leagues. The order parameter reported for 16-Doxyl-PC in
pure DPPC at 50 ◦C is S = 0.16 (Costa-Filho et al., 2003). It
corresponds to a maximum possible deviation from the direc-
tor of θ0 = 75◦, assuming the diffusion is confined to a cone.
Although 10-Doxyl-PC is expected to be more ordered than
16-Doxyl-PC, it is not clear how much smaller than θ0 = 75◦

its corresponding cone angle would be. (Because S is the ex-
pectation value of a rank-2 spherical harmonic, the free rota-
tional diffusion that we use corresponds to θ0 = 90◦.) From
these studies we conclude that the MOMD model (with an
axial diffusion tensor) will likely improve our fits to the ex-
perimental cw-EPR spectra. Nevertheless, free rotation may
still be a good first approximation to the orientational dynam-

ics of 10- and 16-Doxyl-PC in the liquid-crystalline phase of
our lipid bilayers.

We should emphasize that our aim in the current paper is to
show how to account for the rotational dynamics of the polar-
izing agent in the calculation of SE-DNP. In this context, we
observe that, while the cw-EPR spectra in derivative mode
(Figs. A4a and A5a) are extremely sensitive to the details of
the rotational motion of the radical, their integrals (Figs. A4b
and A5b) are much more forgiving. When contributing to the
DNP spectrum, these integrated EPR line shapes are addi-
tionally broadened by mw power (OE) and translational dif-
fusion (SE) (Figs. 5b and 7). All these factors are expected
to reduce the sensitivity of the DNP spectrum to the details
of the radical tumbling (at least in comparison to the sensi-
tivity of the cw-EPR line shape). We therefore think that, for
the purposes of fitting the DNP spectrum, further improving
the fit to the cw-EPR spectra at the cost of introducing more
fitting parameters is not really justified. That being said, we
stress that the formalism of Sect. 4 can be straightforwardly
extended to anisotropic diffusion in an orienting potential
(i.e., the MOMD model). This would lead to larger matri-
ces R1, R2 and 1, whose matrix elements would be different
than the expressions we gave in Sect. 4.2 for free, isotropic
rotational diffusion.5 Once correctly formed, these three ma-
trices can be directly used in Eqs. (92) and (94) to calculate
the SE-DNP spectra in, respectively, “solids” and liquids.

Moving on to the first deficiency mentioned above, we re-
mind the reader that we describe the SE spin dynamics in
terms of two sets of Bloch equations that are connected in
series (Sezer, 2023a). These are the classical Bloch equa-
tions with the Bloch matrix B0 (Sect. 3.1) and the “new Bloch
equations” (Eq. 21) with the matrix B= B0+ iωI (Sect. 3.2).
Because our description of SE-DNP is based on Bloch equa-
tions, in Sect. 4.1 and 4.2 we reformulated Freed’s treatment
of slow tumbling as a generalization of the classical Bloch
equations, such that the scalar elements of B0 became matri-
ces in the space of the angular-momentum indices LM . The
result was the “expanded Bloch matrix” B0 in Eq. (63). For
this reformulation to work, however, we had to neglect the
hyperfine interaction, which is in fact treated by Freed et al.
(1971). As a result, our analysis is formally deficient for ni-
troxide radicals. Nevertheless, we reasoned that it should be
possible to illustrate the theoretical formalism in its current
form by focusing on nitroxides at high magnetic fields, where

5The orienting potential will mix coefficients with different
values of L, which will result in non-diagonal R1 and R2. The
anisotropic rotation will mix coefficients whoseM indices differ by
±1, so odd values ofM will also need to be included. Finally, since
the potential is defined with respect to the director axis, which may
differ from the axes of both the laboratory frame and the molecular
frame, it will be necessary to consider coefficients sL

MN
with non-

zero index N . Clearly, for a given Lmax, the resulting matrices R1,
R2 and 1 will be substantially larger. A detailed presentation can
be found in Schneider and Freed (1989) and Polimeno and Freed
(1995).
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the hyperfine interaction is expected to be negligible com-
pared to the anisotropy of the g tensor. From this perspective,
it should be clear that the DNP experiments that we analyzed
here had been carefully selected.

Figures A4 and A5 show our attempt to assess the con-
tribution of the neglected hyperfine interaction to the (inte-
grated) EPR spectra of 10- and 16-Doxyl-PC. A somewhat
more detailed analysis is contained in our response to the re-
viewers, which is freely accessible online. There we observe
that the hyperfine interaction slightly broadens the EPR line
of 16-Doxyl-PC (which is also visible in Fig. A5a). Since the
only mechanism of broadening in our case is the rotational
tumbling, our choice of τrot = 1.9 ns (Table 1) likely compen-
sates for some of the “missing” hyperfine broadening. Such
compensation does not appear to be happening in the case of
10-Doxyl-PC, where the hyperfine interaction changes the
shape but not the width of the EPR line (Fig. A4a). Ulti-
mately, for the theory to be applicable to SE-DNP with ni-
troxide polarizing agents at lower magnetic fields, like X
band (Gizatullin et al., 2021a, b), the description of the spin
dynamics will need to include the nuclear spin of 14N. Since
the dimension of the resulting Liouville space would need to
increase by a factor of 9, it should be possible to preserve the
two sets of connected Bloch equations after replacing each
of their scalar matrix elements with a 9× 9 matrix. Alter-
natively, the two sets of Bloch equations should be replaced
with the corresponding equations of motion for the density
matrix in Liouville space. However, considering the inherent
experimental uncertainty of the DNP enhancements that we
compare with (Fig. 1c and 1d) and the achieved agreement
between simulation and experiment (Figs. 5b and 7), we be-
lieve that such more complex modeling is presently not jus-
tified.

6 Conclusion

Once the spin dynamics of the solid effect has been formu-
lated in the time domain (Sezer, 2023a), it becomes possi-
ble to interface this quantum dynamics with various types of
classical dynamics. The classical dynamics in Sezer (2023b)
was the translational diffusion of the spins in a liquid; here
we additionally included the rotational diffusion of the polar-
izing agent. To illustrate the practical utility of the resulting
formalism, we analyzed either previously published (Sezer,
2023b) or previously unpublished (current paper) experimen-
tal DNP data on lipid bilayers. In our analysis, the treatment
of molecular translation and rotation was limited to the sim-
plest possible models of free, isotropic diffusion. Surpris-
ingly, in spite of the spatial anisotropy that one expects for
hydrated lipid bilayers, previously we found that isotropic
translation, as described by the FFHS model, worked well
for the free radical BDPA in DMPC bilayers (Sezer, 2023b;
Kuzhelev et al., 2022). Similarly, in the current paper we
found that the simplest treatment of free, isotropic rotation

(together with FFHS translation) reproduced well the DNP
field profiles of nitroxide-labeled lipids in DOPC bilayers.

DNP experiments with nitroxide free radicals in viscous
liquids invariably manifest a mixture of SE and OE (Leblond
et al., 1971b; Neudert et al., 2017). As these two DNP mech-
anisms are sensitive to molecular motions on vastly differ-
ent timescales, it should be possible to obtain rich dynamical
information by analyzing their contributions to the overall
DNP enhancement. Disentangling the SE and OE contribu-
tions, however, has proven to be challenging (Leblond et al.,
1971a). Here we fitted liquid-state DNP spectra by calculat-
ing enhancements that were affected by both the translational
diffusion of the spins and the rotational diffusion of the free
radical. Since different motions modify the amplitude and
the shape of the DNP spectrum in a highly concerted man-
ner, by fitting the entire line shape of the enhancement, we
also gained access to the absolute magnitudes of the SE and
OE contributions.

Our current treatment of SE-DNP in liquids uses only the
correlation function of the dipolar interaction to describe the
translational motion of the spins (Sezer, 2023b). This is for-
mally correct only when the diffusion is much faster than the
nuclear T1 relaxation. It should be possible to relax this con-
dition and model slower spin diffusion, as relevant for SE in
the solid state.
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Appendix A: Additional figures

Figure A1. Same as Fig. 3 but with T1 = 500 ns (i.e., 5-fold longer), which leads to larger saturation of the allowed electronic transition.
Only the first and last rows are affected.

Figure A2. Same as Fig. 4 but with T1 = 500 ns, which leads to larger electronic saturation. As in the case of “solids”, only the first and last
rows are affected.
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Figure A3. Same as Fig. 4 but with (a) τffhs = 3 ns, i.e., 2-fold faster translational motion which broadens the SE lines to a larger extent,
and (b) τffhs = 12 ns, i.e., more solid-like behavior. Observe how the predicted SE-DNP line shape (green line in the last row) responds
sensitively to the timescale of the translational motion that is responsible for averaging the dipolar interaction.
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Figure A4. Effect of the hyperfine tensor on the calculated EPR spectrum of 10-Doxyl-PC. Various derivative cw-EPR spectra (a) and
their numerical integrals (b) are compared with each other. Our calculation (solid black line) agrees perfectly with the Easyspin (Stoll and
Schweiger, 2006) simulation without a hyperfine tensor (dashed blue line). Including a hyperfine tensor with components (14,14,90) MHz
in the Easyspin calculation (dotted–dashed orange line) leads to visible changes in the derivative cw-EPR spectrum. However, the difference
of the integrated EPR lines with and without a hyperfine tensor in panel (b) should be negligible as far as the simulation of the DNP spectrum
is concerned.

Figure A5. Same as Fig. A4 but for 16-Doxyl-PC. Because the cw-EPR spectrum is narrower to begin with, the relative contribution of the
hyperfine tensor with components (14,14,90) MHz is larger than in the case of 10-Doxyl-PC. Considering that the EPR line will experience
additional power broadening and motional broadening in DNP, it should still be possible to safely neglect the extra width that the hyperfine
tensor brings to the integrated EPR line in panel (b).
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the code used to generate the figures in the paper are available at
https://github.com/dzsezer/solidDNPliquids_g-tensor (last access:
23 October 2023) (https://doi.org/10.5281/zenodo.8360325, Sezer,
2023c).
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