
Supplement of Magn. Reson., 4, 271–283, 2023
https://doi.org/10.5194/mr-4-271-2023-supplement
© Author(s) 2023. CC BY 4.0 License.

Open Access

Supplement of

Various facets of intermolecular transfer of phase coherence by nuclear
dipolar fields
Philippe Pelupessy

Correspondence to: Philippe Pelupessy (philippe.pelupessy@ens.psl.eu)

The copyright of individual parts of the supplement might differ from the article licence.

Contents

Four additional figures and a simulation program.

– Figure S1) Simulations GARP .. 2

– Figure S2) Short experiment in inhomogeneous field 3

– Figure S3) Line shapes in 2D experiments in inhomogeneous fields 4

– Figure S4) 1D spectrum with assignments .. 5

– Code simulation program (parameter file) .. 6

– Code simulation program (main) ... 7-11

1

Figures

mx
A

my
A

mz
A

mx
A

mx
A

my
A

my
A

mz
A

mz
A

a b

c

Figure S1. Same as fig. 1a-c in the main text, except that the rf pulse-train was GARP instead of DIPSI-2. All other conditions for the

simulations were identical.

2

a b

c

d1

d2

d3

3.54.0

e2

e3

e1

1.7

Figure S2. Results of an experiment similar to the one of fig. 3 of the main text. The sole differences were a repetition time of about 3 s

instead of 11 s, a DIPSI-2 irradiation time of 100 ms instead of 200 ms, and 1 scan per increment instead of 4. This results in an experimental

time of about 12 minutes instead of 3 hours.

3

Δνinh

Δνinh= 0 Δνinh= 0.03 ppm = 24 Hz Δνinh= 0.3 ppm = 240 Hz

I in
h

νinh

a

c db

f ge

Figure S3. Calculated line shapes resulting from the experiment of fig. 2 of the main text. (a) The profile that characterizes the B0

inhomogeneities, which is considered in the calculations. For a spin species S, the experiment results in:

sig(S) =
∫
cIinhe

(−iωinh−RA
2)t1e(iωinh+iωS

0 −RS
2)t2dωinh, (S1)

where c is a constant that depends on several factors such as the spin-density and transfer and detection efficiencies. RA
2 and RS

2 are

the transverse relaxation times of the A and S spins. The signal sig(S) has been calculated for proton spin S with ωS
0 = 3 ppm, RA

2 = 2 s−1

and RS
2 = 2 s−1 at a field of B0 = 18.8 T (800 MHz proton frequency). 12×1024 complex points for a bandwidth of 12 ppm were used in

the direct t2 dimension and 1024 indirect t1 increments for a bandwidth of 1 ppm (more points have been used than in the experiments of

fig. 3 in the main manuscript and fig. S2 to avoid truncation effects). In the center row the real part of the 2D Fourier transform of eq. S1 for

three different scenarios is plotted: (b) a homogeneous B0 field (∆νinh = 0), (c) a moderately inhomogeneous field (∆νinh = 0.03 ppm),

and (d) a substantially inhomogeneous field (∆νinh = 0.3 ppm). The spectra zoom in on the region of interest and the lowest contour levels

are at 2% of the maximum intensity of each spectrum. Since only 1 coherence pathway is recorded, the spectrum cannot be phased to pure

absorption mode, as evidenced by the severe phase twist in (b). However, due to the symmetry of these distortions, the phase twists do not

appear in the sum of the rows as shown in (e). The phase-twists are attenuated with increasing B0 inhomogeneities, and are not visible in

the sum, after shearing of the 2D spectra, of the rows as shown below the spectra (c) and (d) in (f) and (g). The sum spectra in (e-g) have the

same normalization factor. Thus increased inhomogeneities do not reduce the signal intensity, but, since the signal is spread out over more

rows, lead to a decrease of the signal-to-noise ratio. The line-width in (e) depend on RS
2 , the line-width in (f) and (g) on the sum RA

2 +RS
2 .

4

a b c

d
e

f,g

j

k

l
m

a’ b’ c’

d’

H2O

O O

OHd’

d’ d’

b’

c’ a’

OH

O
OH

OH
OH

OH

OH

OH

OH
O

Si S
ab

c
d

e

f

g

ml
j

k

Sucrose DSS

O

Figure S4. Spectrum obtained with a pulse-acquire experiment preceded by saturation of the solvent signal (H2O). The sample, 0.5 mM

DSS and 2.0 mM sucrose in a 90%/10% mixture of H2O/D2O, has been used for all experiments in this work. The assignments come from

the Spectral Database for Organic Compounds, SDBSWeb, https://sdbs.db.aist.go.jp (National Institute of Advanced Industrial Science and

Technology, date of access: 05-09-2023).

5

Program

1: '''

2: modified: 21-07-2023

3: Parameter file for simul_df_tocsy_01.py

4: For fig. 1d use:

5: iniDSS = "zed"

6: vDF = 1.84

7: order = [-1, 1]

8: we look at the 'planeabs' results

9: For fig. 5b use:

10: iniDSS = "MH2O"

11: vDF = 1.84 or -0.5*1.84

12: order = [2]

13: we look at the 'zabs' results

14: '''

15: B0 = -800.13 # main field (minus sign for positif gyrom.)

16: vDSS = -4.85 # chemical shift difference wr H2O (ppm)

17: vDF = 1.84 # amplitude dipolar field

18:

19: mixing = "Dipsi2" # "Dipsi2","Garp","cw" or "Waltz16"

20: tau90 = 30.e-6 # duration 90 pulse, defines rf power mixing

21: maxcyc = 120 # maximum number of mixing cycles

22:

23: ngrid = 36 # number of equidistant (in angles) gridpoints for

24: # the dephased solvent magnetization (MH2O)

25: iniDSS = "MH2O" # "iks", "why","zed" or "MH2O"

26: # MH2O is initially dephased in the plane, MDSS (the solute

27: # magnetization) can be along one of the axis or initially

28: # aligned with MH2O

29: order = [2] # indicates the ratio beween the pfg before acquisition

30: # and the dephasing pfg

31: plot = True

32: plotopt = {'plane':False, 'planeabs':True,'z':False,'zabs':True}

33: # 'zed' plots the magnetization in the plane after:

34: # pfg-mixing-spoiling-90-pfg*order

35: # 'plane' plots the magnetization in the plane after:

36: # pfg-mixing-pfg*order

37: plotcol = ['blue','red','green','orange','cyan']

38: savedata = False

6

1: '''

2: modified: 21-07-2023

3: Simulation program transfer of phase coherence from abundant spins (H2O)

4: to solute (DSS) by dipolar field during TOCSY.

5: Only with mixing sequences along one axes with constant rf amplitude.

6: The solvent magnetization evolves as described in the main article.

7:

8: Program uses numba for jit compilation. Uses para02.py file for parameters

9: so that numba can use cache.

10:

11: The program has been run with versions:

12:

13: Python 3.11.3

14: Numpy 1.25.1

15: Numba 0.57.1

16: Matplotlib 3.7.2

17:

18: This code is provided for the purpose of checking and/or reproducing the

19: simulations of the main article and comes without any warranty. If you use

20: (part of) this code for your own work, please cite the original publication.

21:

22: 2023 Philippe Pelupessy

23: '''

24:

25: # Import necessary libraries

26: import numpy as np

27: import matplotlib.pyplot as plt

28: from numba import njit,prange

29: import para02 as pa #import parameter file

30: import importlib

31: importlib.reload(pa) #reload parameter file, needed if rerun from ipython

32:

33: # Evolution of the solute magnetization

34: @njit(parallel=True,cache = True,fastmath=True)

35: def evolveDSS(MDSS,ngrid,maxcyc,MH2O,SupCyc,Angle,Phase,

36: IA,sA,cA,rfA,wDSS,lA,lS,unit):

37: '''Rotation around an axis during spinlock sequence along the x-axis. The

38: axis of rotation for DSS is determined by the rf field and by the MH2O.

39: RF power is constant but sign may alternate. On-resonance for abundant

40: solvent spins, while magnetization of the off-resonant sparse spins is

41: calculated. Optimized for numba just in time compilation. Gains in speed

42: using fastmath=True depend strongly on computer.'''

43: pi1 = np.pi/(180*unit)

7

44: for i in prange(ngrid): #loop over all sample positions

45: mxm,mym,mzm = MDSS[0,i,0],MDSS[1,i,0],MDSS[2,i,0] #initial MDSS

46: c = 0

47: for k in range(maxcyc):

48: X,Y,Z = MH2O[0,i,k],MH2O[1,i,k],MH2O[2,i,k] #precalculated MH2O

49: #at beginning of each super-cycle. Very little difference if one

50: #takes average of k and k+1.

51: for l in range(lS): #loop 'supercycle'

52: for m in range(lA):#loop 'subcycle'

53: sig = Phase[m]*SupCyc[l] #sign rf

54: Xs,Ys,Zs = rfA*sig-0.5*(IA*X),Y*sig,Z*sig

55: for n in range(Angle[m]): #loop over points in one pulse

56: x = Xs #x-field felt by DSS

57: y = -0.5*(cA[n]*Y-sA[n]*Zs) #y field

58: z = wDSS+(cA[n]*Z+sA[n]*Ys) #z field

59: theta = np.sqrt(x**2+y**2+z**2) #the rest in loop serves

60: #to calculate the rotation of DSS

61: a,t = np.cos(theta*0.5),-np.sin(theta*0.5)/theta

62: at2,t2 = 2*a*t,t*t

63: a2 = a*a

64: b2,c2,d2 = t2*x*x,t2*y*y,t2*z*z

65: ab,ac,ad = at2*x,at2*y,at2*z

66: bc,bd = 2*t2*x*y,2*t2*x*z

67: cd = 2*t2*y*z

68: mxp = (a2+b2-c2-d2)*mxm+(bc+ad)*mym+(bd-ac)*mzm

69: myp = (bc-ad)*mxm+(a2-b2+c2-d2)*mym+(ab+cd)*mzm

70: mzp = (bd+ac)*mxm+(cd-ab)*mym+(a2-b2-c2+d2)*mzm

71: mxm,mym,mzm = mxp,myp,mzp

72: Ap = Angle[m]*pi1*sig

73: Y,Z = np.cos(Ap)*Y-np.sin(Ap)*Z,np.cos(Ap)*Z+np.sin(Ap)*Y #

74: #update MH2O ofter each rf pulse (purely driven by rf)

75: c += Angle[m]

76: MDSS[0,i,k+1],MDSS[1,i,k+1],MDSS[2,i,k+1] = mxp,myp,mzp #store MDSS

77: #after each cycle

78: return MDSS

79:

80:

81:

82: def main():

83: B0 = pa.B0 #main field (minus sign for positive gyrom.)

84: vDSS = pa.vDSS #chemical shift difference with H2O (ppm)

85: mixing = pa.mixing #spin-lock seq. "Dipsi2","Garp","cw" or "Waltz16"

86: tau90 = pa.tau90 #duration 90 pulse spinlock

87: maxcyc = pa.maxcyc #maximum number of cycles spin-lock

8

88: ngrid = pa.ngrid #H20 magnetization is phasemodulated number of phases

89: wDF = 2*np.pi*pa.vDF #dipolar field amplitude

90: iniDSS = pa.iniDSS #inital DSS magn. "iks", "why","zed" or "MH2O"

91:

92: order = pa.order #lists of initial orders, SQ, DQ, TQ...(+ or -)

93: plot = pa.plot #True or False

94: plotopt = pa.plotopt #Dictionary of plotoptions (True or False):

95: #plane, planeabs,z, zabs

96: plotcol = pa.plotcol #colors plot (each order has its color)

97: savedata = pa.savedata#if True save data to text file

98:

99: #sequences consist of a sequence of pulses of rotation angle integer/unit

100: #always along the x-axis, with positive or negative sign (0, 180),

101: #repated in a supercycle (e.g. for Dipsi2 a full cycle is 4*9= 36 pulses)

102: if mixing=="Dipsi2":

103: unit = 1

104: Phase = np.array([0,180,0,180,0,180,0,180,0])*(-1./90)+1

105: Angle = np.array([320,410,290,285,30,245,375,265,370])

106: SupCyc = np.array([0,180,180,0])*(-1./90)+1

107: if mixing=="Waltz16":

108: unit = 1

109: Phase = np.array([0,180,0])*(-1./90)+1

110: Angle = np.array([90,180,270])

111: SupCyc = np.array([0,0,180,180,180,0,0,180,

112: 180,180,0,0,0,180,180,0])*(-1./90)+1

113: if mixing=="Dipsi20": #to test unit = 10, gives same result a Dipsi2

114: unit = 10

115: Phase = np.array([0,180,0,180,0,180,0,180,0])*(-1./90)+1

116: Angle = np.array([3200,4100,2900,2850,300,2450,3750,2650,3700])

117: SupCyc = np.array([0,180,180,0])*(-1./90)+1

118: if mixing=="Garp":

119: unit = 10

120: Phase = np.array([0,180,0,180,0,180,0,180,0,180,0,180,0,180,

121: 0,180,0,180,0,180,0,180,0,180,0])*(-1./90)+1

122: Angle = np.array([305,552,2578,2683,693,622,850,918,1345,2561,

123: 664,459,255,727,1195,1382,2584,649,709,772,

124: 982,1336,2559,656,534])

125: SupCyc = np.array([0,180,180,0])*(-1./90)+1

126: if mixing=="cw":

127: unit = 1

128: Phase = np.array([0])*(-1./90)+1

129: Angle = np.array([360*1]) #multiples of 360

130: SupCyc = np.array([0])*(-1./90)+1

131:

9

132: tau1 = tau90/(90*unit) #duration of 1 step in calculation

133: w1 = 2*np.pi/(4.*tau90) #rf amplitude

134:

135: H2Oini = np.array([[np.cos(i*2*np.pi/ngrid),np.sin(i*2*np.pi/ngrid),0]

136: for i in range(ngrid)]).T #initial condition solvent

137: dt_sc = tau1*np.sum(Angle)*len(SupCyc) #lenght one supercycle

138: time = dt_sc*range(maxcyc+1)#time from 0 to end mixing, in super cycle inc.

139: print('Maximum mixing time:',time[-1])

140:

141: #next 3 lines. Evolution solvent after each supercycle. To a good

142: #approximation a rotation arount the x-axis, with angular freq.=

143: #-(3/4)*wDF*Mx(0)

144: c = np.cos(-(3/4)*wDF*np.outer(H2Oini[0],time))

145: s = np.sin(-(3/4)*wDF*np.outer(H2Oini[0],time))

146: MH2O = np.array([np.outer(H2Oini[0],np.ones(maxcyc+1)),

147: np.einsum('i,ij->ij',H2Oini[1],c)-

148: np.einsum('i,ij->ij',H2Oini[2],s),

149: np.einsum('i,ij->ij',H2Oini[2],c)+

150: np.einsum('i,ij->ij',H2Oini[1],s)])

151:

152: MDSS = np.zeros_like(MH2O) #next lines initial MDSS

153: if iniDSS == "MH2O":

154: MDSS[:,:,0] = MH2O[:,:,0].copy()

155: if iniDSS == "iks":

156: MDSS[0,:,0]+=1.0

157: if iniDSS == "why":

158: MDSS[1,:,0]+=1.0

159: if iniDSS == "zed":

160: MDSS[2,:,0]+=1.0

161:

162: rfA = w1*tau1 #rotation angle rf in 1 time-increment

163: wDSS = tau1*vDSS*B0*2*np.pi #rotation angle offset

164: IA = tau1*wDF #rotation angle wDF/MH2Ox around x-axis

165: #next two lines, mixing factors for y and z contributions df (makes very

166: #little difference to add 0.5 or not). This boils down to a precalculation

167: #of sin and cos factors for MH2O evolution during pulses

168: cA = tau1*wDF*np.cos((np.arange(max(Angle))+0.5)*np.pi/(180*unit))

169: sA = tau1*wDF*np.sin((np.arange(max(Angle))+0.5)*np.pi/(180*unit))

170:

171: lA = len(Angle)

172: lS = len(SupCyc)

173:

174: print('Compilation and parallel calculation starts')

175: MDSS = evolveDSS(MDSS,ngrid,maxcyc,MH2O,SupCyc,Angle,Phase,IA,sA,

10

176: cA,rfA,wDSS,lA,lS,unit)

177: #plot for different pfgs before acquistion. 'z' corresponds to, spoil-90

178: #before the same pfg.

179: c = 0

180: for o in order:

181: co = np.cos(o*2*np.pi*np.arange(ngrid)/(ngrid))/ngrid

182: si = np.sin(o*2*np.pi*np.arange(ngrid)/(ngrid))/ngrid

183: MDSSbuX = co.dot(MDSS[0])-si.dot(MDSS[1])

184: MDSSbuY = co.dot(MDSS[1])+si.dot(MDSS[0])

185: MDSSbuZx = co.dot(MDSS[2])

186: MDSSbuZy = si.dot(MDSS[2])

187: if plot:

188: if plotopt['plane']:

189: plt.figure('plane')

190: plt.plot(time,MDSSbuX,color = plotcol[c])

191: plt.plot(time,MDSSbuY,color = plotcol[c],linestyle='--')

192: if plotopt['planeabs']:

193: plt.figure('planeabs')

194: plt.plot(time,np.sqrt(MDSSbuY**2+MDSSbuX**2),color = plotcol[c])

195: if plotopt['z']:

196: plt.figure('z')

197: plt.plot(time,MDSSbuZx,color = plotcol[c])

198: plt.plot(time,MDSSbuZy,color = plotcol[c],linestyle='--')

199: if plotopt['zabs']:

200: plt.figure('zabs')

201: plt.plot(time,np.sqrt(MDSSbuZx**2+MDSSbuZy**2),color = plotcol[c])

202: c +=1

203: #can be saved to make own plots, especially to compare

204: if savedata:

205: np.savetxt('mag'+str(o)+'.txt',[time,MDSSbuX,MDSSbuY,MDSSbuZx,

206: MDSSbuZy])

207: plt.show()

208: if __name__ == '__main__':

209: main()

11

