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S1. Explicit calculation of the eigenbasis for XA2 spin system 

Below we calculate explicitly the states of the eigenbasis for the XA2 spin system. An arbitrary 
spin state of the XA2 spin system can be represented as a linear combination of states obtained 
by direct products of the individual Zeeman states: ℬ𝑍

8 = 𝛼, 𝛽 ⊗ 𝛼, 𝛽 ⊗ 𝛼, 𝛽 ; here, the 
superscript 8 represents the dimension of the Hilbert space. The goal is to explicitly express 
the eigenbasis of the J-coupling Hamiltonian that governs ZULF evolution in terms of the states 
of the Zeeman basis ℬ𝑍

8. This is achieved by adding up the angular momenta of individual spins 
taking into account Clebsch-Gordan coefficients to construct the state (see Eq. 46 of the main 
text). Figure 7 in the main text illustrates two stages of adding up angular momenta for the XA2 

case: A + A and A2 + X. There are four states with total spin F  = 3/2 and four more states with 
total spin F = 1/2. The full specification of an eigenfunction at zero field requires three quantum 
numbers: the total spin of all three spins F, its projection mF, and the total spin of some of the 
two spins. Observable transitions at ZULF conserve the total spin of the A2 subsystem (see 
Eq. 59 in the main text), so it makes sense to consider the eigenfunctions that are 
characterised by the total spin of A2 subsystem, 𝐹𝐴2. Therefore, three quantum numbers 
|𝐹, 𝑚, 𝐹 ⟩ are used to specify all eight eigenstates.   

Eq. 46 of the main text gives the expression of the eigenfunctions of the J-coupling Hamiltonian 
in terms of the Zeeman states and the Clebsch-Gordan coefficients for a pair of spins. Because 
we are considering three spins, we need to use Eq. 46 twice (for each addition operation) 
yielding the expression:  

 |𝐹, 𝑚, 𝐹𝐴2⟩  =  ∑ 𝐶𝐼𝑎1,𝑚𝑎1;𝐼𝑎2,𝑚𝑎2

𝐹𝐴2,𝑚𝐴2 𝐶𝐹𝐴2,𝑚𝐴2;𝑆,𝑚𝑆

𝐹,𝑚 |𝐼𝑎1, 𝑚𝑎1, 𝐼𝑎2, 𝑚𝑎2 𝑆, 𝑚𝑆 ⟩𝑚𝐼,𝑚𝑆
, Eq S1 

Here, 𝐼𝑎1 and 𝑚  are the total spin and its projection of the first spin A, respectively, likewise 𝐼𝑎2 and 
𝑚  are those for the second spin A, and 𝑆 and 𝑚  are the total spin and its projection for spin X, 
respectively. As an example, let us consider the |3/2, 1/2, 1⟩ state. There are two non-zero Clebsch-
Gordan coefficients  𝐶 , ; ,

,  coupling the two A spins:  

 𝐶 =1, ; / , /
/ , /

= 1, 1;
1

2
, −

1

2

3

2
,

1

2
=

1

3
, 

𝐶 , ; / , /
/ , /

= 1, 0;
1

2
,
1

2

3

2
,
1

2
=

2

3
 

Eq S2 

 

Each of them is multiplied by the corresponding Clebsch-Gordan coefficient coupling the A2 pair with 
spin X:  

 𝐶 =1/2, / ; =1/2, /
=1,

=
1

2
,

1

2
;

1

2
,

1

2
1,1 = 1, 

𝐶 =1/2, ± / ; =1/2, ∓ /
=1,

=
1

2
, −

1

2
;

1

2
,
1

2
1,0 =

1

2
,
1

2
;

1

2
, −

1

2
1,0 =

1

2
 

Eq S3 

 

So that the resulting eigenstate is: 

 
|𝐹 = 3/2, 𝑚 = 1/2, 𝐹𝐴2 = 1⟩  =  

1

3
|𝛼𝛼𝛽⟩ +

2

3

1

2
(|𝛼𝛽𝛼⟩ + |𝛽𝛼𝛼⟩). Eq S4 
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Analogously, one can calculate all the eigenstates that are shown in Table S1.1. The reader is 
encouraged to check this table. Wolfram Mathematica can be used to compute the value of the Clebsch-
Gordan coefficients with the syntax ClebschGordan[{Fa1, ma1}, {Fa2, ma2}, {FA2, mA2}]. 

Finally, we note that the resulting eigenbasis is also the eigenbasis for the A3 spin system. One may 
therefore use it to compute the eigenbasis of the J-coupling Hamiltonian for the XA3 spin system using 
Eq. 46 one more time. 

Table S1.1. Eigenstates of XA2 spin system sorted according to |𝐹, 𝑚, 𝐹 ⟩ quantum numbers, their explicit forms in 
terms of Zeeman basis and all the Clebsch-Gordan coefficients that are used to calculate the states. The Clebsch-

Gordan coefficients are written using a braket notation with the correspondence 𝐶 , , ,
,

= ⟨𝐼, 𝑆; 𝑚 , 𝑚 |𝐹, 𝑚 ⟩  

Total spin states 

(|𝑭, 𝒎, 𝑭𝑨𝟐⟩) 
Explicit form 

Clebsch-Gordan coefficients 

used to calculate the 

eigenstate 

 

|3/2, 3/2, 1⟩ 

 

|𝛼𝛼𝛼⟩ 

A + A: 

1
2

,
1
2

;
1
2

,
1
2

1,1 = 1 

A2  + X: 

1, 1;
1
2

,
1
2

3
2

,
3
2

= 1 

|3/2, 1/2, 1⟩ 
1

3
|𝛼𝛼𝛽⟩ +

2

3

1

2
(|𝛼𝛽𝛼⟩ + |𝛽𝛼𝛼⟩) 

A + A: 

1
2

,
1
2

;
1
2

,
1
2

1,1 = 1 

1
2

, −
1
2

;
1
2

,
1
2

1,0 =
1
2

,
1
2

;
1
2

, −
1
2

1,0 =

=
1

2
 

A2  + X: 

1, 1;
1
2

, −
1
2

3
2

,
1
2

=
1

3
 

1, 0;
1
2

,
1
2

3
2

,
1
2

=
2

3
 

|3/2, −1/2, 1⟩ 
1

3
|𝛽𝛽𝛼⟩ +

2

3

1

2
(|𝛼𝛽𝛽⟩ + |𝛽𝛼𝛽⟩) 

A + A: 

1
2

, −
1
2

;
1
2

, −
1
2

1, −1 = 1 

1
2

, −
1
2

;
1
2

,
1
2

1,0 =
1
2

,
1
2

;
1
2

, −
1
2

1,0 =

=
1

2
 

A2  + X: 

1, −1;
1
2

,
1
2

3
2

, − 
1
2

=
1

3
 

1, 0;
1
2

, −
1
2

3
2

, − 
1
2

=
2

3
 

|3/2, −3/2, 1⟩ |𝛽𝛽𝛽⟩ 

A + A: 

1
2

, −
1
2

;
1
2

, −
1
2

1, −1 = 1 

A2  + X: 

1, −1;
1
2

, −
1
2

3
2

, − 
3
2

= 1 
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|1/2, 1/2, 1⟩ 
2

3
|𝛼𝛼𝛽⟩ −

1

3

1

2
(|𝛼𝛽𝛼⟩ + |𝛽𝛼𝛼⟩) 

A + A: 

1
2

,
1
2

;
1
2

,
1
2

1,1 = 1 

1
2

, −
1
2

;
1
2

,
1
2

1,0 =
1
2

,
1
2

;
1
2

, −
1
2

1,0 =

=
1

2
 

 

 

A2  + X: 

1, 1;
1
2

, −
1
2

1
2

,
1
2

=
2

3
 

1, 0;
1
2

,
1
2

1
2

,
1
2

= −
1

3
 

|1/2, −1/2, 1⟩ 
2

3
|𝛽𝛽𝛼⟩ −

1

3

1

2
(|𝛼𝛽𝛽⟩ + |𝛽𝛼𝛽⟩) 

A + A: 

1
2

, −
1
2

;
1
2

, −
1
2

1, −1 = 1 

1
2

, −
1
2

;
1
2

,
1
2

1,0 ==
1
2

,
1
2

;
1
2

, −
1
2

1,0

=
1

2
 

A2  + X: 

1, −1;
1
2

, −
1
2

3
2

, − 
1
2

=
2

3
 

1, 0;
1
2

, −
1
2

3
2

, − 
1
2

= −
1

3
 

|1/2, 1/2, 0⟩ 
1

2
(|𝛼𝛽𝛼⟩ − |𝛽𝛼𝛼⟩) 

A + A: 

1
2

,
1
2

;
1
2

, −
1
2

0,0 =
1

2
 

1
2

, −
1
2

;
1
2

,
1
2

0,0 = −
1

2
 

A2  + X: 

0,0;
1
2

,
1
2

1
2

,
1
2

= 1 

|1/2, −1/2, 0⟩ 
1

2
(|𝛼𝛽𝛽⟩ − |𝛽𝛼𝛽⟩) 

A + A: 

1
2

,
1
2

;
1
2

, −
1
2

0,0 = −
1

2
 

1
2

, −
1
2

;
1
2

,
1
2

0,0 = −
1

2
 

A2  + X: 

0,0;
1
2

, −
1
2

1
2

, −
1
2

= 1 

 

































































Supplement 6 - Analytical expressions for the 
eigenenergies and transition amplitudes of XAn spin 
systems at zero field

Supplementary material to “Simulation of NMR spectra at zero- and ultra-low field from A to Z – a 
tribute to Prof. Konstantin L’vovich Ivanov” https://doi.org/10.5194/mr-2022-18
Q. Stern and K. Sheberstov

PDF  and .nb Mathematica files are provided, code lines are shown in black, whereas comments are 
shown in blue .

Initialization of general functions

(*We first introduce two general functions that are used to calculate

the eigenstates and eigenenergies for an arbitrary XAn system. After

that we implement these functions for the cases XA, XA2, and XA3*)

SpinSystemInitialization[nspinsI_] := Module{nstates, F, FA, FAPrevious, tmp, i, j},

(*This function sets the spin system to XAn. First,

it calculates the dimension of the Hilbert space. Second,

it calculates all possible values of the total spin FA,

and then of the total spin F. Additionally, it prints out how the list of FA values

changes recursevily upon (n-1) summation steps in the manner of Figure 7.*)

nstates = 2 *
1

2
+ 1

nspinsI

* 2 *
1

2
+ 1

1

;

(*General expression for the Hilbert dimension of n spins I is given by (2I+1)n*)

FAmax = 0;

FA = 
1

2
;

(*FA is a list containing all possible values of the total spin of An spin

subsystem. It is calculated recursively implementing Eq. 45 of the text -

for each (n-1) summation of spins-1/2 *)

IfnspinsI > 1,

Fori = 1, i ≤ nspinsI - 1, i++,

FAPrevious = FA;

tmp = 1;

Forj = 1, j ≤ Length[FAPrevious], j++,

WhichFAPrevious〚j〛  0,

FA〚tmp〛 =
1

2
;

Printed by Wolfram Mathematica Student Edition



Print[FA];

tmp = tmp + 1,

FAPrevious〚j〛 ≠ 0,

FA〚tmp〛 = FAPrevious〚j〛 +
1

2
;

tmp = tmp + 1;

FA = InsertFA, FAPrevious〚j〛 -
1

2
, tmp;

tmp = tmp + 1;

Print[FA]







;

(*F is a list containing all possible values of the total spin

of the full XAn system. The cycle below also updates the FA list -

because not all combinations of (F,FA) are possible. It is calculated

similary as above by using Eq. 45 of the text. In this case,

just one summation is needed for FA of spin X*)

FAPrevious = FA;

F = FA;

tmp = 1;

Forj = 1, j ≤ Length[FAPrevious], j++,

WhichFAPrevious〚j〛  0,

F〚tmp〛 =
1

2
;

FA〚tmp〛 = 0;

tmp = tmp + 1,

FAPrevious〚j〛 ≠ 0,

F〚tmp〛 = FAPrevious〚j〛 +
1

2
;

FA〚tmp〛 = FAPrevious〚j〛;

tmp = tmp + 1;

F = InsertF, FAPrevious〚j〛 -
1

2
, tmp;

FA = Insert[FA, FAPrevious〚j〛, tmp];

tmp = tmp + 1;



;
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{nstates, FA, F}



EnergyFmF[F_, FA_, Ispin_, Sspin_, nspins_, JAX_, JAA_] := Module {E},

(*This function calculates eigenenergy of a the XAn
spin system at zero field using equation 54 of the main text*)

E =
JAX

2
(F (F + 1) - Sspin (Sspin + 1) - FA (FA + 1)) +

JAA

2
(FA (FA + 1) - (nspins - 1) Ispin (Ispin + 1) )



XA system

(*We start with the XA spin system. The spin system is constructed using the

SpinSystemInitialization[] function. It calculates the number of spin states,

the list of all possible values for the FA quantum number and

the list of all possible values for the F quantum number*)

In[ ]:= nspinsA = 1;

nspins = nspinsA + 1;

{nstates, FA, F} = SpinSystemInitialization[nspinsA];

In[ ]:= nstates

FA // MatrixForm

F // MatrixForm

Out[ ]= 4

Out[ ]//MatrixForm=
1
2
1
2

Out[ ]//MatrixForm=

1
0

(*The above output shows that the Hilbert space has dimension 4,

FA is always 1/2 and F equals to either 1 (triplet states) or 0 (singlet state). Now

let us calculate the eigenvalues of 4 energy levels using EnergyFmF[] function*)

In[ ]:= EnergyFmF[F〚1〛, FA〚1〛, 1 / 2, 1 / 2, nspins, JAX, JAA]

Out[ ]=
JAX

4

In[ ]:= (*Above is the energy of the three degenerat tiplet

states. This agrees with the result of Figure 8 for AX system*)

In[ ]:= EnergyFmF[F〚2〛, FA〚1〛, 1 / 2, 1 / 2, nspins, JAX, JAA]

Out[ ]= -
3 JAX

4
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In[ ]:= (*Above is the energy of the singlet state. This

agrees with the result of Figure 8 for AX system *)

In[ ]:= (*Now let us calculate transition amplitudes using Eq. 60. First between S0 and T0. *)

In[ ]:= F1 = 1; (*triplet states*)

F2 = 0; (*singlet state*)

mF1 = 0; (*transition invloving the T0 state*)

mF2 = 0;(*transition invloving the S0 state*)

IntensityLine =

SumSumClebschGordan
1

2
, mA, 

1

2
, ms, {F1, mF1} * ClebschGordan

1

2
, mA,


1

2
, ms, {F2, mF2} * (γi mA + γs ms),

ms, -
1

2
,
1

2
, 1, {mA, -FA〚1〛, FA〚1〛, 1}

2

// FullSimplify

ClebschGordan: ThreeJSymbol
1

2
, -
1

2
, 

1

2
, -
1

2
, {1, 0} is not physical.

ClebschGordan: ThreeJSymbol
1

2
, -
1

2
, 

1

2
, -
1

2
, {0, 0} is not physical.

ClebschGordan: ThreeJSymbol
1

2
,
1

2
, 

1

2
,
1

2
, {1, 0} is not physical.

General : Further output of ClebschGordan::phy will be suppressed during this calculation.

Out[ ]=
1

4
(γi - γs)2

(*It can be seen that transition amplitude is porportional to the difference

between gyromagnetic ratios and vanishes in case they are equal. Now

let us check if there is an observable transition between S0 and T+1*)

4     S6-XAn_EigenEnergies_and_SelectionRules.nb
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In[ ]:= F1 = 1; (*triplet states*)

F2 = 0; (*singlet state*)

mF1 = 1; (*transition invloving the T+1 state*)

mF2 = 0;(*transition invloving the S0 state*)

IntensityLine =

SumSumClebschGordan{FA〚1〛, mA}, 
1

2
, ms, {F1, mF1} * ClebschGordan

{FA〚1〛, mA}, 
1

2
, ms, {F2, mF2} * (γi mA + γs ms),

ms, -
1

2
,
1

2
, 1, {mA, -FA〚1〛, FA〚1〛, 1}

2

// FullSimplify

ClebschGordan: ThreeJSymbol
1

2
, -
1

2
, 

1

2
, -
1

2
, {1, -1} is not physical.

ClebschGordan: ThreeJSymbol
1

2
, -
1

2
, 

1

2
, -
1

2
, {0, 0} is not physical.

ClebschGordan: ThreeJSymbol
1

2
, -
1

2
, 

1

2
,
1

2
, {1, -1} is not physical.

General : Further output of ClebschGordan::phy will be suppressed during this calculation.

Out[ ]= 0

In[ ]:= (*Intensity is zero. Same with all other possible combinations*)

In[ ]:= F1 = 1; (*triplet states*)

F2 = 1; (*triplet state*)

mF1 = 1; (*transition invloving the T+1 state*)

mF2 = 0;(*transition invloving the T0 state*)

IntensityLine =

SumSumClebschGordan{FA〚1〛, mA}, 
1

2
, ms, {F1, mF1} * ClebschGordan

{FA〚1〛, mA}, 
1

2
, ms, {F2, mF2} * (γi mA + γs ms),

ms, -
1

2
,
1

2
, 1, {mA, -FA〚1〛, FA〚1〛, 1}

2

// FullSimplify

ClebschGordan: ThreeJSymbol
1

2
, -
1

2
, 

1

2
, -
1

2
, {1, -1} is not physical.

ClebschGordan: ThreeJSymbol
1

2
, -
1

2
, 

1

2
, -
1

2
, {1, 0} is not physical.

ClebschGordan: ThreeJSymbol
1

2
, -
1

2
, 

1

2
,
1

2
, {1, -1} is not physical.

General : Further output of ClebschGordan::phy will be suppressed during this calculation.

Out[ ]= 0

(*These calculations support the conclusions about the selection

rules in the main text and mean that for the AX system at zero

field only one transition between the S0 and T0 states is observable

and only if the two nuclei have different gyromagnetic ratios.*)
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XA2 system

(*Now let us consider the XA2 spin system. The same procedure is applied here*)

In[ ]:= nspinsA = 2;

nspins = nspinsA + 1;

{nstates, FA, F} = SpinSystemInitialization[nspinsA];

{1, 0}

(*The SpinSystemInitialization[] function prints out the recusive changes of the

list FA for each summation step. In this case, just one summation step is done,

thus one line showing that FA can be either 1 (triplet) or 0 (singlet) *)

In[ ]:= nstates

FA // MatrixForm

F // MatrixForm

Out[ ]= 8

Out[ ]//MatrixForm=

1
1
0

Out[ ]//MatrixForm=
3
2
1
2
1
2

(*The Hilbert space has dimension 8,

SpinSystemInitialization[] function produces lists FA and F of the same length,

becuase not all different combinations are possible. For example,

the highest value of F=3/2 can be achieved only in case of the highest value FA=1.*)

In[ ]:= EnergyFmF[F〚1〛, FA〚1〛, 1 / 2, 1 / 2, nspins, JAX, JAA]

Out[ ]=
JAA

4
+
JAX

2

(*Above is the energy of the four degenerate states with F =

3/2 and FA = 1. See Figure 8 for XA2.*)

In[ ]:= EnergyFmF[F〚2〛, FA〚2〛, 1 / 2, 1 / 2, nspins, JAX, JAA]

Out[ ]=
JAA

4
- JAX

(*Above is the energy of the two degenerate states with F =

1/2 and FA = 1. See Figure 8 for XA2.*)

In[ ]:= EnergyFmF[F〚3〛, FA〚3〛, 1 / 2, 1 / 2, nspins, JAX, JAA]

Out[ ]= -
3 JAA

4

(*Above is the energy of the two degenerate states with F =

1/2 and FA = 0. See Figure 8 for XA2.*)
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(*Now let us calculate the transition amplitudes using Eq. 60. First, for the

observable line between states with (F = 1/2, FA = 1) and (F = 3/2, FA = 1).*)

F1 = F〚1〛

(*Here F1 denotes one of the levels

between which transition amplitude is calculated*)

F2 = F〚2〛

(*Accordingly, here F2 denotes the second level involved in the transition*)

fa = FA〚1〛

(*FA determines over which projection numbers mA the summation is performed. It

was shown in the text that FA can not change for observable transitions so it

does not matter where it is taken from the first or from the second state. *)

mF1 = 1 / 2;

mF2 = 1 / 2;

(*For odd number n of spins A, the total spin F is always half

integer for XAn so that central levels would have mF = +-1/2 *)

IntensityLine =

SumSumClebschGordan{fa, mA}, 
1

2
, ms, {F1, mF1} * ClebschGordan{fa, mA},


1

2
, ms, {F2, mF2} * (γi mA + γs ms),

ms, -
1

2
,
1

2
, 1, {mA, -fa, fa, 1}

2

// FullSimplify

Out[ ]=
3

2

Out[ ]=
1

2

Out[ ]= 1

ClebschGordan: ThreeJSymbol{1, -1}, 
1

2
, -
1

2
, 

3

2
, -
1

2
 is not physical.

ClebschGordan: ThreeJSymbol{1, -1}, 
1

2
, -
1

2
, 

1

2
, -
1

2
 is not physical.

ClebschGordan: ThreeJSymbol{1, -1}, 
1

2
,
1

2
, 

3

2
, -
1

2
 is not physical.

General : Further output of ClebschGordan::phy will be suppressed during this calculation.

Out[ ]=
2

9
(γi - γs)2
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F1 = F〚1〛

F2 = F〚2〛

fa = FA〚1〛

mF1 = -1 / 2;

mF2 = -1 / 2;

(*We repeat same as above calculation but for the negative value of mF*)

IntensityLine =

SumSumClebschGordan{fa, mA}, 
1

2
, ms, {F1, mF1} * ClebschGordan{fa, mA},


1

2
, ms, {F2, mF2} * (γi mA + γs ms),

ms, -
1

2
,
1

2
, 1, {mA, -fa, fa, 1}

2

// FullSimplify

Out[ ]=
3

2

Out[ ]=
1

2

Out[ ]= 1

ClebschGordan: ThreeJSymbol{1, -1}, 
1

2
, -
1

2
, 

3

2
,
1

2
 is not physical.

ClebschGordan: ThreeJSymbol{1, -1}, 
1

2
, -
1

2
, 

1

2
,
1

2
 is not physical.

ClebschGordan: ThreeJSymbol{1, 0}, 
1

2
,
1

2
, 

3

2
,
1

2
 is not physical.

General : Further output of ClebschGordan::phy will be suppressed during this calculation.

Out[ ]=
2

9
(γi - γs)2

(*The above results verify that both transitions

are observable as shown in the central part of Figure 8 in

the main text. All other possible transitions are forbidden,

for example where mF changes it's value (which is an illustration of Eq. 61):*)
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In[ ]:= F1 = F〚1〛

F2 = F〚2〛

fa = FA〚1〛

mF1 = 1 / 2;

mF2 = -1 / 2;

IntensityLine =

SumSumClebschGordan{fa, mA}, 
1

2
, ms, {F1, mF1} * ClebschGordan{fa, mA},


1

2
, ms, {F2, mF2} * (γi mA + γs ms),

ms, -
1

2
,
1

2
, 1, {mA, -fa, fa, 1}

2

// FullSimplify

Out[ ]=
3

2

Out[ ]=
1

2

Out[ ]= 1

ClebschGordan: ThreeJSymbol{1, -1}, 
1

2
, -
1

2
, 

3

2
, -
1

2
 is not physical.

ClebschGordan: ThreeJSymbol{1, -1}, 
1

2
, -
1

2
, 

1

2
,
1

2
 is not physical.

ClebschGordan: ThreeJSymbol{1, -1}, 
1

2
,
1

2
, 

3

2
, -
1

2
 is not physical.

General : Further output of ClebschGordan::phy will be suppressed during this calculation.

Out[ ]= 0

XA3 system

(*Now let us consider the XA3 spin system*)

In[ ]:= nspinsA = 3;

nspins = nspinsA + 1;

{nstates, FA, F} = SpinSystemInitialization[nspinsA];

{1, 0}


3

2
,
1

2
, 0


3

2
,
1

2
,
1

2


(*In this case, two summation steps are identical to those shown in Figure 7*)
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In[ ]:= nstates

FA // MatrixForm

F // MatrixForm

Out[ ]= 16

Out[ ]//MatrixForm=
3

2
3

2
1
2
1
2
1
2
1
2

Out[ ]//MatrixForm=

2
1
1
0
1
0

(*The Hilbert space has dimension 16. The highest value of F=

2 can be achieved only in case of the highest value FA=3/2 etc.*)

In[ ]:= EnergyFmF[F〚1〛, FA〚1〛, 1 / 2, 1 / 2, nspins, JAX, JAA]

EnergyFmF[F〚2〛, FA〚2〛, 1 / 2, 1 / 2, nspins, JAX, JAA]

EnergyFmF[F〚3〛, FA〚3〛, 1 / 2, 1 / 2, nspins, JAX, JAA]

EnergyFmF[F〚4〛, FA〚4〛, 1 / 2, 1 / 2, nspins, JAX, JAA]

EnergyFmF[F〚5〛, FA〚5〛, 1 / 2, 1 / 2, nspins, JAX, JAA]

EnergyFmF[F〚6〛, FA〚6〛, 1 / 2, 1 / 2, nspins, JAX, JAA]

Out[ ]=
3 JAA

4
+
3 JAX

4

Out[ ]=
3 JAA

4
-
5 JAX

4

Out[ ]= -
3 JAA

4
+
JAX

4

Out[ ]= -
3 JAA

4
-
3 JAX

4

Out[ ]= -
3 JAA

4
+
JAX

4

Out[ ]= -
3 JAA

4
-
3 JAX

4

(*Above the energies for all possible manifolds of (F,FA) states are shown,

they can be compared to the left section of Figure 8.*)

(*Now let us calculate transition amplitudes, again using Eq. 60.*)
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In[ ]:= F1 = F〚1〛

F2 = F〚2〛

fa = FA〚1〛

mF1 = 0;

mF2 = 0;

IntensityLine =

SumSumClebschGordan{fa, mA}, 
1

2
, ms, {F1, mF1} * ClebschGordan{fa, mA},


1

2
, ms, {F2, mF2} * (γi mA + γs ms),

ms, -
1

2
,
1

2
, 1, {mA, -fa, fa, 1}

2

// FullSimplify

Out[ ]= 2

Out[ ]= 1

Out[ ]=
3

2

ClebschGordan: ThreeJSymbol
3

2
, -
3

2
, 

1

2
, -
1

2
, {2, 0} is not physical.

ClebschGordan: ThreeJSymbol
3

2
, -
3

2
, 

1

2
, -
1

2
, {1, 0} is not physical.

ClebschGordan: ThreeJSymbol
3

2
, -
3

2
, 

1

2
,
1

2
, {2, 0} is not physical.

General : Further output of ClebschGordan::phy will be suppressed during this calculation.

Out[ ]=
1

4
(γi - γs)2

In[ ]:= (*Intensity of the 2JAX line is nonzero*)
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In[ ]:= F1 = F〚3〛

F2 = F〚4〛

fa = FA〚3〛

mF1 = 0;

mF2 = 0;

IntensityLine =

SumSumClebschGordan{fa, mA}, 
1

2
, ms, {F1, mF1} * ClebschGordan{fa, mA},


1

2
, ms, {F2, mF2} * (γi mA + γs ms),

ms, -
1

2
,
1

2
, 1, {mA, -fa, fa, 1}

2

// FullSimplify

Out[ ]= 1

Out[ ]= 0

Out[ ]=
1

2

ClebschGordan: ThreeJSymbol
1

2
, -
1

2
, 

1

2
, -
1

2
, {1, 0} is not physical.

ClebschGordan: ThreeJSymbol
1

2
, -
1

2
, 

1

2
, -
1

2
, {0, 0} is not physical.

ClebschGordan: ThreeJSymbol
1

2
,
1

2
, 

1

2
,
1

2
, {1, 0} is not physical.

General : Further output of ClebschGordan::phy will be suppressed during this calculation.

Out[ ]=
1

4
(γi - γs)2

(*As expected, the intensity of the 1JAX line is

also nonzero. The Reader is encoraged to write a cycle

for all other possible combinations of F1 and F2. However,

one should be carefull when verifying transition amplitudes between the two

states with different FA. The amplitude of all such transitions is zero,

but this is due to the zero value Bra.Ket product which is

taken into account in the more general Eq. 58. Therefore,

in order to perform a proper general simulation one should write a

program that constructs all the Hilbert functions themselves and

can calculate the Bra.Ket products. The limitation of eq. 60 is

illustrated below for a transition that should have a zero amplitude:*)
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In[ ]:= F1 = F〚1〛

F2 = F〚3〛

fa = FA〚1〛

mF1 = 0;

mF2 = 0;

IntensityLine =

SumSumClebschGordan{fa, mA}, 
1

2
, ms, {F1, mF1} * ClebschGordan{fa, mA},


1

2
, ms, {F2, mF2} * (γi mA + γs ms),

ms, -
1

2
,
1

2
, 1, {mA, -fa, fa, 1}

2

// FullSimplify

Out[ ]= 2

Out[ ]= 1

Out[ ]=
3

2

ClebschGordan: ThreeJSymbol
3

2
, -
3

2
, 

1

2
, -
1

2
, {2, 0} is not physical.

ClebschGordan: ThreeJSymbol
3

2
, -
3

2
, 

1

2
, -
1

2
, {1, 0} is not physical.

ClebschGordan: ThreeJSymbol
3

2
, -
3

2
, 

1

2
,
1

2
, {2, 0} is not physical.

General : Further output of ClebschGordan::phy will be suppressed during this calculation.

Out[ ]=
1

4
(γi - γs)2

(*The purpose of this code is educational,

it provides some simple examples of how to use Clebsch-

Gordan coefficents to get analytical expressions for ZULF

NMR. These acquired skills can be usefull to combine with full

spin dynamics simulation tools. We wish you good luck with that!*)
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