Supplement of Magn. Reson., 4, 87-109, 2023
https://doi.org/10.5194/mr-4-87-2023-supplement

© Author(s) 2023. CC BY 4.0 License. MAGNETIC
A\ RESONANCE
Supplement of

Simulation of NMR spectra at zero and ultralow fields from A to Z
— a tribute to Prof. Konstantin L’vovich Ivanov

Quentin Stern and Kirill Sheberstov

Correspondence to: Quentin Stern (quentin.stern @ protonmail.com)

The copyright of individual parts of the supplement might differ from the article licence.

Contents

S1. Explicit calculation of the eigenbasis for XA spin system

S2. Tests on ideal signals to show the efficiency of the Fourier transform algorithm

S3. Simulation of NMR spectra at zero and ultra-low field vs high field

S4. Simulation of NMR spectra at zero and ultra-low field - Case of XA spin system

S5. Simulation of NMR spectra at zero and ultra-low field - Case of XAn spin system

S6. Analytical expressions for the eigenenergies and transition amplitudes of XAn spin
systems at zero field

The codes presented here as PDF files can be downloaded from this link:
https://doi.org/10.5281/zenodo.7758782

S$1. Explicit calculation of the eigenbasis for XA spin system

Below we calculate explicitly the states of the eigenbasis for the XA spin system. An arbitrary
spin state of the XAz spin system can be represented as a linear combination of states obtained
by direct products of the individual Zeeman states: BS = {a, 0} ®{a, B} ®{a,B}; here, the
superscript 8 represents the dimension of the Hilbert space. The goal is to explicitly express
the eigenbasis of the J-coupling Hamiltonian that governs ZULF evolution in terms of the states
of the Zeeman basis B5. This is achieved by adding up the angular momenta of individual spins
taking into account Clebsch-Gordan coefficients to construct the state (see Eq. 46 of the main
text). Figure 7 in the main text illustrates two stages of adding up angular momenta for the XA,
case: A+ Aand A, + X. There are four states with total spin F = 3/2 and four more states with
total spin F = 1/2. The full specification of an eigenfunction at zero field requires three quantum
numbers: the total spin of all three spins F, its projection mr, and the total spin of some of the
two spins. Observable transitions at ZULF conserve the total spin of the A, subsystem (see
Eq. 59 in the main text), so it makes sense to consider the eigenfunctions that are
characterised by the total spin of A, subsystem, F,,. Therefore, three quantum numbers
|F,m, F,,) are used to specify all eight eigenstates.

Eq. 46 of the main text gives the expression of the eigenfunctions of the J-coupling Hamiltonian
in terms of the Zeeman states and the Clebsch-Gordan coefficients for a pair of spins. Because
we are considering three spins, we need to use Eq. 46 twice (for each addition operation)
yielding the expression:

— Fazmaz F,m
|F,m, Fyp) = Zm,,mg C1a1,ma1;1a2,ma2 CFAZ,mAz;S,msllal'mal' L Mgz S,ms), Eq S1

Here, I,; and m,, are the total spin and its projection of the first spin A, respectively, likewise I,, and
m,, are those for the second spin A, and S and mg are the total spin and its projection for spin X,

respectively. As an example, let us consider the |3/2,1/2,1) state. There are two non-zero Clebsch-

Gordan coefficients ;™ .o coupling the two A spins:

F=3/2,m=1/2 = (112 _t
Faz=1my,=1;5=1/2;mg=—-1/2 — \" 7,7

Eq S2

F=3/2,m=1/2 _ 11131 2
Faz=1mg,=0;5=1/2mg=1/2 — \L 033

Each of them is multiplied by the corresponding Clebsch-Gordan coefficient coupling the Az pair with

spin X:
Faz=1ma,=1 _ 1111 B
Ig1=1/2,mq1=1/2;1q2=1/2,mg=1/2 — ; ;';'; Lip=1
Eq S3
Faz=1m;=0 S O O D U O O O
C1a1=1/2,ma1=t1/2:1az=1/2.maz=¢1/2 - <2' 272’2 |1’0> - <2'2'2' 2 |1'0> A2
So that the resulting eigenstate is:
F=32m=17250 =1 = [Haap)+ [[Flaped + 1pac). Eq S4

Analogously, one can calculate all the eigenstates that are shown in Table S1.1. The reader is
encouraged to check this table. Wolfram Mathematica can be used to compute the value of the Clebsch-
Gordan coefficients with the syntax ClebschGordan[{Fal, ma1}, {Fa2, ma2}, {FA2, mA2}].

Finally, we note that the resulting eigenbasis is also the eigenbasis for the As spin system. One may
therefore use it to compute the eigenbasis of the J-coupling Hamiltonian for the XAs spin system using

Eq. 46 one more time.

Table S1.1. Eigenstates of XAz spin system sorted according to |F, m, F4,) quantum numbers, their explicit forms in
terms of Zeeman basis and all the Clebsch-Gordan coefficients that are used to calculate the states. The Clebsch-
Gordan coefficients are written using a braket notation with the correspondence chme =1 s; my, mg|F, mg)

ImpS,ms

Total spin states

(lFfm’FAZ))

Explicit form

Clebsch-Gordan coefficients
used to calculate the

eigenstate

13/2,3/2,1)

|aaa)

13/2,1/2,1)

1 2 1
§¢aaﬁ)+- 3 Eﬂaﬁa>+lﬁaaﬂ

[3/2,-1/2,1)

1 2 1
s1B60)+ |5 |5 UaBB) + 1Bap))

—
N =
|
N =
N R
|
N =
=
|
[SN
=
I
[N

/\
N =
|
N =
N =

N~

=
=]
—

[3/2,-3/2,1)

|BBB)

[1/2,1/2,1)

2 11
Slaap) — |3 |- (apa) + |gac))

[1/2,-1/2,1)

2 11
§|Bﬁa)— 3 5(Iaﬁﬁ>+|ﬂaﬁ>)

A
—
|
=
T
|
ST

A
=
2

N~

| W
|

|
N =

ol W
|
N =

N

v
Il

e “ere

v
Il
|

[1/2,1/2,0)

1
ﬁ(laﬂa) — |Baa))

[1/2,-1/2,0)

1
\E(Iaﬁﬂ) = |Bap))

Supplement 2: Tests on ideal signals to show the efficiency
of the Fourier transform algorithm

Supplementary material to "Simulation of NMR spectra at zero- and ultra-low field from Ato Z —a
tribute to Prof. Konstantin L'vovich lvanov" https://doi.org/10.5194/mr-2022-18

Q. Stern and K. Sheberstov
This script aims at showing that the Fourier transform is accurately computed. It shows:

« That the frequency axis is accurately computed regardless of the number of points in the FID
« That a window function must be applied to the FID to avoid a baseline shift in the Fourier
transform and consequent bias in the signal integration

Effect of zero filling and verification of the frequency axis

This section first computes the time domain signal St of an oscillating signal with frequency nu0 and
a decoherence time constant T2. The signal is sampled with N points from 0 to tmax.

nuo=10;

T2=6; tmax=30;

N=2715;

t=linspace(0,tmax,N)"'; St=zeros(N,1);
St=St+cos(t*2*pi*nud).*exp(-t/T2);

The signal is Fourier transformed using the function FFT (defined at the bottom of the code), with
different values of the zero filling NO. The real parts of the resulting curves are ploted on the same
graph.

The intensity of the signal decreases linearly with the number of points in the Fourier transform (here,
NO). So that all curves superimpose, each curve is multiplied by the number of points of the Fourier
transform NO.

figure
for i=1:6
NO=N*1i;

[nu,Snu_1]=FFT(t,St,N0);
plot(nu,real(Snu_1)*Ne@, 'o-"'), hold on
end
hold off
ylabel('Signal intensity (-)")
xlabel('Frequency (Hz)")
x=0.1; xlim(nue@+[-x +x]), grid on

7000 T T T

6000

5000

4000

3000

Signal intensity (-)

2000

1000

D 1 1 1
99 9.95 10 10.05 10.1

Frequency (Hz)

The plot shows that all the curves superimpose perfectly and that the frequency of the signal is
precisely nu0, as expected. The user may play with the frequency nu0 and choosing arbitrarily long
T2 values, the signal will always appear at nu0 (provided tmax is chosen to be at least 5*T2).

This shows that the computation of the Fourier transform and of the frequency axis are precise.

Verification of the consistency of the integration

This section first computes the time domain signal St of oscillating signals with a frequency list nu0
with a decoherence time constant T2. The signal is sampled with N points from 0 to tmax.

nue=[5 25 50];

T2=6; tmax=80;

N=2715; NO=N*16;

t=1linspace(0,tmax,N)"'; St=zeros(N,1);

for i=1:length(nu0)
St=St+cos(t*2*pi*nuo(i)).*exp(-t/T2);

end

The signal is Fourier transformed using the functions FFT and FFT_CleanBaseline (defined at the
bottom of the code) with NO points.

[nu,Snu_1]=FFT_CleanBaseline(t,St,N0);
[nu,Snu_2]=FFT(t,St,N0);

Sreal 1=real(Snu_1);
Sreal_2=real(Snu_2);

The real part of the Fourier transform is plotted. The veritical dashed lines show the area of
integration of each signal which will be used later, which is defined based on the full width at half
maximum of the signal (FWHM) to go from -W*FWHM to +W*FWHM.

W=40;
figure

plot(nu,Sreal_ 1), hold on
plot(nu,Sreal_2), hold off
grid on
xlim([@ 60])
ylabel('Signal intensity (-)'), xlabel('Frequency (Hz)')
for i=1:length(nuo)
xline(nu@(i)-W/pi/T2, "'k--")
xline(nu@(i)+W/pi/T2, "'k--")
end
legend({'FFT using {\itFFTCleanBaseline}','FFT using {\itFFT}'})

0.01

FFT using FFTCleanBaseline
FFT using FFT §

0.008

0.008

0.007

0.006 f

0.005

=
=
L=
s
L]

Signal intensity (-)

0.003

0.002

0.001

i i A A
0 10 20 30 40 50 60
Frequency (Hz)

FFT_CleanBaseline yields a signal twice as intense as FFT. However, without zooming at the foot of
the signals, there is no reason to think that one algorithm is better than the other one.

figure

plot(nu,Sreal_1), hold on

plot(nu,Sreal_2), hold off

grid on

xlim([0© 60]), ylim([© 1le-5])

ylabel('Signal intensity (-)'), xlabel('Frequency (Hz)')

for i=1:length(nue)
xline(nu@(i)-W/pi/T2, "'k--")
xline(nu@(i)+W/pi/T2, "'k--")

end

legend({'FFT using {\itFFTCleanBaseline}','FFT using {\itFFT}'})

' ! B 1) I
FFT using FFTCleanBaseline
FFT using FFT 7

o
[4s]
T

o
[8s]
T

o
~
T

i
[

Signal intensity (-)
© ©o o
[#5] R o

o
%]
T
L

A N

0 10 20 30 40 50 60
Frequency (Hz)

The zoom above reveals that the Fourier transform computed using FFT has a baseline shift while
that computed using FFT_CleanBaseline appropriately tends towards 0 away form the spectral
components.

This difference is reflected in the signal integrals that are computed using both Fourier transform
algorithms. The intensity of the first point of the FID is, according to Fourier analysis, equal to the
total integral of the spectrum. Because the time domain signal is the sum of three cosine waves with
unit amplitude, the first point of hte FID is equal to 3:

St(1)
ans = 3

For both FFT and FFT_CleanBaseline, the total sum of the spectrum is equal to the first point of the
FID.

In the case of FFT_CleanBaseline:
sum(Sreal_1)
ans = 3.0000

while in the case of FFT:
sum(Sreal_2)
ans = 3.0000

When the individual resonances of the frequency domain signal computed with FFT_CleanBaseline
are integrated, they tend towards 1, as they should:

SumOfTheIntegrals=0;
for i=1:1length(nu@)

Integral=sum(Sreal_ 1(nu>nu@(i)-W/pi/T2 & nu<nu@(i)+W/pi/T2));
disp(['Integral of signal ' num2str(i) ': ' num2str(Integral)])
SumOfTheIntegrals=SumOfTheIntegrals+Integral;

end

Integral of signal 1: ©.99258
Integral of signal 2: ©.99226
Integral of signal 3: ©.99214

and the sum of the three integrals tends towards 3:

SumOfTheIntegrals

SumOfTheIntegrals = 2.9770

To the contrary, when the individual resonances of the frequency domain signal computed with FFT
are integrated, they tend towards significantly lower values than 1, because part of the integral
moved into the baseline:

SumOfTheIntegrals=0;

for i=1:length(nue)
Integral=sum(Sreal_2(nu>nu@(i)-W/pi/T2 & nu<nu@(i)+W/pi/T2));
disp(['Integral of signal ' num2str(i) ': ' num2str(Integral)])
SumOfTheIntegrals=SumOfTheIntegrals+Integral;

end

Integral of signal 1: ©.52738
Integral of signal 2: ©.52722
Integral of signal 3: 0.52716

And the sum of the three integrals is barely higher than half what it should be:

SumOfTheIntegrals

SumOfTheIntegrals = 1.5818

function [nu,S]=FFT_CleanBaseline(t,I,N)
% Converts to column vector
I=I(:);

% Window function to avoid baseline shift
I=[I(1); 2*I(2:end)];

% Sample length (s)
T = (max(t)-min(t))/(length(I)-1);

% Frequency axis (Hz)
nu = (@:N/2-1)/T/N;

% Fourier transform
S = fft(I,N)/N;

% Remove negative frequencies
S=2*S(1:N/2);

end

function [nu,S]=FFT(t,I,N)
% Converts to column vector
I=I(:);

% Sample length (s)
T = (max(t)-min(t))/(length(I)-1);

% Frequency axis (Hz)
nu = (0:N/2-1)/T/N;

% Fourier transform
S = £ft(I,N)/N;

% Remove negative frequencies
S=2*S(1:N/2);
end

Supplement 3: Simulation of NMR spectra at zero and ultra-low field
vs high field

Supplementary material to "Simulation of NMR spectra at zero- and ultra-low field from A to Z — a tribute to Prof.
Konstantin L'vovich Ivanov" https://doi.org/10.5194/mr-2022-18

Q. Stern and K. Sheberstov

This script shows how to simulate NMR spectra for a pair of J-coupled spins (1H and 13C in this example) at zero
field (ZF), ultra-low field (ULF) and high field (HF). The code follows pricesely the structure of the paper.

clear all
All simulated experiments are performed at 298 K (use to compute the thermal equilibrium polarizations)
T=298; % Temperature of prepolarization in K

Physical constants (used to compute the thermal equilibrium polarizations and the magnetic field produced by the
sample in the ZULF experiments)

hbar=1.05457e-34; % Reduced Planck constant in J.s/rad
kB=1.3806485e-23; % Boltzmann constant J.K-1

mue=4*pi*le-7; % Permeability of free space dived in T.m.A-1
NA=6.02e23; % Avogadro's number in mol-1

2.1 Define the experimental sequence

ZF case

The sample is prepolarized at 2 T (magnetic field aligned along the z-axis). We assume that the sample spends
enough time in the prepolarizing field for the spins to be at equilibrium (Boltzmann distribution). The sample is
brought suddenly to zero field, where the magnetic field generated by the sample along time is measured by a
magnetometer placed along the z-axis and sensitive to fields along the z-axis. The sudden transitions projects the
Zeeman states onto the basis states at ZF (the states of the coupled basis) and induce coherences between them.

Bpol=2; % Field for prepolarization in T

ULF case

The experiment is the same as the ZF, except that a magnetic field of 50 uT is applied along the x-axis during
detection.

Bx=0.5e-6; % Magnetic field along x for ULF experiments in T

HF case

Standard HF-NMR acquisition at 9.4 T where a 90° radiofrequency (rf) pulse along the x-axis is applied to nutate the
spins from the z-axis to the y-axis. The oscillating magnetic field is recorded along the y-axis. The experiment is
simulated both for pulse and acquisition on 1H and 13C.

B0=9.4; % Magnetic field for HF experiments in T (typical 400 MHz magnet)

2.2 Define the spin system

The spin system is a pair of J-coupled spins. Spins | and S are a 13C and 1H spin, respectively, for all simulations.

JIS=140; % J-coupling between spin I and S in Hz
gl= 67.262e6; % Gyromagnetic ration of spin I (13C) in rad.s-1.T-1
g5=276.513e6; % Gyromagnetic ration of spin S (1H) in rad.s-1.T-1

2.3 Compute the spin Hamiltonian
Both the ZULF and HF simulation use the same operators. Their expression is given in Sec. 2.3 of the manuscript

Pauli matrices (see Eq. 3)

e =[10; ©01];
sx=[0 1; 1 0];
sy=[0 -1i;1i @];
sz=[1 0; 0 -1];
Operators for spin |, i.e., the 13C spin (see Eq. 6)
Ix=kron(sx/2,e);
Iy=kron(sy/2,e);
Iz=kron(sz/2,e);
Operators for spin S, i.e., the 1H spin (see Eq. 7)
Sx=kron(e,sx/2);
Sy=kron(e,sy/2);
Sz=kron(e,sz/2);
Unity operator in the two-spin Hilbert space
E=kron(e,e);
Zeeman Hamiltonian expressed in rad.s-1 as a function of field along x, yand zin T
HZ=@(Bx, By, Bz) -gI*(Bx*Ix+By*Iy+Bz*Iz) -gS*(Bx*Sx+By*Sy+Bz*Sz);
J-Hamiltonian expressed in rad.s-1 (with the J-coupling expressed in Hz)
HI=2*pi*JIS*(Ix*Sx+Iy*Sy+I1z*Sz);
Total Hamiltonian expressed in rad.s-1 as a function of field along x, y and zin T

Htot=@(Bx, By, Bz) HJ+HZ(Bx, By, Bz);

2.4 Define the initial state: compute the initial density matrix
ZULF case

Polarization of spin | and S at equilibrium in the prepolarizing magnet calculated using Boltzman distribution (see Eq.
22)

PI=tanh(hbar*Bpol*gI/kB/T/2);
PS=tanh(hbar*Bpol*gS/kB/T/2);

The initial state is the same for the ZF and ULF experiment (see Eq. 23)
Iz_2x2=s2/2;
rhoI=e/2+PI*Iz_2x2;
rhoS=e/2+PS*Iz_2x2;
rho_eq_ZULF=kron(rhoI,rhoS);
Modification of the density matrix removing the identity (see Eq. 24)

rho_eq_ZULF=rho_eq_ZULF-E/4;

HF case

The only diffrence with the ZULF case is that the magnetic field at which the spins are prepolarized is higher at HF.

Polarization of spin | and S at equilibrium in the 9.4 T NMR magnet calculated using Boltzman distribution (see Eq.
22)

PI=tanh(hbar*B0*gI/kB/T/2);
PS=tanh(hbar*Be*gS/kB/T/2);

The initial state is the same for the ZF and ULF experiment (see Eq. 23)

Iz_2x2=s2/2;
rhoI=e/2+PI*Iz_2x2;

rhoS=e/2+PS*Iz_2x2;
rho_eq_HF=kron(rhoI,rhoS);

Modification of the density matrices removing the identity (see Eq. 24)
rho_eq_HF=rho_eq_HF-E/4;

2.5-6 Propagate the density matrix under the Hamiltonians and extract expectation values
from the propagation

In practice the expactation values are extracted from the density matrix during the progation (and not in an extra
step). This avoids creating a second for loop.

Parameters for propagation

tag=5; % Propagation/acquisition time in s

K=2712; % Number of points in the FID

L=2"16; % Number of points in the FID with zero filling
T2=1; % Coherence time constant in s

dt=taq/K; % Time interval for propagation in s

t=(0:K-1)"'/K*taq;

R

Time axis in s

ZF case

Observable operator: total field along z in pT at distance r from the sample (in the point dipole approximation, see
Eq. 34 and 35). The sample contains 27 mol-L-1 of molecules and has a volume of 100 uL. The detector is placed at
1 cm from the sample.

C=27; % Molecule concentration in mol.L-1

V=100e-6; % Sample volume in L

r=0.01; % Distance between the center of the sample and the center of the detector in m
N=NA*C*V; % Number of molecules

0=gI*Iz+gS*Sz; % Observation operator
Constant=N*hbar*1lel2*mu@/2/pi/r"3;

Propagator during time interval dr with no field along any direction (see Eq. 30)
U =expm(-1i*dt*Htot(0,0,0));

Empty vector to store the time domain signal during the for loop
TDS_ZF=zeros(K,1);

Initialization of the density matrix
rho=rho_eq_ZULF;

Propagation loop

Propagation loop. The first line in the loop computes the expectation value of the field along z (see Eq. 35) at time ;.
The second line in the loop propagates the state of the system during the interval dr, in other words, it "takes" the
density matrix from time 7, to 7., (see Eq. 29). Note that each loop overrides the previous density matrix. The
expectation value that is computed at iteration k corresponds to the density matrix of iteration k-1. Note that the
expectation value should in principle be real-valued. However, due to the finite precision of numerical calculations,
some minute imaginary part may remain when computing the trace. We therefore use the function real() to remove
the imaginary part.

for k=1:K
TDS_ZF(k)=Constant*real(trace(0*rho));
rho=U*rho*U';

end

ULF case
The observable is the same as for the ZF case.

Propagator during time interval dr with a bias field along the x-axis and no fields along the y- and z-axes (see Eq.
30).

U=expm(-1i*dt*Htot(Bx,0,0));

Empty vector to store the time domain signal during the for loop
TDS_ULF=zeros(K,1);

Initialization of the density matrix
rho=rho_eq_ZULF;

Propagation loop. The first line in the loop computes the expectation value of the field along z (see Eq. 35) at time ¢,.
The process is exaclty the same as for the ZF case, except that the propagator was calculated for the ULF
Hamiltonian (with a small bias field along the x-axis).
for k=1:K
TDS_ULF(k)=Constant*real(trace(0*rho));
rho=U*rho*U";

end

HF case - 13C

The observable at high field is the a operator (expressed in arbitrary units)
0=Ix-1i*Iy;
Propagator with a bias field along the x-axis and no fields along the y- and z-axes (see Eq. 30).
U=expm(-1i*dt*Htot(0,0,B0));
Empty vector to store the time domain signal during the for loop
TDS_HF_13C=zeros(K,1);
Initialization of the density matrix
rho=rho_eq_HF;

The HF experiment requires simulating a pulse: the thermal equilibrium density matrix represents both the 13C and
1H spins with polarization along the z-axis. The rotation operator Up below (see the discussion following Eq. 29) is
used to rotate the 13C spin from the z-axis to the the y-axis.

Up=expm(-1i*Iy*pi/2);
rho=Up*rho*Up"';

Propagation loop. The first line in the loop computes the expectation value of the field along z (see Eq. 35) at time 7.
The second line in the loop propagates the state of the system during the interval dz, in other words, it "takes" the
density matrix from time 7, to 7, (see Eq. 29).
for k=1:K
TDS_HF_13C(k)=trace(0*rho);
rho=U*rho*U";

end

HF case - 1H

The observable at high field is a shift operator (expressed in arbitrary units)
0=Sx-1i*Sy;
Propagator with a bias field along the x-axis and no fields along the y- and z-axes (see Eq. 30).

U=expm(-1i*dt*Htot(0,0,B0));

Empty vector to store the time domain signal during the for loop
TDS_HF_1H=zeros(K,1);

Initialization of the density matrix
rho=rho_eq_HF;

The HF experiment requires simulating a pulse: the thermal equilibrium density matrix represents both the 13C and
1H spins with polarization along the z-axis. The rotation operator Up below (see the discussion following Eq. 29) is
used to rotate the 1H spin from the z-axis to the the y-axis.

Up=expm(-1i*Sy*pi/2);
rho=Up*rho*Up"';

Propagation loop. The first line in the loop computes the expectation value of the field along z (see Eq. 35) at time ;.
The second line in the loop propagates the state of the system during the interval dt, in other words, it "takes" the
density matrix from time 7, to 1., (see Eq. 29).

for k=1:K
TDS_HF_1H(k)=trace(0O*rho);
rho=U*rho*U";

end

2.7 Fourier transform the expectation values to obtain a spectrum

The time domain signals obained in the previous step do not decay to zero because we did not include any
relaxation in the simulations, as can be seen in the plots below.

figure

subplot(2,2,1)
plot(t,TDS_ZF)
ylabel('<{\itB}_z> (pT)")
x1lim([@ max(t)])
title('ZF")

subplot(2,2,2)
plot(t,TDS_ULF)
x1im([@ max(t)])
title('ULF")

subplot(2,2,3)

plot(t,real(TDS_HF_13C))

xlabel('Time (s)'), ylabel('Real signal (a. u.)")
x1im([@ max(t)])

title('HF - ~{13}C")

subplot(2,2,4)
plot(t,real(TDS_HF_1H))
xlabel('Time (s)")
x1im([©@ max(t)])
title('HF - ~1H')

ZF ULF

40

«10¢ HF - Ve x10°5 HF - H

Real signal (a. u.)

0 1

2 3 4
Time (s) Time (s)

To make the signals decay 0, we apply an apodization function (see Eq. 37)

TDS_ZF2 =TDS_ZF exp(-t/T2);
TDS_ULF2 =TDS_ULF .*exp(-t/T2);
TDS_HF_13C2=TDS_HF_13C.*exp(-t/T2);
TDS_HF_1H2 =TDS_HF_1H .*exp(-t/T2);

figure

subplot(2,2,1)
plot(t,TDS_ZF2)
ylabel('<{\itB}_z> (pT)")
x1im([@ max(t)])
title('ZF")

subplot(2,2,2)
plot(t,TDS_ULF2)
x1im([©@ max(t)])
title('ULF")

subplot(2,2,3)

plot(t,real(TDS_HF_13C2))

xlabel('Time (s)'), ylabel('Real signal (a. u.)")
x1im([@ max(t)])

title('HF - ~{13}C")

subplot(2,2,4)
plot(t,real(TDS_HF_1H2))
xlabel('Time (s)")
x1lim([@ max(t)])
title('HF - ~1H')

ZF
40
.30
l_
2
A, 20
28]
W
10
0
0 1 2 3
«10% HF - C
5
S
L
W
50
(7]
™
Luh]
o
5
0 1 2 3
Time (s)

ULF
40

20

-20

40

[|
-
Ma
(48}
a

0 1 2 3 4
Time (s)

A second apodization function is applied to avoid baseline distortion (see Eq. 37 and the related discussion)

TDS_ZF3 =[TDS_ZF2(1); 2*%TDS_ZF2(2:end-1);
TDS_ULF3 =[TDS_ULF2(1); 2*TDS_ULF2(2:end-1);

TDS_ZF2(end)];
TDS_ULF2(end)];

TDS_HF_13C3=[TDS_HF_13C2(1); 2*TDS_HF_13C2(2:end-1);TDS_HF_13C2(end)];
TDS_HF_1H3 =[TDS_HF_1H2(1); 2*TDS_HF_1H2(2:end-1); TDS_HF_1H2(end)];

At HF, the time-domain signal must also be modulated by multiplying the time-domain signal by a complex
exponential. This mathematical process is equivalent to what the spectrometer does: the NMR coil picks up a signal
at oscillate at the Larmor frequency, which is much too high to be digitized. The oscillating current is therefore
modulated with the carrier frequency and the modulated signal is digitized. This shifts the frequency of the oscillating
signals and cause the spectrum to be centered around the carrier frequency.

omegal=-gI*B0O;
omega2=-gS*Bo;

TDS_HF_13C4=TDS_HF_13C3.*exp(1li*omegal*t);
TDS_HF_1H4 =TDS_HF_1H3 .*exp(li*omega2*t);

figure('Units"', 'centimeters', 'Position',[0 © 14.8167 11.1125/2])

subplot(1,2,1)
plot(t,real(TDS_HF_13C4))

xlabel('Time (s)'), ylabel('Real signal (a. u.)")

x1im([© max(t)])
title('HF - ~{13}C")

subplot(1,2,2)
plot(t,real(TDS_HF_1H4))
xlabel('Time (s)")
x1lim([@ max(t)])
title('HF - ~H")

«10%5 HF - C X105 HF - H

1 4
3 05
L]
R
7]
™
& -0.5
-1
] 1 2 3 4 0 1 2 3 4
Time (3) Time (s)

Finally, the signal is Fourier transformed to obtain the frequency-domain signal. In the case of the ZULF signals, only
the real part of the Fourier transform is retained.

FDS_ZF = real(fft(TDS_ZF3,L))/L;
FDS_ULF= real (fft(TDS_ULF3,L))/L;
FDS_ZF = FDS_ZF(1:L/2);

FDS_ULF= FDS_ULF(1:L/2);

At HF, the measured signal is complex. Note that the functions fftshift() is used for the signals at HF because the
convention that MATLAB uses for the fast Fourier transform does not places the 0 frequency on the edges. To obtain
a frequency-domain as is common in NMR, the function fftshift() is used.

FDS_HF_13C
FDS_HF_1H

fftshift(fft(TDS_HF_13C4,L))/L;
fftshift(fft(TDS_HF_1H4,L))/L;

The frequency axis is generated using Eq. 39 and 40. At ZULF, the time-domain signal is real (in usual cases) and so
only positive frequencies are used. At HF, the time-domain signal is imaginary and so both negative and positive
frequencies are used.

f=(K-1)/taq; % Sampling frequency in Hz
nu_ZULF=(@:L/2-1)/L*f; % Frequency axis in Hz
nu_HF=(-L/2:L/2-1)/L*f; % Frequency axis in Hz

The figure below plots the four obtained spectra. The ZF spectrum contains one line at 0 and one at the frequency of
the J-coupling. These lines are split at ULF. Both spectra at HF have the same appearance: they consist of doublet
centered on the carrier frequency (because our simulation did not include any chemical shift) with the splitting of the
doublet corresponding to the frequency of the J-coupling. The signals on the HF 1H spectrium is 4x more intense
than that of the 13C HF spectrum because of the 4x higher Boltzmann polarization of 1H spins.

figure

subplot(2,2,1)
plot(nu_ZULF,FDS_ZF)
xlabel('Frequency (Hz)')
ylabel('<{\itB}_z> (pT)")
x1lim([0 180])

title('zZF")

subplot(2,2,2)
plot(nu_zULF,FDS_ULF)
xlabel('Frequency (Hz)")
x1lim([@ 180])
title('ULF")

subplot(2,2,3)

plot(nu_HF,real(FDS_HF_13C))

xlabel('~{13}C Frequency (Hz)'), ylabel('Real signal (a. u.)")
x1lim([-100 100])

title('HF - ~{13}C")

subplot(2,2,4)
plot(nu_HF,real(FDS_HF_1H))
xlabel('~1H Frequency (Hz)')
xlim([-100 100])

title('HF - ~1H")

ZF ULF
0.2
0.6
- 0.15
‘2 04
A, 0.1
E;IJE
' 0.05
D D‘ 24
0 50 100 150 0 50 100 150
Frequency (Hz) Frequency (Hz)
«10° HF - C «107 HF -™H
6 2
5
© 4 e
gz
=) 1
73]
S
5 05
r
0 0
-100 -50 0 50 100 -100 -50 0 50 100

3C Frequency (Hz) 'H Freqguency (Hz)

Supplement 4: Simulation of NMR spectra at zero and ultra-low field -
Case of XA spin system

Supplementary material to "Simulation of NMR spectra at zero- and ultra-low field from A to Z — a tribute to Prof.
Konstantin L'vovich Ivanov" https://doi.org/10.5194/mr-2022-18

Q. Stern and K. Sheberstov

This script shows how to simulate ZULF spectra for an XA spin system. It was used to generate Figures 4 and 5 of the
paper.

Figure path and plot options

clear all
FigurePath="C:\Users\quent\Documents\Projects\Tutorial paper on ZULF\Figures\';
FigureWidth=11; % Figure width in cm

3R

FigureHeight=3;
FigureWidth2=12;
FigureHeight2=3;

cl=[o 0.4470 0.7410];
c2=[1 1 1]*0.5;

1w=1;

YlimSpectra=[0 0.4];
Y1imFID=[-60 60];

Xlim=[0 160];

Figure height in cm

Nutation figure width in cm
Nutation figure height in cm
Figure color 1

Figure color 2

Figure linewidth

Figure spectra y-limits in pT
Figure FID y-limits in pT
Figure spectra x-limits

32 3R 3% 3R 3R X 3% X

General paramaters and operators

Spin system paramaters

JIS=140; % J-coupling between I and S in Hz
gIl= 67.262e6; % Gyromagnetic ration of spin I (13C) in rad.s-1.T7-1
gS=276.513e6; % Gyromagnetic ration of spin S (1H) in rad.s-1.T-1

Experimental conditions

Bpol=2; % Field for prepolarization in T

T=298; % Temperature of prepolarization in K

Bx=0.5e-6; % Magnetic field along x for ultra-low field experiments in T

Bpulse=50e-6; % Magnetic field along x during DC pulses in T

NA=6.02e23; % Avogadro's number in mol-1

C=27; % Molecule concentration in mol.L-1

V=100e-6; % Sample volume in L

r=0.01; % Distance between the center of the sample and the center of the detector in|m

Physical constants

hbar=1.05457e-34; % Reduced Planck constant in J.s/rad
kB=1.3806485e-23; % Boltzmann constant J.K-1
mud=4*pi*le-7; % Permeability of free space dived in T.m.A-1

Parameters for propagation

tag=5; % Propagation/acquisition time in s

K=2712; % Number of points in the FID

L=2716; % Number of points in the FID with zero filling
T2=1; % Coherence time constant in s

dt=taq/K; % Time interval for propagation in s

3R

t=(0:K-1)'/K*taq; Time axis in s
Frequency axis

f=(K-1)/taq; % Sampling frequency in Hz
nu=(0:L/2-1)/L*f; % Frequency axis in Hz (only positive frequencies)

Integration range

numin=138; % Lower boundary for signal integration in Hz
numax=142; % Higher boundary for signal integration in Hz

Definition of operators

Pauli matrices
e =[10; 01];
sx=[@0 1; 1 0];
sy=[@ -1i;1i e];
sz=[1 0; © -1];
Operators for spin |
Ix=kron(sx/2,e);
Iy=kron(sy/2,e);
Iz=kron(sz/2,e);
Operators for spin S
Sx=kron(e,sx/2);
Sy=kron(e,sy/2);
Sz=kron(e,sz/2);
Unity operator

E=kron(e,e);

Initial density matrix

Polarization of spin | at equilibrium in the prepolarizing magnet calculated using Boltzman distribution
PI=tanh(hbar*Bpol*gI/kB/T/2);

Polarization of spin S at equilibrium in the prepolarizing magnet calculated using Boltzman distribution
PS=tanh(hbar*Bpol*gS/kB/T/2);

Initial density matrix of spin | and S at equilibrium in the prepolarizing magnet
Iz_2by2=sz/2;
rhoI=e/2+PI*1z_2by2;
rhoS=e/2+PS*I1z_2by2;
rho_eg=kron(rhoI,rhoS);

Modification of the density matrix removing the identity

NumberOfSpins=2;
rho_eqg=rho_eq-eye(2”NumberOfSpins)/2”"Number0fSpins;

Hamiltonian and propagators

Zeeman Hamiltonian as a function of field along x, y and z
HZ=@(Bx, By, Bz) -gI*(Bx*Ix+By*Iy+Bz*Iz) -gS*(Bx*Sx+By*Sy+Bz*Sz);
J Hamiltonian
HI=2*pi*JIS*(Ix*Sx+Iy*Sy+Iz*Sz);
Total Hamiltonian
H=@(Bx, By, Bz) HJ+HZ(Bx, By, Bz);
Propagators at zero and ultra-low field

U_ZF =expm(-1i*dt*H(0,0,0));
U_ULF=expm(-1i*dt*H(Bx,0,0));

Observable operator: total field along z in pT at distance r from the sample (in the point dipole approximation)

N=NA*C*V;
0=(gI*Iz+gS*Sz)*N*hbar*lel2*mu@/2/pi/r~3;

Sudden drop experiments

Zero field case

% Vector for the time domain signal
TDS_sudden_ZF=zeros(K,1);

% Initialization of the density matrix

rho=rho_eq;

for k=1:K
% Computes the expectation value of the field along z
TDS_sudden_ZF(k)=real(trace(0*rho));

% Propagates during dt
rho=U_ZF*rho*U_ZF';
end

% Apodization - line broadening
TDS_sudden_ZF=TDS_sudden_ZF.*exp(-t/T2);

% Fourier transform
FDS_sudden_ZF = FourierTransform(TDS_sudden_ZF,L);

% Intensity of the sudden drop signal
I_sudden_drop=sum(FDS_sudden_ZF(nu>numin & nu<numax))

I_sudden_drop = 9.1326
Ultra-low field case

% Vector for the time domain signal
TDS_sudden_ULF=zeros(K,1);

% Initialization of the density matrix

rho=rho_eq;

for k=1:K
% Computes the expectation value of the field along z
TDS_sudden_ULF(k)=real(trace(0*rho));

% Propagates during dt
rho=U_ULF*rho*U_ULF";
end

% Relaxation
TDS_sudden_ULF=TDS_sudden_ULF.*exp(-t/T2);

% Fourier transform
FDS_sudden_ULF = FourierTransform(TDS_sudden_ULF,L);

Plot the results

figure("Units","centimeters"”,"Position",[@ © FigureWidth FigureHeight])
subplot(1,4,1)

plot(t,TDS_sudden_ULF, 'LineWidth', 1w, 'color',c2), hold on
plot(t,TDS_sudden_ZF, 'LineWidth', 1w, 'color',cl), hold off

x1lim([@ taq]), %xlabel('Time (s)')

ylabel('<{\itB}_z> (pT)")

ylim(Y1imFID)

set(gca, 'fontsize',7)

subplot(1,4,[2 4])
plot(nu,FDS_sudden_ULF, 'LineWidth', 1w, 'color',c2), hold on
plot(nu,FDS_sudden_ZF, 'LineWidth',1lw, 'color',cl), hold off
x1im(X1im), %xlabel('Frequency (Hz)")

set(gca, 'fontsize',7)

ylim(YlimSpectra)

exportgraphics(gcf,fullfile(FigurePath, 'XA_system_sudden_drop.pdf'), 'ContentType', 'vector")

D4

50
_ 03
'_
-
" 0 02
o
v 0.1

50 oA x

0 5 0 50 100 150

Adiabatic field drop
Propagation of the adiabatic field drop

B_start=200e-6; % Magnetic field at the start of the decay in T

t_adia=0.5; % Time of the adiabatic field drop in s
T_adia=0.05; % Decay time constant of the adiabatic field drop in s
M=5000; % Number of discrete points for the adiabatic field drop

Time intervals for adiabatic field drop
dt_adia=t_adia/M;
Field profile of the adiabatic field drop: exponential decay generated by a Helmholtz coil.
B_adia=B_start*(exp(-(0:M-1)/M*t_adia/T_adia)-exp(-t_adia/T_adia))/(1l-exp(-t_adia/T_adia));
Propagation

rho_adia=rho_eq;

for k=1:M
U=expm(-1i*dt_adia*H(@,0,B_adia(k)));
rho_adia=U*rho_adia*U';

end

Zero field case

% Vector for the time domain signal
TDS_AFD_ZF=zeros(K,1);

% Initialization of the density mat

rho=rho_adia;

for k=1:K
% Computes the expectation value of the field along z
TDS_AFD_ZF(k)=real(trace(0*rho));

% Propagates during dt
rho=U_ZF*rho*U_ZF';
end

% Apodization - line broadening
TDS_AFD_ZF=TDS_AFD_ZF.*exp(-t/T2);

% Fourier transform
FDS_AFD_ZF = FourierTransform(TDS_AFD_ZF,L);

Ultra-low field case
Propagation

% Vector for the time domain signal
TDS_AFD_ULF=zeros(K,1);

% Initialization of the density mat
rho=rho_adia;
for k=1:K

% Computes the expectation value of the field along z
TDS_AFD_ULF(k)=real(trace(0*rho));

% Propagates during dt
rho=U_ULF*rho*U_ULF"';
end

% Relaxation
TDS_AFD_ULF=TDS_AFD_ULF.*exp(-t/T2);

% Fourier transform
FDS_AFD_ULF = FourierTransform(TDS_AFD_ULF,L);

Plot the results
figure("Units","centimeters","
subplot(1,4,1)
plot(t,TDS_AFD_ULF, 'LineWidth',1w, 'color',c2), hold on
plot(t,TDS_AFD_ZF, 'LineWidth',1lw, 'color',cl), hold off
x1im([© taql), %xlabel('Time (s)')

ylim(Y1imFID), ylabel('<{\itB}_z> (pT)")

set(gca, 'fontsize',7)

Position",[@ © FigureWidth FigureHeight])

subplot(1,4,[2 4])
plot(nu,FDS_AFD_ULF, 'LineWidth"', 1w, 'color',c2), hold on
plot(nu,FDS_AFD_ZF, 'LineWidth',1w, 'color',cl), hold off
x1lim(X1lim), %xlabel('Frequency (Hz)")

set(gca, 'fontsize',7)

ylim(YlimSpectra)

exportgraphics(gcf,fullfile(FigurePath, 'XA_system_adiabatic.pdf'), 'ContentType', 'vector"')

o 0.4
— 0.3
5
A 0 0.2
M
m
i 0.1
-50 DL "
0 5 0 50 100 150

Propgation of the pulse along Z

Pulse length in' s
tpulse=150e-6;
Pulse propagator and density operator after the pulse

Upulse=expm(-1li*tpulse*HZ(0,0,Bpulse));
rho_afterpuse=Upulse*rho_adia*Upulse’;

Zero field case

% Vector for the time domain signal
TDS_Z_pulse_ZF=zeros(K,1);

% Initialization of the density mat

rho=rho_afterpuse;

for k=1:K
% Computes the expectation value of the field along z
TDS_Z_pulse_ZF(k)=real(trace(0*rho));

% Propagates during dt
rho=U_ZF*rho*U_ZF";
end

% Apodization - line broadening
TDS_Z_pulse_ZF=TDS_Z_pulse_ ZF.*exp(-t/T2);

% Fourier transform
phase=pi/2;
FDS_Z_pulse_ZF = FourierTransform(TDS_Z_pulse_ZF*exp(li*phase),L);

Ultra-low field case

% Vector for the time domain signal
TDS_Z_pulse_ULF=zeros(K,1);

% Initialization of the density mat

rho=rho_afterpuse;

for k=1:K
% Computes the expectation value of the field along z
TDS_Z_pulse_ULF(k)=real(trace(0*rho));

% Propagates during dt
rho=U_ULF*rho*U_ULF';
end

% Relaxation
TDS_Z_pulse ULF=TDS_Z_ pulse_ULF.*exp(-t/T2);

% Fourier transform
phase=pi/2;
FDS_Z_pulse_ULF = FourierTransform(TDS_Z_pulse_ULF*exp(li*phase),L);

Plot the results

figure("Units","centimeters",
subplot(1,4,1)
plot(t,TDS_Z_pulse_ULF, 'LineWidth',1lw, 'Color',c2), hold on
plot(t,TDS_Z_pulse ZF, 'LineWidth',lw, 'Color',cl), hold off
xlim([@ taq]), %xlabel('Time (s)')

ylim(Y1imFID), ylabel('<{\itB}_z> (pT)")

set(gca, 'fontsize',7)

Position",[@ © FigureWidth FigureHeight])

subplot(1,4,[2 4])
plot(nu,FDS_Z pulse ULF, 'LineWidth', 1w, 'Color',c2), hold on
plot(nu,FDS_Z_pulse_ZF, 'LineWidth"',1lw, 'Color',cl), hold off
x1lim(X1im), %xlabel('Frequency (Hz)")

set(gca, 'fontsize',7)

ylim(YlimSpectra)

exportgraphics(gcf,fullfile(FigurePath, 'XA_system adiabatic_and_pulse_Z.pdf'), 'ContentType', 'vector")

0.4
50
— 0.3
(=
PV 0.2
M
jun]
¥ 0.1
- U |
0 5 0 50 100 150

Pulse along X
Pulse length in s

tpulse=910e-6;
Pulse propagator and density operator after the pulse

Upulse=expm(-1li*tpulse*HZ(Bpulse,0,0));
rho_afterpuse=Upulse*rho_adia*Upulse’;

Zero field case

% Vector for the time domain signal

TDS_X_pulse_ZF=zeros(K,1);

% Initialization of the density mat

rho=rho_afterpuse;

for k=1:K
% Computes the expectation value of the field along z
TDS_X_pulse_ZF(k)=real(trace(0*rho));

% Propagates during dt
rho=U_ZF*rho*U_ZF';
end

% Apodization - line broadening
TDS_X_pulse_ZF=TDS_X_pulse_ZF.*exp(-t/T2);

% Fourier transform
FDS_X_pulse_ZF = FourierTransform(TDS_X_pulse_ZF,L);

Ultra-low field case

% Vector for the time domain signal
TDS_X_pulse_ULF=zeros(K,1);

% Initialization of the density mat

rho=rho_afterpuse;

for k=1:K
% Computes the expectation value of the field along z
TDS_X_pulse_ULF(k)=real(trace(0*rho));

% Propagates during dt
rho=U_ULF*rho*U_ULF";
end

% Relaxation
TDS_X_pulse ULF=TDS_X_pulse_ULF.*exp(-t/T2);

% Fourier transform
FDS_X_pulse ULF = FourierTransform(TDS_X_pulse ULF,L);

Plot the results

figure("Units","centimeters","Position",[@ © FigureWidth FigureHeight])
subplot(1,4,1)

plot(t,TDS_X_pulse_ULF, 'LineWidth',1lw, 'color',c2), hold on
plot(t,TDS_X_pulse_ZF, 'LineWidth', 1w, 'color',cl), hold off

x1im([© taq]l), %xlabel('Time (s)')

ylim(Y1imFID), ylabel('<{\itB}_z> (pT)")

set(gca, 'fontsize',7)

subplot(1,4,[2 4])

plot(nu,FDS_X_pulse_ULF, 'LineWidth',1lw, 'color',c2), hold on
plot(nu,FDS_X_pulse_ZF, 'LineWidth"',1lw, 'color',cl), hold off
x1lim(X1lim), %xlabel('Frequency (Hz)")

set(gca, 'fontsize',7)

ylim(YlimSpectra)

exportgraphics(gcf,fullfile(FigurePath, 'XA_system_adiabatic_and_pulse_X.pdf'), 'ContentType', 'vector")

0.4
50
. 0.3
ch
A U»—-— 0.2
M
om
& 0.1
-50 8 L
0 5 0 50 100 150

Nutation curve with pulse along x

% Vector containing the pulse lengths in s
tpulse=linspace(0,3000e-6,3000);

% Vector for signal as a function of the pulse length
I_X_pulse_nutation=zeros(length(tpulse),1);

parfor i=1:length(tpulse)
% Vector for the time domain signal
TDS_X_pulse_nutation=zeros(K,1);

% Propagator of the pulse Hamiltonian
Upulse=expm(-1i*tpulse(i)*HZ(Bpulse,0,0));

% Initialization of the density mat
rho=Upulse*rho_adia*Upulse’;
for k=1:K
% Computes the expectation value of the field along z
TDS_X_pulse_nutation(k)=real(trace(0*rho));

% Propagates during dt
rho=U_ZF*rho*U_ZF';
end

% Apodization - line broadening
TDS_X_pulse_nutation=TDS_X_pulse_nutation.*exp(-t/T2);

% Fourier transform
FDS_X_pulse_nutation=FourierTransform(TDS_X_pulse_nutation,L);

% Chops the relevant portion of the spectrum
S_=FDS_X_pulse_nutation(nu>numin & nu<numax);

% Integrates the portion of the spectrum
I X _pulse nutation(i)=sum(S_);
end

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 4).

figure("Units","centimeters","Position",[@ © FigureWidth2 FigureHeight2])
plot(tpulse*le6,I_X_pulse_nutation, 'LineWidth',lw)
yline(I_sudden_drop, 'k--")

ylabel('<{\itB}_z> (pT)"'), %xlabel('Pulse length (\mus)')

ylim([-20 20])

set(gca, 'fontsize',7)

exportgraphics(gcf,fullfile(FigurePath, 'XA_ZULF_nutation_curve X.pdf'),'ContentType', 'vector')

20 T T T r T

10

(T

0

=8 =
z

-10

-EOD 500 1000 1500 2000 2500 3000

disp(['Signal ratio with respect to sudden drop: num2str(max(I_X_pulse_nutation)/I_sudden_drop)])

Signal ratio with respect to sudden drop: 1.64

Nutation curve with pulse along z

% Vector containing the pulse lengths in s
tpulse=linspace(0,3000e-6,3000);

% Vector for signal as a function of the pulse length
I_7Z pulse_nutation=zeros(length(tpulse),1);

parfor i=1:length(tpulse)
% Vector for the time domain signal
TDS_Z_pulse_nutation=zeros(K,1);

% Propagator of the pulse Hamiltonian
Upulse=expm(-1i*tpulse(i)*HZ(0,0,Bpulse));

% Initialization of the density mat
rho=Upulse*rho_adia*Upulse’;
for k=1:K
% Computes the expectation value of the field along z
TDS_Z_pulse_nutation(k)=real(trace(0*rho));

% Propagates during dt
rho=U_ZF*rho*U_ZF';
end

% Apodization - line broadening
TDS_Z_pulse_nutation=TDS_Z_pulse_nutation.*exp(-t/T2);

% Fourier transform
phase=pi/2;
FDS_Z_pulse_nutation=FourierTransform(TDS_Z_pulse_nutation*exp(li*phase),L);

% Chops the relevant portion of the spectrum
S_=FDS_Z_pulse_nutation(nu>numin & nu<numax);

% Integrates the portion of the spectrum
I_Z pulse nutation(i)=sum(S_);
end

figure("Units","centimeters","Position",[@ © FigureWidth2 FigureHeight2])
plot(tpulse*le6,I_Z_pulse_nutation, 'LineWidth',1lw)
yline(I_sudden_drop, 'k--")

ylabel('<{\itB}_z> (pT)")

%xlabel('Pulse length (\mus)')

ylim([-20 20])

set(gca, 'fontsize',7)

exportgraphics(gcf,fullfile(FigurePath, 'XA_ZULF_nutation_curve_Z.pdf'), 'ContentType', 'vector')

20

o] 500 1000 1500 2000 2500 3000

Functions

function S=FourierTransform(I,N)
% Converts to column vector
I=I(:);

% Window function to avoid baseline shift
I=[I(1); 2*I(2:end-1); I(end)];

% Fourier transform
S = real(fft(I,N))/N;

% Remove negative frequencies
S=2*S(1:N/2);
end

Supplement 5: Simulation of NMR spectra at zero and ultra-low field
- Case of XAn spin system

Supplementary material to "Simulation of NMR spectra at zero- and ultra-low field from A to Z — a tribute to Prof.
Konstantin L'vovich Ivanov" https://doi.org/10.5194/mr-2022-18

Q. Stern and K. Sheberstov

This script shows how to simulate ZULF spectra for an XAn spin system. It was used to generate Figure 6 of the
paper.

Figure path and plot options

clear all

FigurePath="C:\Users\quent\Documents\Projects\Tutorial paper on ZULF\Figures\';
cl=[o 0.4470 0.7410];

c2=[1 1 1]*e@.5;

1w=1;

General paramaters and operators

Spin system paramaters

N

JIS=140;
Jss=10;
gI= 67.262e6;
g5=276.513e6;

J-coupling between I and S in Hz

J-coupling between S spins in Hz

Gyromagnetic ration of spin I (13C) in rad.s-1.T-1
Gyromagnetic ration of spin S (1H) in rad.s-1.T7-1

3R 3R X

Experimental conditions

Bpol=2; % Field for prepolarization in T

T=298; % Temperature of prepolarization in K

Bx=0.5e-6; % Magnetic field along x for ultra-low field experiments in T

Bpulse=50e-6; % Magnetic field along x during DC pulses in T

NA=6.02e23; % Avogadro's number in mol-1

C=27; % Molecule concentration in mol.L-1

V=100e-6; % Sample volume in L

r=0.01; % Distance between the center of the sample and the center of the detector in m

Physical constants

hbar=1.05457e-34; % Reduced Planck constant in J.s
kB=1.3806485e-23; % Boltzmann constant J.K-1
mu@=4*pi*le-7; % Permeability of free space dived in T.m.A-1

Parameters for propagation

tag=5; % Propagation/acquisition time in s

K=2713; % Number of points in the FID

L=2"16; % Number of points in the FID with zero filling
T2=1; % Coherence time constant in s

dt=taq/K; % Time interval for propagation in s

B

t=(0:K-1)"'/K*taq; Time axis in s
Frequency axis

f=(K-1)/taq; % Sampling frequency in Hz
nu=(0:L/2-1)/L*f; % Frequency axis in Hz

Initial polarization
Polarization of spin | at equilibrium in the prepolarizing magnet calculated using Boltzman distribution

PI=tanh(hbar*Bpol*gI/kB/T/2);

Polarization of spin S at equilibrium in the prepolarizing magnet calculated using Boltzman distribution
PS=tanh(hbar*Bpol*gS/kB/T/2);

Cells to store the FID and spectra

Maximum number of X spins
N=5;
Cells to stores the time domain signals

TDS_ZF=cell(N,1);
TDS_ULF=cell(N,1);

Cells to store the frequency domain signals

FDS_ZF=cell(N,1);
FDS_ULF=cell(N,1);

Basis operators in single-spin Hilbert space
Pauli matrices

e =[10; ©1];
sx=[0 1; 1 0];
sy=[0 -1i;1i 0];
sz=[1 0; © -1];

Angular momentum operators in single spin space

Ix_=sx/2;
Iy_=sy/2;
Iz_=sz/2;
E=eye(2);

Number of molecules in the sample

N_molecules=NA*C*V;

Loops over the number of X spins

parfor n=1:N
% Total number of spins of the AXn spins system
m=1+n;

% Constructs the operators for m-dimensional Hilbert space
Ix=cell(m,1);
Iy=cell(m,1);
Iz=cell(m,1);

for i=1:m
Ix{i}=1; Iy{i}=1; Iz{i}=1;
for j=1:m
if i==j

Ix{i}=kron(Ix{i},Ix_);
Iy{i}=kron(Iy{i},Iy_);
Iz{i}=kron(Iz{i},Iz_);

else
Ix{i}=kron(Ix{i},E);
Iy{i}=kron(Iy{i},E);
Iz{i}=kron(Iz{i},E);

end

end
end

% Constructs the Zeeman Hamiltonian
HZ=@(Bx, By, Bz) -gI*(Bx*Ix{1}+By*Iy{1}+Bz*Iz{1});

for i=2:m
HZ=@(Bx, By, Bz) HZ(Bx, By, Bz) -gS*(Bx*Ix{i}+By*Iy{i}+Bz*Iz{i});
end

% Constructs the J-Hamiltonian
HJ=zeros(2”m);
for i=2:m
% AX couplings
HI=HJ +2*pi*JIS*(Ix{1}*Ix{i}+Iy{1}*Iy{i}+Iz{1}*Iz{i});

% XX couplings
for j=i+l:m
HI=HJ +2*pi*JSS*(IX{i}*Ix{j}+Iy{i}*Iy{j}+Iz{i}*Iz{j});
end
end

% Constructs the density matrix

rhoe=eye(2)/2+PI*Iz_;

for i=2:m
rho@=kron(rho®,eye(2)/2+PS*Iz_);

end

% Removes the identity
rho@=rho@-eye(2”m)/2"m;

% Constructs the propagators at zero and ultra-low field
U_ZF =expm(-1i*dt*H]);
U_ULF=expm(-1i*dt*(HJ+HZ(Bx,0,0)));

% Constructs the observable operator in pT
0=gI*Iz{1};
for i=2:m
0=0+gS*Iz{i};
end

% Conversion to pT
0=N_molecules*hbar*1el12*mu@/2/pi/r~3*0;

% Creates empty vectors to store the time domain signals
TDS_ZF{n}= zeros(length(t),1);
TDS_ULF{n}=zeros(length(t),1);

% Propagation loop for the ZF case

% Initialization of the density matrix

rho=rho@;

for k=1:K
% Computes the expectation value of the field along z
TDS_ZF{n}(k)=TDS_ZF{n}(k)+real(trace(0*rho));

% Propagates during dt
rho=U_ZF*rho*U_ZF';
end

% Propagation loop for the ULF case

rho=rho@;

for k=1:K
% Computes the expectation value of the field along z
TDS_ULF{n}(k)=TDS_ULF{n}(k)+real(trace(0*rho));

% Propagates during dt
rho=U_ULF*rho*U_ULF';
end

% Apodization function - line broadening
TDS_ZF{n} =TDS_ZF{n} .*exp(-t/T2);

end

TDS_ULF{n}=TDS_ULF{n}.*exp(-t/T2);

% Fourier transform
FDS_ZF{n} = FourierTransform(TDS_ZF{n},L);
FDS_ULF{n} = FourierTransform(TDS_ULF{n},L);

Plots the results

non non

figure("Units","centimeters"”,"Position",[@ © 18 19])

for

end

i=1:N

subplot(N,5,1+(i-1)*5)

plot(nu, real(FDS_ULF{i}), 'linewidth',1lw, ‘color',c2), hold on
plot(nu, real(FDS_zZF{i}), 'linewidth',lw, 'color',cl), hold off
xlim([e 35]), ylim([@ 2.4])

ylabel('<{\itB}_z> (pT)")

xticks([© 10 20 30])

set(gca, 'fontsize',7)

if i==N
xlabel('Frequency (Hz)"')
end

subplot(N,5, (i-1)*5+(2:5))

plot(nu, real(FDS_ULF{i}), 'linewidth',1lw, ‘color',c2), hold on
plot(nu, real(FDS_ZF{i}), 'linewidth',1lw, 'color',cl), hold off
x1lim([100 450]), ylim([© ©.5])

set(gca, 'fontsize',7)

if i==N
xlabel('Frequency (Hz)"')
end

exportgraphics(gcf,fullfile(FigurePath, 'XAn_system_spectra.pdf'), 'ContentType', 'vector")

Warning: Vectorized content might take a long time to create, or it might contain unexpected results. Set

'Cor

- (8 0.4
‘2 15 0.3fF
A
q; 1 02k
05 A 0.1k
'} L L 1 1 1 1 1
0 10 20 30 ?DU 150 200 250 300 350 400
. 2 0.4k
E 1.5 0.3k
A
I:‘g-' 1 02k
05 l 0.1] I
‘} L L 1 I L 1 1 1
0 10 20 30 ?ﬂﬂ 150 200 250 300 350 400
2 0.4F
E 1.5 0.3k
A
%? 1 0.2k
05 L o1} ‘
0 j L 1 Li * 1 l L i 1 1
0 10 20 30 ?DO 150 200 250 300 350 400
2 0.4f
‘215 0.3k
A
Q.E.Y 1 0.2k
03 0AF I
G L 1 l i I 1 L i | i 1
D 10 20 30 ?Dﬂ 150 200 250 300 350 400
2 0.4f
=15 0.3k
A
I:F 1 o2k
05 o1k l
0 I Il 1 Li ‘ l l L i 1 Loa i
0 1 20 30 ?ﬂﬂ 150 200 250 300 350 400
Frequency (Hz) Frequency (Hz)
Functions

function S=FourierTransform(I,N)
% Converts to column vector

end

I=I(:);

% Window function to avoid baseline shift
I=[I(1); 2*I(2:end-1); I(end)];

% Fourier transform
S = real(fft(I,N))/N;

% Remove negative frequencies
S=2*S(1:N/2);

Supplement 6 - Analytical expressions for the
eigenenergies and transition amplitudes of XA, spin
systems at zero field

Supplementary material to “Simulation of NMR spectra at zero- and ultra-low field from AtoZ - a
tribute to Prof. Konstantin L’vovich Ivanov” https://doi.org/10.5194/mr-2022-18
Q. Stern and K. Sheberstov

PDF and .nb Mathematica files are provided, code lines are shown in black, whereas comments are
shownin blue.

Initialization of general functions

(*We first introduce two general functions that are used to calculate
the eigenstates and eigenenergies for an arbitrary XA, system. After
that we implement these functions for the cases XA, XA,, and XAsx)

SpinSystemInitialization[nspinsI_] := Module[{nstates, F, FA, FAPrevious, tmp, i, j},

(*This function sets the spin system to XA,. First,

it calculates the dimension of the Hilbert space. Second,

it calculates all possible values of the total spin F,,

and then of the total spin F. Additionally, it prints out how the list of F, values
changes recursevily upon (n-1) summation steps in the manner of Figure 7.%)

1 nspinsI 1 1
nstates:(z*—+1) *[2*—+1);
2 2

(*General expression for the Hilbert dimension of n spins I is given by (2I+1)"x)

FAmax = 0;
1

Fas{s}s

(*FA is a list containing all possible values of the total spin of A, spin
subsystem. It is calculated recursively implementing Eq. 45 of the text -
for each (n-1) summation of spins-1/2 %)

I-F[nspinsI >1,
For[i =1, i< nspinsI -1, i++,

FAPrevious = FA;
tmp = 1;
For‘[j =1, j < Length[FAPrevious], j++,

Which [FAPrevious I[31 == o,

1
FA[tmp] = —;
2

Printed by Wolfram Mathematica Student Edition

2 | S6-XAn_EigenEnergies_and_SelectionRules.nb

Print[FA];
tmp = tmp + 1,

FAPrevious[j] # 0,

1
FA[tmp] = FAPrevious[j] + —;
2

tmp = tmp + 1;
1

FA = Insert [FA, FAPrevious[ij] - —, tmp];
2

tmp = tmp + 1;
Print[FA]

]
s

(*F is a list containing all possible values of the total spin
of the full XA, system. The cycle below also updates the F, list -
because not all combinations of (F,F,) are possible. It is calculated
similary as above by using Eq. 45 of the text. In this case,

just one summation is needed for FA of spin Xx)
FAPrevious = FA;

F = FA;

tmp = 1;

For‘[j =1, j < Length[FAPrevious], j++,

Which[FAPrevious[[j]] =0,
1
Fltmp] = —;
2
FA[tmp] = 0;

tmp = tmp + 1,

FAPrevious[j] # 0,
1

FItmp] = FAPrevious[j] + —;
2
FA[tmp] = FAPrevious[jl;
tmp = tmp + 1;
1
F = Insert [F, FAPrevious[j] - —, tmp];
2

FA = Insert[FA, FAPrevious[jl, tmp];
tmp = tmp + 1;

Printed by Wolfram Mathematica Student Edition

S6-XAn_EigenEnergies_and_SelectionRules.nb | 3

{nstates, FA, F}

]

EnergyFmF [F_, FA_, Ispin_, Sspin_, nspins_, JAX_, JAA_] := Module [{E},

(*This function calculates eigenenergy of a the XA,

spin system at zero field using equation 54 of the main textx)
JAX

E = — (F(F+1) - Sspin (Sspin+1) -FA (FA+1)) +
2

JAA
—— (FA (FA+1) - (nspins -1) Ispin (Ispin+1))
2

XA system

(xWe start with the XA spin system. The spin system is constructed using the
SpinSystemInitialization[] function. It calculates the number of spin states,
the list of all possible values for the F, quantum number and

the list of all possible values for the F quantum numberx)

- = nspinsA = 1;
nspins = nspinsA + 1;
{nstates, FA, F} = SpinSystemInitialization[nspinsA];

n- = nstates
FA // MatrixForm
F // MatrixForm

outl+]= 4

Out[+ J//MatrixForm=

Nk Nl

Out[+ J//MatrixForm=
1
o)
(xThe above output shows that the Hilbert space has dimension 4,

Fo is always 1/2 and F equals to either 1 (triplet states) or 0 (singlet state). Now
let us calculate the eigenvalues of 4 energy levels using EnergyFmF[] functionx)

- 1= EnergyFmF [F[1], FA[1], 1/ 2, 1/ 2, nspins, JAX, JAA]
JAX

ouf+] ——
4

n- 1= (xAbove is the energy of the three degenerat tiplet
states. This agrees with the result of Figure 8 for AX systemx)

1= EnergyFmF[F[2], FA[1], 1/ 2, 1/ 2, nspins, JAX, JAA]
3 JAX

oufe]= ————
4

Printed by Wolfram Mathematica Student Edition

4 | S6-XAn_EigenEnergies_and_SelectionRules.nb

n- 1= (xAbove is the energy of the singlet state. This
agrees with the result of Figure 8 for AX system x)

mnr- 1= (*Now let us calculate transition amplitudes using Eq. 60. First between S, and Tg. *)

m- 1= F1 =13 (xtriplet statesx)
F2 = 9; (*singlet statex)
mFl = @; (*transition invloving the T, statex)
mF2 = @; (xtransition invloving the S, statex)
IntensitylLine =

(Sum[Sum[clebschGor‘dan[{z, mA}, {2, ms}, {F1, mFl}] *ClebschGordan[{z, mA},

{21 ms}, {F2, mFZ}] * (ylmA + ysms),

{ms, -

++= ClebschGordan: ThreeJSymboI[{l, —1} {1 —1} {1, O}] is not physical.
2 2 2 2

1 2
.-, 1}], (mA, -FA[1], FA[1], 1}]] // FullSimplify
2

N R

11 1 1

-=+ ClebschGordan: ThreeJSymboI[{—, ——}, {—, ——}, {0, O}] is not physical.
2 2 2

-+« ClebschGordan: ThreeJSymboI[{l, l} {l 1} {1, O}] is not physical.
2 2 2 2

«=+ General: Further output of will be suppressed during this calculation.

1 i)
ouf-]= — (yl-vys)
4

(xIt can be seen that transition amplitude is porportional to the difference
between gyromagnetic ratios and vanishes in case they are equal. Now
let us check if there is an observable transition between S, and T,;x)

Printed by Wolfram Mathematica Student Edition

S6-XAn_EigenEnergies_and_SelectionRules.nb | 5

m- 1= F1 =13 (xtriplet statesx)
F2 = @; (xsinglet statex)
mFl = 1; (xtransition invloving the T,; statex)
mF2 = @; (»transition invloving the S, statex)
IntensitylLine =

1
[Sum[Sum[ClebschGor‘dan[{FA|I1]], mA}, {—, ms}, {F1, mFl}] *ClebschGor‘dan[
2
1
(FA[1], mA}, {—, ms}, (F2, sz}] * (yimA +ysms),
2

fms, -
1T 1 1T 1

-= ClebschGordan: ThreeJSymboI[{—, ——}, {—, ——}, {1, —1}] is not physical.
2 2 2 2

NIk

1 2
, -, 1}], (mA, -FA[1], FA[1], 1}” // FullSimplify
2

1T 1

-+ ClebschGordan: ThreeJSymboI[{l, ——}, {—, ——}, {0, O}] is not physical.
2

2 2

11 11
-+ ClebschGordan: ThreeJSymbol[{—, ——}, {—, —}, {1, —1}] is not physical.
2 2 2 2
= General: Further output of will be suppressed during this calculation.

outl- - @

1= (*Intensity is zero. Same with all other possible combinationsx)

m- 1= F1 = 1; (xtriplet statesx)
F2 = 1; (»triplet statex)
mFl = 1; (*transition invloving the T,; statex)
mF2 = @; (xtransition invloving the T, statex)
IntensitylLine =

(Sum[Sum[ClebschGor‘dan[{FA[[I]], mA}, {2, ms}, {F1, mFl}] *ClebschGor‘dan[

1
(FA[1], mA}, {;, ms}, (F2, mFZ}] * (yimA + ysms),

{ms, -
1 1T 1

-+ ClebschGordan: ThreeJSymboI[{l, ——}, {—, ——}, {1, —1}] is not physical.
2 2

NIl R

1 2
, -, 1}], {(mA, —FA[1], FA[1], 1}]] // FullSimplify
2

-= ClebschGordan: ThreeJSymboI[{l, —1} {l —l} {1, O}] is not physical.
2 2 2

-+ ClebschGordan: ThreeJSymboI[{l, —1} {1 1} {1, —1}] is not physical.
2 2 2 2

+= General: Further output of will be suppressed during this calculation.

outf-]= ©

(xThese calculations support the conclusions about the selection
rules in the main text and mean that for the AX system at zero
field only one transition between the S, and T, states is observable
and only if the two nuclei have different gyromagnetic ratios.=x)

Printed by Wolfram Mathematica Student Edition

6 | S6-XAn_EigenEnergies_and_SelectionRules.nb

XA, system

(*Now let us consider the XA, spin system. The same procedure is applied herex)

inf- = nspinsA = 2;
nspins = nspinsA + 1;
{nstates, FA, F} = SpinSystemInitialization[nspinsA];

{1, @}

(*The SpinSystemInitialization[] function prints out the recusive changes of the
list F, for each summation step. In this case, just one summation step is done,
thus one line showing that F, can be either 1 (triplet) or © (singlet) =)

n- = nstates
FA // MatrixForm
F // MatrixForm

outl- = 8

Out[+ J//MatrixForm=
1
1
0

Out[J//MatrixForm=

Nk NIk vlw

(*The Hilbert space has dimension 8,

SpinSystemInitialization[] function produces lists F, and F of the same length,
becuase not all different combinations are possible. For example,

the highest value of F=3/2 can be achieved only in case of the highest value Fp=1.%)

- 1= EnergyFmF [F[1], FA[1], 1/ 2, 1/ 2, nspins, JAX, JAA]
JAA JAX

outf o —— + ——

4 2

(xAbove is the energy of the four degenerate states with F =
3/2 and F, = 1. See Figure 8 for XA,.=x)

- = EnergyFmF [F[2], FA[2], 1/ 2, 1/ 2, nspins, JAX, JAA]

JAA
outr- = —— — JAX
4

(xAbove is the energy of the two degenerate states with F
1/2 and F, = 1. See Figure 8 for XA,.=x)

- 1= EnergyFmF [F[3], FA[3], 1/ 2, 1/ 2, nspins, JAX, JAA]
3 JAA

Outf+]z — ——

4

(xAbove is the energy of the two degenerate states with F
1/2 and F, = ©. See Figure 8 for XA,.=x)

Printed by Wolfram Mathematica Student Edition

S6-XAn_EigenEnergies_and_SelectionRules.nb | 7

(*Now let us calculate the transition amplitudes using Eq. 60. First, for the
observable line between states with (F = 1/2, F, = 1) and (F = 3/2, Fy, = 1).%)

F1 = F[1]
(xHere F1 denotes one of the levels
between which transition amplitude is calculatedx)

F2 = F[2]
(xAccordingly, here F2 denotes the second level involved in the transitionx)
fa = FA[1]

(xF, determines over which projection numbers m, the summation is performed. It
was shown in the text that F, can not change for observable transitions so it
does not matter where it is taken from the first or from the second state. x)
mFl=1/2;
mF2 =1/ 2;
(*For odd number n of spins A, the total spin F is always half

integer for XA, so that central levels would have mf = +-1/2 %)
IntensitylLine =

1
(Sum[Sum[ClebschGor‘dan[{fa, mA}, {—, ms}, {F1, mFl}] *ClebschGordan[{fa, mA},
2
1
{—, ms}, {F2, mFZ}] * (yimA +ysms),
2

1 1 2
{ms, —;, ;, 1}], {mA, -fa, fa, 1}]) // FullSimplify

3
Out[+]= —
2
1
Out[+]= —
2
out.]= 1
11 3 1
-+« ClebschGordan: ThreeJSymboI[{W, -1}, {—, ——}, {—, ——}] is not physical.
2 272 2
11 1 1
+=+ ClebschGordan: ThreeJSymboI[{W, -1} {—, ——}, {—, ——}] is not physical.
2 2 2 2
11 3 1
-=+ ClebschGordan: ThreeJSymboI[{W, -1}, {—, —}, {—, ——}] is not physical.
2 27 F2 2
«=+ General: Further output of will be suppressed during this calculation.
2

outf- J= g (vi-vys)?

Printed by Wolfram Mathematica Student Edition

8 | S6-XAn_EigenEnergies_and_SelectionRules.nb

F1 = F[1]
F2 = F[[2]
fa = FA[1]
mFl=-1/2;
mF2=-1/2;

(xWe repeat same as above calculation but for the negative value of mgx)

IntensitylLine =

1
(Sum[Sum[ClebschGor‘dan[{fa, mA}, {—, ms}, {F1, mFl}] *ClebschGordan[{fa, mA},
2

1
{—, ms}, {F2, mFZ}] * (yimA +ysms),
2

1 1 2
{ms, —;, ;, 1}], {mA, -fa, fa, 1}]] // FullSimplify

2 2

3
outf-]= —
2
1
outf-]= —
2
oute]= 1
1
«+« ClebschGordan: ThreeJSymboI[{W, -1}, {—,
2
1
+«+ ClebschGordan: ThreeJSymboI[{W, =13}, {—,
2
1
++« ClebschGordan: ThreeJSymboI[{W, 0}, {—, —}, {—, -
-=+ General: Further output of
2 .)
outf+ J= 3 (vi-vs)

3.1

2 2

1

, —}] is not physical.
2

1

, —}] is not physical.

2

}] is not physical.

will be suppressed during this calculation.

(*The above results verify that both transitions

are observable as shown in the central part of Figure 8 in

the main text. All other possible transitions are forbidden,

for example where mg changes it's value (which is an illustration of Eq. 61)

Printed by Wolfram Mathematica Student Edition

tx)

S6-XAn_EigenEnergies_and_SelectionRules.nb | 9

mr- 1= F1 = FI1]
F2 = F[2]
fa = FA[1]
mFl=1/2;
mF2=-1/2;

IntensitylLine =

1
(Sum[Sum[ClebschGor‘dan[{fa, mA}, {—, ms}, {F1, mFl}] *ClebschGordan[{fa, mA},
2
1
{—, ms}, {F2, mFZ}] * (yimA +ysms),
2

1 1 2
{ms, —;, ;, 1}], {mA, -fa, fa, 1}]] // FullSimplify

3
outf+] —
2
1
outf+]= —
2
oute]= 1
1 1 31
-+ ClebschGordan: ThreeJSymboI[{W, -13, {—, ——}, {—, ——}] is not physical.
2 272 2
11 11
+= ClebschGordan: ThreeJSymboI[{W, -1} {—, ——}, {—, —}] is not physical.
2 2 2 2
11 31
-+ ClebschGordan: ThreeJSymboI[{W, -13, {—, —}, {—, ——}] is not physical.
2 2 2 2
+= General: Further output of will be suppressed during this calculation.
Out[J= 0
XAs system

(*Now let us consider the XA; spin systemx)

inf- = nspinsA = 3;
nspins = nspinsA + 1;
{nstates, FA, F} = SpinSystemInitialization[nspinsA];

{1, o}
3 1
29
3 1 1
333

(*In this case, two summation steps are identical to those shown in Figure 7x)

Printed by Wolfram Mathematica Student Edition

10 | S6-XAn_EigenEnergies_and_SelectionRules.nb

nr- 1= nstates
FA // MatrixForm
F // MatrixForm

Outf~]= 16

Out[+ J//MatrixForm=

Nk NIk NIk MR v e v

Out[+ J//MatrixForm=

2

O R ® R R

(*The Hilbert space has dimension 16. The highest value of F=
2 can be achieved only in case of the highest value F,=3/2 etc.x)

= EnergyFmF [F[1], FA[1], 1/ 2, 1/ 2, nspins, JAX, JAA]
EnergyFmF [F[2], FA[2], 1/ 2, 1/ 2, nspins, JAX, JAA]
EnergyFmF [F[3], FA[3], 1/ 2, 1/ 2, nspins, JAX, JAA]
EnergyFmF [F[4] , FA[4], 1/ 2, 1/ 2, nspins, JAX, JAA]
EnergyFmF [F[5], FA[5], 1/ 2, 1/ 2, nspins, JAX, JAA]
EnergyFmF [F[6] , FA[6], 1/ 2, 1/ 2, nspins, JAX, JAA]

3JAA 3 JAX
out+ = +
4 4
3JAA 5 JAX
ouf |p ——— — ———
4 4
3JAA JAX
ouff]z - ——— + ——
4 4
3JAA 3 JAX
outfs Jp - ——— — ———
4 4
3JAA JAX
outf+ | ———— + ——
4 4
3JAA 3 JAX
ouf J ——— - ——
4 4

(*Above the energies for all possible manifolds of (F,F,) states are shown,
they can be compared to the left section of Figure 8.x)

(*Now let us calculate transition amplitudes, again using Eq. 60.x)

Printed by Wolfram Mathematica Student Edition

S6-XAn_EigenEnergies_and_SelectionRules.nb | 11

mr- 1= F1 = FI1]
F2 = F[2]
fa = FA[1]
mFl = 9;
mF2 = 0;
IntensityLine =

1
(Sum[Sum[ClebschGor‘dan[{-Fa, mA}, {—, ms}, {F1, mFl}] *ClebschGordan[{fa, mA},
2
1
{—, ms}, {F2, mFZ}] * (yimA +ysms),
2

1 1 2
{ms, —;, E, 1}], {mA, -fa, fa, 1}]) // FullSimplify

outf+]= 2
out.]= 1
3
outf-]= —
2
3 3 11
«.++ ClebschGordan: ThreeJSymboI[{—, - } {—, ——}, {2, O}] is not physical.
2 2 2 2
3 3 1 1
+«+ ClebschGordan: ThreeJSymboI[{—, - } {—, ——}, {1, O}] is not physical.
2 2 2 2
3 3 11
-++ ClebschGordan: ThreeJSymboI[{—, - } {—, —}, {2, O}] is not physical.
2 27 22
+=+) General: Further output of ClebschGordan:phy will be suppressed during this calculation.
1 i)
ouf-}= — (Y1 -Y¥S)
4

n- 1= (*Intensity of the 2J,x line is nonzerox)

Printed by Wolfram Mathematica Student Edition

12 | S6-XAn_EigenEnergies_and_SelectionRules.nb

mr 1= F1 = F[3]
F2 = F[4]
fa = FA[3]
mFl = 9;
mF2 = 0;
IntensityLine =

1
(Sum[Sum[ClebschGor‘dan[{-Fa, mA}, {—, ms}, {F1, mFl}] *ClebschGordan[{fa, mA},
2
1
{—, ms}, {F2, mFZ}] * (yimA +ysms),
2

1 1 2
{ms, —;, ;, 1}], {mA, -fa, fa, 1}]) // FullSimplify

oute]= 1
outf- 1= @
1
out+]= —
2
1 1 1 1
-+ ClebschGordan: ThreeJSymbol[{—, ——}, {—, ——}, {1, O}] is not physical.
2 2 2 2
T 1 1 1
-+ ClebschGordan: ThreeJSymboI[{—, ——}, {—, ——}, {0, O}] is not physical.
2 2 2 2
11 11
-+ ClebschGordan: ThreeJSymboI[{—, —}, {—, —}, {1, O}] is not physical.
2 27 2 2
«=+) General: Further output of will be suppressed during this calculation.
1

our = — (vi-ys)?
4

(xAs expected, the intensity of the 1], line is

also nonzero. The Reader is encoraged to write a cycle

for all other possible combinations of F1 and F2. However,
one should be carefull when verifying transition amplitudes between the two
states with different F,. The amplitude of all such transitions is zero,
but this is due to the zero value Bra.Ket product which is

taken into account in the more general Eq. 58. Therefore,
in order to perform a proper general simulation one should write a
program that constructs all the Hilbert functions themselves and

can calculate the Bra.Ket products. The limitation of eq. 60 is
illustrated below for a transition that should have a zero amplitude: x)

Printed by Wolfram Mathematica Student Edition

S6-XAn_EigenEnergies_and_SelectionRules.nb | 13

mr- 1= F1 = FI1]
F2 = F[3]
fa = FA[1]
mFl = 9;
mF2 = 0;
IntensityLine =

1
(Sum[Sum[ClebschGor‘dan[{-Fa, mA}, {—, ms}, {F1, mFl}] *ClebschGordan[{fa, mA},
2
1
{—, ms}, {F2, mFZ}] * (yimA +ysms),
2

1 1 2
{ms, —;, E, 1}], {mA, -fa, fa, 1}]) // FullSimplify

outf+]= 2
out.]= 1
3
outf-]= —
2
3 3 11
«.++ ClebschGordan: ThreeJSymbol[{—, ——}, {—, ——}, {2, O}] is not physical.
2 2 2 2
3 3 1 1
+«+ ClebschGordan: ThreeJSymboI[{—, ——}, {—, ——}, {1, O}] is not physical.
2 2 2 2
3 3 11
-++ ClebschGordan: ThreeJSymboI[{—, ——}, {—, —}, {2, O}] is not physical.
2 27 22
«=+) General: Further output of will be suppressed during this calculation.
1 i)
Outf+]= — (Yl *YS)
4

(xThe purpose of this code is educational,

it provides some simple examples of how to use Clebsch-

Gordan coefficents to get analytical expressions for ZULF
NMR. These acquired skills can be usefull to combine with full
spin dynamics simulation tools. We wish you good luck with that!=x)

Printed by Wolfram Mathematica Student Edition

