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Abstract. Heteronuclear low-power decoupling using the solution-state wideband alternating-phase low-power
technique for zero-residual splitting (WALTZ) sequences has become quite popular in solid-state protein NMR
and seems to work well. However, there are no systematic studies that characterize these sequences under magic-
angle spinning (MAS) and give recommendations on which parameter should be used. We have studied in detail
the use of WALTZ-16 and WALTZ-64 as low-power decoupling sequences under 100 kHz MAS by character-
izing the resonance conditions analytically using numerical simulations and experiments on model substances.
The recoupling heteronuclear resonance conditions between the modulation frequency of the sequences and the
MAS frequency is the most important feature. Pulse lengths corresponding to areas with vanishing first-order
heteronuclear recoupling are good candidates for efficient decoupling. We have characterized two such condi-
tions which can be defined using the nutation frequency of the radio frequency (RF) field (ν1) and the spinning
frequency (νr) by ν1 = νr/10 and ν1 = 2νr/5, which both lead to narrow lines and are stable against RF-field
variations and chemical-shift offsets. More such conditions might exist but were not investigated here.

1 Introduction

Heteronuclear spin decoupling (Ernst, 2003; Hodgkin-
son, 2005) is an essential component for recording high-
resolution NMR spectra of nuclei like 13C or 15N in solids
under magic-angle spinning (MAS). Even at the highest spin-
ning frequencies available today (νr ≈ 160 kHz Callon et al.,
2023 and beyond), residual dipolar coupling terms as well as
the interplay of splittings due to isotropic J couplings and
proton spin diffusion (Sinning et al., 1976; Mehring and Sin-
ning, 1977; Ernst et al., 1998) lead to line broadening. At
spinning frequencies below 50 kHz, typically high-power de-
coupling with nutation frequencies at least 3 times the spin-
ning frequency are used in order to avoid resonance condi-
tions. At spinning frequencies above 50 kHz, low-power de-
coupling sequences with ν1 < νr/3 can be used and are at
an advantage due to the significantly lower radio-frequency-
field (RF-field) requirement. Over the years, a number of
low-power decoupling sequences have been introduced and
characterized. Most of them are sequences first developed

for high-power decoupling in solids under MAS and then
adapted for low-power use (Ernst et al., 2001, 2003; Grif-
fin et al., 2007; Kotecha et al., 2008; Weingarth et al., 2009;
Mithu et al., 2011; Agarwal et al., 2013; Equbal et al., 2017;
Simion et al., 2022). They vary mainly in the effort required
to optimize the parameters for obtaining lines as narrow as
possible.

The line width under decoupling of any heteronuclear
decoupling sequence under MAS is given by three con-
tributions (Ernst, 2003): (i) the residual line width under
the sequence is given by the first- and second-order effec-
tive non-resonant Hamiltonian, which are typically resid-
ual terms originating from the incomplete averaging of the
isotropic heteronuclear J or the heteronuclear dipolar cou-
pling; (ii) contributions from nearby resonance conditions
lead to a partial reintroduction of the heteronuclear dipolar
coupling; and (iii) proton spin diffusion in combination with
residual couplings can lead to either line broadening or line
narrowing (self-decoupling) due to exchange broadening or
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exchange narrowing, respectively, between the two multiplet
lines when the proton spin changes its state (Sinning et al.,
1976; Mehring and Sinning, 1977; Ernst et al., 1998). The
first two points can be characterized by simulations of small
spin systems or by effective Hamiltonian calculations, while
the last point is often difficult to assess using theory or nu-
merical simulations.

Besides the low-power decoupling sequences mentioned
above, composite-pulse sequences originally developed for
solution-state NMR spectroscopy have also been used at high
MAS frequencies. Wideband alternating-phase low-power
technique for zero-residual splitting (WALTZ)-16 (Shaka
et al., 1983a, b) and WALTZ-64 (Shaka and Keeler, 1987)
in particular have become popular low-power decoupling
sequences in solid-state protein NMR spectroscopy (Marc-
hand et al., 2022). There is only a single experimental
study (Wickramasinghe et al., 2015) where the properties
of WALTZ-16 decoupling have been investigated and com-
pared to other low-power decoupling sequences. However,
it is not clear what the best parameter settings are for using
low-power WALTZ sequences at a given spinning frequency.

The WALTZ sequences are fairly long (WALTZ-16 con-
sists of 96 pulses and WALTZ-64 of 384 pulses with a flip an-
gle of 90°), leading to the possibility of many resonance con-
ditions since the modulation frequency, ωm = 2π/τm, where
τm is the cycle time of the sequence, is fairly small com-
pared to the MAS frequency. However, at high MAS fre-
quencies, resonance conditions will require the condition
n0ωr+ k0ωm = 0 to be fulfilled that requires high values
of k0. Typically, Fourier coefficients become smaller with
higher values of k0, and it is not clear whether under these
conditions, the Fourier coefficients are still significant and
will lead to line broadening through a recoupling of the het-
eronuclear dipolar couplings. In order to understand these
questions better and to predict for which parameters good de-
coupling can be obtained, we have analyzed the performance
of WALTZ sequences for low-power decoupling using ana-
lytical calculations of residual coupling terms and resonance
conditions as well as numerical simulations. The theoreti-
cal predictions are then verified using experimental measure-
ments at 100 kHz MAS using the methylene group of glycine
ethyl ester as a test substance. There are mainly two regimes
where low-power decoupling is currently used: (i) in fully
protonated systems spinning at around 100 kHz and higher
(using 0.7 mm outer-diameter rotors or smaller) and (ii) in
deuterated and back-exchanged systems spinning at around
60 kHz (using 1.3 mm outer-diameter rotors). We focus on
the properties of WALTZ sequences under the first condi-
tion since decoupling in fully protonated systems is more de-
manding due to the strong homonuclear proton–proton cou-
plings that are absent in deuterated and back-exchanged sys-
tems.

2 Methods

2.1 Analytical calculations

Analytical calculations were performed in the framework
of the operator-based Floquet theory (Scholz et al., 2010;
Leskes et al., 2010; Ivanov et al., 2021). The time-dependent
Hamiltonian, H(t), due to magic-angle spinning (MAS),
is transformed into an interaction frame with the radio-
frequency field irradiation by

H′(t)= U−1
rf (t)H(t)Urf(t), (1)

with

Urf(t)= T̂ exp

−i t∫
0

Hrf(t ′)dt ′

 , (2)

where T̂ is the Dyson time-ordering operator (Dyson, 1949).
The interaction-frame trajectory can be characterized by a
Fourier series:

I ′z(t)= U
−1
rf (t)IzUrf(t)= azx(t)Ix + azy(t)Iy + azz(t)Iz

=

∞∑
k=−∞

(
a(k)
zx Ix + a

(k)
zy Iy + a

(k)
zz Iz

)
, (3)

assuming a cyclic sequence, i.e., U (τm)= 1. We obtain,
therefore, a Fourier series representation of the Hamiltonian
with two frequencies:

H′(t)=
2∑

n=−2

∑
k

H′(n,k)
einωrteikωmt . (4)

Detailed expressions for the Fourier coefficients can be found
in Eq. (69) in Scholz et al. (2010). Using the operator-based
Floquet theory, we can calculate the non-resonant contribu-
tions of the first and second order by

H̄(1)
=H′(0,0) (5)

and

H̄(2)
=−

1
2

∑
ν,κ

[
H′(−ν,−κ)

,H′(ν,κ)
]

νωr+ κωm
, (6)

where the summation goes over all values of (ν,κ) where
νωr+ κωm 6= 0 and the modulation frequency ωm = 2π/τm.
Detailed expressions for the second-order terms can be found
in Eqs. (11)–(17) in Tan et al. (2016). If the interaction-frame
transformation includes the chemical-shift offset or if the
pulse sequence is not cyclic (U (τm) 6= 1), the treatment has
to be extended to a triple-mode Floquet treatment (Scholz
et al., 2010; Tan et al., 2016).
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From the resonance condition, n0ωr+ k0ωm = 0, and the
Fourier coefficients obtained from the interaction-frame tra-
jectory (Eq. 3), we can directly obtain the effective het-
eronuclear Hamiltonians at the resonance conditions, which
is given by

H̄(1)
=H′(n0,k0)

= ω
(n0)
IS Sz

(
a(k0)
zx Ix + a

(k0)
zy Iy + a

(k0)
zz Iz

)
= ω

(n0)
IS a

(k0)
z SzIz′ . (7)

The Fourier coefficients of the interaction-frame trajectory

a
(k0)
z =

√(
a

(k0)
zx

)2
+

(
a

(k0)
zy

)2
+

(
a

(k0)
zz

)2
encode the scaling

factor of the heteronuclear dipolar coupling at the resonance
conditions. We can, therefore, use them directly as a relative
measure for the strength of the recoupling.

For a given ω1 =−γB1 RF-field amplitude, we can cal-
culate the modulation frequency of the WALTZ sequences as
ωm = ω1/z0, where z0 = 24 and z0 = 96 for WALTZ-16 and
WALTZ-64, respectively. The parameter z0 is given by the
number of 2π rotations in the sequence. Based on the res-
onance condition n0ωr+ k0ωm = 0, we can, therefore, cal-
culate the RF-field amplitude for each resonance condition
characterized by k0, leading to ω1 = z0n0ωr/k0. Using the
RF-field amplitude corresponding to the resonance condi-
tion, we can then calculate the Fourier coefficients that de-
scribes the scaling factor for the residual dipolar coupling
(see Eq. 7).

The second-order contributions are typically given by the
commutator terms of Eq. (6) and are either cross terms
between the heteronuclear dipolar coupling and the I-spin
chemical shift anisotropy (CSA) tensor or the heteronuclear
dipolar coupling and the homonuclear dipolar coupling. In
principle, the magnitude of these terms can also be calculated
analytically (Tan et al., 2016). Sequences like the WALTZ se-
quences without an effective field only show contributions
from the dipole–dipole cross term, while the dipole–CSA
cross term is zero due to symmetries in the Fourier coef-
ficients of the interaction-frame trajectory. If the chemical-
shift offsets are included into the interaction-frame trajectory,
both kinds of cross terms usually contribute to the second-
order residual line width. In this paper, we do not calculate
the second-order terms analytically but rely on numerical
simulations. In two-spin simulations with only the heteronu-
clear dipolar coupling, only first-order resonance effects will
play a role, while in three-spin systems with all interactions,
second-order terms also become relevant. While a realis-
tic simulation of decoupling efficiency requires prohibitively
large spin systems, simulations in a CH2 group can capture
all resonant and non-resonant features originating from first-
and second-order contributions.

2.2 Numerical simulations

Numerical simulations for small model spin systems were
carried out using the spin-simulation environment GAMMA
(Smith et al., 1994). Isolated two-spin systems with just
a dipolar coupling with an anisotropy of δIS/(2π )=
−45.3 kHz were used to characterize the resonance condi-
tions. In addition, two-spin systems with an additional CSA
tensor on the irradiated I spin as well as I2S three-spin sys-
tems with J couplings, CSA tensor, and homonuclear dipolar
coupling were simulated for a better characterization of the
decoupling performance of the WALTZ sequences. The de-
tails of the parameters used in the numerical simulations can
be found in Sect. S1 in the Supplement. All numerical sim-
ulations were processed with an exponential apodization of
30 Hz to avoid truncation artifacts in the spectra. Therefore,
all simulated intensities are relative to a perfectly decoupled
line with a processing line width of 30 Hz. For the plots of
the numerical simulations, a pictogram shows the interac-
tions that were included in the corresponding simulations.

2.3 Experimental measurements

All measurements were performed on a Bruker Avance NEO
850 MHz spectrometer equipped with a double-resonance
0.7 mm MAS probe spinning at 100 kHz. For each measure-
ment, four scans with 6144 data points and a spectral width of
52 631 Hz were added up. Adiabatic cross-polarization from
protons to 13C was used to increase the sensitivity of the
measurements followed by an acquisition of 13C under pro-
ton decoupling using the WALTZ sequences with variable
parameters. The RF-field amplitudes were calibrated using
a nutation experiment at several power levels and linear ex-
trapolation of the power levels to the required range of ampli-
tudes. Only very minor deviations of the nutation frequency
from the requested power levels were found. For the mea-
surement of the offset dependence, the carrier frequency was
switched to the required value before the start of the acqui-
sition. All decoupling sequences were implemented as asyn-
chronous composite-pulse decoupling sequences, and no ef-
fort was made to synchronize the sequences with the MAS
rotation. As a sample, the CH2 group of 15N-1,2-13C glycine
ethyl ester was used. All measurements were recorded in a
single measurement session. Throughout the measurement
session, the intensity of 1D spectra was checked to ensure
a stable setup over the whole time.

3 Results and discussion

In the main part of the paper, we discuss the results based
on analytical calculations, numerical simulations, and ex-
perimental data using the WALTZ-64 sequence for decou-
pling. The equivalent figures for WALTZ-16 decoupling can
be found in Sect. S2 in the Supplement, where all the fig-
ures of the main paper are duplicated, showing the results for
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Figure 1. Plot of the Fourier coefficient a(k0)
z as a function of k0 for the WALTZ-64 pulse sequence, assuming ideal rectangular pulses. One

can clearly see that even for very high values of k0 many of the resonance condition still have a significant contribution. (a) Complete range
from k0 =−2000 to 2000. (b) Enlarged range around k0 = 960 corresponding to a ratio of ωr/ω1 = 10 for n0 = 1. (c) Enlarged range around
k0 = 1920 corresponding to a ratio of ωr/ω1 = 10 for n0 = 2. (d) Enlarged range around k0 = 384 corresponding to a ratio of ωr/ω1 = 4 for
n0 = 1. (e) Enlarged range around k0 = 768 corresponding to a ratio of ωr/ω1 = 4 for n0 = 2.

WALTZ-16. The cycle time of WALTZ-16 is only a quarter
of the cycle time of WALTZ-64, which means that the cor-
responding values of k0 are also a quarter of the ones for
WALTZ-64. Therefore, the spacing of the resonance condi-
tion is a factor of 4 larger. This implies that the difference of
the pulse length between two adjacent points in the analytical
calculations and the numerical simulations is by a factor of 4
larger in WALTZ-16 compared to WALTZ-64.

3.1 Resonance conditions

Analytical calculations of the strength of the resonance con-
ditions were done for a MAS frequency of 100 kHz. The
Fourier coefficient, a(k0)

z , as calculated from an interaction-
frame trajectory as a function of the value of

k0 =−n0
ωr

ωm
=−n0z0

ωr

ω1
=−n04z0

τ90

τr
, (8)

where ωr is the MAS frequency, ωm the modulation fre-
quency of the pulse sequence, ω1 the nutation frequency of
the RF-field amplitude, τ90 the pulse length of the basic 90°
pulse in the WALTZ sequence, τr the length of a rotor period,
and z0 the number of 2π rotations in the WALTZ sequences.
For WALTZ-16, z0 = 24, while for WALTZ-64, z0 = 96. The
strength of the residual coupling on a resonance condition is
given by a(k0)

z (see Eq. 7) and is plotted in Fig. 1 for WALTZ-
64 as a function of k0. One can clearly see that even for

very large values of k0, the Fourier coefficients still have a
significant magnitude on the order of 10−3 considering the
magnitude of typical one-bond 1H-13C or 1H-15N couplings
with δD/(2π )≈−46 and 20 kHz, respectively. Assuming a
ratio of ωr/ω1 = 10, the resonance conditions would be char-
acterized by k0 = 960 for n0 = 1 and k0 = 1920 for n0 = 2
(Fig. 1b and c). Using the abovementioned typical value of
10−3 for the Fourier coefficients leads to a residual couplings
in the order of 20–50 Hz. However, there are clearly ranges
of values of k0, where the Fourier coefficients are zero over
a larger range as can be seen in Fig. 1b around k0 = 960
or k0 = 930 where the first one corresponds to ωr/ω1 = 10.
There are many more areas like this, e.g., at ωr/ω1 = 4, cor-
responding to k0 = 384 (Fig. 1d and e) but we only inves-
tigate the two mentioned here. All of these areas with zero
Fourier coefficients could be good ranges for stable and ef-
ficient decoupling using WALTZ-64 since the resonant con-
tribution to the effective Hamiltonian is zero. However, for
small values of k0, the RF-field amplitude increases, which
is often not desired for low-power decoupling. For large val-
ues of k0, the RF-field amplitude becomes very small, po-
tentially leading to insufficient decoupling for spins with a
larger chemical-shift offset. Simulations for WALTZ-16 (see
Fig. S1 in the Supplement) show very similar results, but
since the cycle time is shorter, fewer almost-zero Fourier co-
efficients are found adjacent to each other. On the other hand,
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Figure 2. Plot of the simulated line intensity in a two-spin system with only the heteronuclear dipolar coupling as a function of the pulse
length, τ90, for the WALTZ-64 pulse sequence, assuming ideal rectangular pulses. The corresponding RF-field amplitude for each value of
τ90 can be calculated by ν1 = 1/(4τ90). The pulse length correspond to values of τ90 = k0τr/(4z0). (a) Complete range from τ90 = 2.5 to
50 µs corresponding to k0 = 96 to 1920. (b) Enlarged range around τ90 = 25 µs corresponding to an ideal B1 field of 10 kHz. (c) Enlarged
range around τ90 = 10 µs corresponding to an ideal B1 field of 25 kHz. As described in the Methods section, all simulations are processed
with an exponential apodization of 30 Hz, with an intensity of 1 corresponding to a non-decaying line.

the spacing of the resonance conditions is larger by a fac-
tor of 4, as mentioned above, due to the larger modulation
frequency (shorter cycle time) of WALTZ-16 compared to
WALTZ-64.

The resonance conditions can also be assessed in numer-
ical simulations of two-spin systems, where only the het-
eronuclear dipolar coupling is included. In such a system,
no higher-order terms exist, and the line intensity is a di-
rect measure of the residual coupling generated by the res-
onance conditions. Figure 2 shows a plot of the line intensity
in a C-H two-spin system at 100 kHz MAS, with a heteronu-
clear dipolar coupling anisotropy of δCH/(2π )=−45 kHz as
a function of the 90° pulse length. In this simulation, the JCH
coupling was set to zero to allow for a direct comparison
of the resonance conditions with the analytical calculations
shown in Fig. 1. The relationship between τ90 and k0 is given
by Eq. (8). One can clearly see many resonance conditions
up to a pulse length of τ90 = 50 µs (Fig. 2) corresponding
to an RF-field amplitude of 5 kHz. Expanded areas around
a pulse length of 25 µs (10 kHz RF-field amplitude; Fig. 2b)
and 10 µs (25 kHz RF-field amplitude; Fig. 2c) show a sim-
ilar pattern as in the analytical calculations in Fig. 1. There
are ranges of pulse lengths (corresponding to specific values
of k0) where no line broadening due to resonance conditions
is observed and good decoupling might be possible.

Besides the first-order resonance conditions discussed
above, non-resonant first-order contributions as well as
second-order cross terms between the heteronuclear dipolar
coupling and either the proton CSA tensor or homonuclear
dipolar couplings on the protons determine the residual line
width under decoupling. To assess how large these contri-
butions are, we simulated CH2 three-spin systems, including
J couplings, proton CSA tensors, and proton homonuclear
dipolar couplings (for the simulation parameters see Sect, S1
in the Supplement). Figure 3 shows the peak height as a func-
tion of the pulse length, τ90, at 100 kHz MAS for WALTZ-
64 decoupling. The obtained line intensities are quite similar
to the ones shown in Fig. 2 except that the intensity outside
the resonance conditions is slightly reduced compared to an
ideal two-spin C-H system. This indicates that there is some
second-order broadening coming mostly from the second-
order cross term between the heteronuclear and homonuclear
dipolar coupling as can be seen from Fig. S11 of the Supple-
ment, which shows simulations of a C-H two-spin system
including the proton CSA tensor that shows no significant
second-order broadening compared to Fig. 2.

We can also characterize the resonance conditions experi-
mentally by simultaneously incrementing the pulse length of
the basic 90° pulse of the WALTZ sequence while adjusting
the RF-field amplitude such that the flip angle of the pulses
remains constant. Figure 4 shows a plot of the line inten-
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Figure 3. Plot of the simulated line intensity in a CH2 three-spin system with dipolar couplings and CSA tensors as a function of the pulse
length, τ90, for the WALTZ-64 pulse sequence, assuming ideal rectangular pulses. The corresponding RF-field amplitude for each value of
τ90 can be calculated as ν1 = 1/(4τ90). The pulse length correspond to values of τ90 = k0τr/(4z0) (a) Complete range from τ90 = 2.5 to
50 µs corresponding to k0 = 96 to 1920. (b) Enlarged range around τ90 = 25 µs corresponding to an ideal B1 field of 10 kHz. (c) Enlarged
range around τ90 = 10 µs corresponding to an ideal B1 field of 25 kHz. As described in the Methods section, all simulations are processed
with an exponential apodization of 30 Hz, with an intensity of 1 corresponding to a non-decaying line.

sity of the Cα carbon resonance (CH2 group) in 15N-1,2-13C
glycine ethyl ester as a function of the pulse length τ90 for
the WALTZ-64 pulse sequence at 100 kHz MAS. The line
intensity is normalized to the maximum intensity obtained
using optimized high-power (ν1 = 250 kHz) XiX decoupling
(Tekely et al., 1994; Detken et al., 2002). The resonance con-
ditions agree quite well with the ones found in the simula-
tions (see Fig. 3), and we again find that there is an area with-
out significant line broadening originating from resonance
conditions around τ90 = 25 µs (ν1 ≈ 10 kHz; see Fig. 4b) and
around τ90 = 10 µs (ν1 ≈ 25 kHz; see Fig. 4c). A similar plot
for WALTZ-16 decoupling can be found in Fig. S4 in the
Supplement. Keep in mind that the experimental data were
measured on a full rotor subject to RF-field inhomogeneity
that was not included in the numerical simulations. There-
fore, the resonance conditions are not as sharp as in the nu-
merical simulations and show a convolution of the RF-field
distribution with the pattern of the resonance conditions. In
contrast to the simulations (Figs. 2 and 3), there is a signifi-
cant decay of the overall observed line intensity with increas-
ing pulse length. This can be attributed to higher-order effects
that become bigger for longer cycle times of the WALTZ se-
quence. In addition, decoupling side bands at multiples of
the modulation frequency will also increase in intensity for
longer cycle times (Sachleben et al., 1996) and reduce the
observed center-band intensity.

Based on the analytical calculations, the numerical simu-
lations, and the experimental data, we can conclude that there
are many potential areas for good low-power decoupling us-
ing the WALTZ sequences. We have investigated two pulse
lengths that correspond to RF-field amplitudes ω1 = ωr/10
and ω1 = ωr/4 in more detail since they seemed to be the
most promising ones based on the experimental data. While
the first one shows slightly lower intensities than the sec-
ond one, the closest significant resonance condition is fur-
ther away, which might be an advantage. In a second step,
we will analyze how stable the two areas are against misset-
tings of the RF-field amplitude by the experimentalist or due
to a distribution of RF-field amplitudes in the coil (RF-field
inhomogeneity) that are always present in experiments.

3.2 Stability against RF-field amplitude changes

In the analytical calculations of the resonance conditions, we
can change the RF-field amplitude while keeping the tim-
ing constant to see how the resonance conditions that depend
only on the timing of the WALTZ sequences change as a
function of B1. Stability against variations in the B1 field are
important for two reasons. Firstly, experimentally, B1 fields
are often determined in a simple way using the zero cross-
ing of a 180° pulse at high power and are then extrapolated
to lower powers, assuming a linear amplitude scale. While
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Figure 4. Plot of the measured line intensity of the CH2 group in 1,2-13C glycine ethyl ester as a function of the pulse length, τ90, for the
WALTZ-64 pulse sequence at 100 kHz MAS. The RF-field amplitude was adjusted such that the flip angle was always 90°. The increment
of the pulse length was set to 12.5 ns. (a) Complete range from τ90 = 2.5 to 50 µs. (b) Enlarged range around τ90 = 25 µs corresponding to a
B1 field around 10 kHz. (c) Enlarged range around τ90 = 10 µs corresponding to a B1 field around 25 kHz. While the numerical calculations
and simulations of Figs. 1–3 could be carried out exactly on the resonance conditions, this was not possible for the experimental data due
to the limited time resolution of the pulse programmer and the limited stability of the MAS rotation. Therefore, the experimental data are
displayed as a line plot with the highest possible time resolution.

modern spectrometers have often linearized frequency gen-
eration and amplification pathways, the determination of the
B1 fields still has quite a large error margin. Secondly, as
discussed above for the experimental determination of the
resonance conditions, the sample will always experience a
distribution of RF-field amplitudes since different points in-
side the coil will experience different B1 fields. Therefore, it
is important that the resonance conditions and the areas with-
out resonance conditions used for decoupling do not shift if
the B1 field changes over the sample volume.

Figure 5 shows the strength of the resonance condition
(a(k0)
z ) in WALTZ-64 decoupling for an ideal B1 field (blue

circles), a B1 field that is 10 % larger (red squares), and a B1
field that is 20 % larger (yellow triangles) compared to the
theoretical value. An equivalent plot for B1 field amplitudes
that are 10 % and 20 % lower than the theoretical value can
be found in Fig. S14 in the Supplement. One can clearly see
that some of the resonance conditions are broader for non-
ideal B1-field amplitudes and that some of the areas with
almost-zero Fourier coefficients (see Fig. 1 for comparison)
now show significant intensity. However, the areas corre-
sponding to ωr/ω1 = 10 (k0 = 960 for n0 = 1 and k0 = 1920
for n0 = 2 in Fig. 5b and c, respectively) and ωr/ω1 = 4
(k0 = 384 for n0 = 1 and k0 = 768 for n0 = 2 in Fig. 5d and
e, respectively) show only small resonant contributions for all

three RF-field amplitudes. This indicates that these two areas
should be stable against missettings of the RF-field ampli-
tude as well as against RF-field inhomogeneity.

A more detailed analysis of the sensitivity of resonance
conditions to timing and RF-field deviations for the two re-
gions of interest (ωr/ω1 = 10 and k0 = 960 for n0 = 1 and
k0 = 1920 for n0 = 2 and ωr/ω1 = 4 and k0 = 384 for n0 = 1
and k0 = 768 for n0 = 2) was obtained by independently
changing the length of the pulse and the amplitude of the RF
field in analytical and numerical calculations. Figure 6 shows
both regions of interest (ωr/ω1 = 10 on the left, Fig. 6a and
c, and ωr/ω1 = 4 on the right, Fig. 6b and d) with the line
height plotted as a function of pulse length (τ90 and RF-field
amplitude (ν1). The analytical calculations (top row, Fig. 6a
and b) as well as the numerical simulations of a two-spin sys-
tem with only a dipolar coupling (second row, Fig. 6c and d)
include only effects originating from resonance conditions.
The two regions of good decoupling are quite stable against
timing errors (typically small fluctuations in the MAS fre-
quency) and also against changes in the RF-field amplitude.
The agreement between the analytical and numerical simula-
tions also shows that the analytical calculations characterize
the resonance conditions very well. It also shows that both
areas of interest for good decoupling are fairly insensitive to
misadjustment of the RF-field amplitude but quite sensitive
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Figure 5. Plot of the Fourier coefficient a(k0)
z as a function of k0 for the WALTZ-64 pulse sequence, assuming ideal rectangular pulses. Blue

circles correspond to the ideal B1 field (same data as in Fig. 1), red squares to a B1 field that is increased by 10 %, and yellow triangles to
one that is increased by 20 %. (a) Complete range from k0 =−2000 to 2000. (b) Enlarged range around k0 = 960 corresponding to a ratio of
ωr/ω1 = 10 for n0 = 1. (c) Enlarged range around k0 = 1920 corresponding to a ratio of ωr/ω1 = 10 for n0 = 2. (d) Enlarged range around
k0 = 384 corresponding to a ratio of ωr/ω1 = 4 for n0 = 1. (e) Enlarged range around k0 = 768 corresponding to a ratio of ωr/ω1 = 4 for
n0 = 2.

to timing errors. However, timing is very accurate on mod-
ern NMR spectrometers, and the MAS frequency is typically
also stable to a few tens of hertz even at spinning frequencies
of 100 kHz.

A more realistic assessment of the decoupling perfor-
mance in these two regions needs to include also second-
order effects that determine the residual line broadening out-
side the resonance conditions. To assess this, we have also
performed numerical simulations in a CH2 spin system in-
cluding all dipolar couplings, J couplings, and CSA tensors
shown in Fig. 7. While this is still a small spin system, all
possible interactions are present, and all possible second-
order terms contribute in such a spin system. The numeri-
cal values used in the simulations are given in Sect. S1 in
the Supplement. Comparing the three-spin simulations with
the two-spin simulations of Fig. 6c and d shows that for
small RF-field amplitudes (below about 7 and 15 kHz, re-
spectively), the peak height becomes much lower; i.e., the
lines are much broader. This is due to the inclusion of the
heteronuclear J coupling, which is only incompletely de-
coupled by the WALTZ sequence if the flip angles are much
smaller than the theoretical values. Otherwise, similar fea-
tures are visible, but they are much more smeared than in
the two-spin calculations of Fig. 6 due to the additional line
broadening by second-order terms. It is obvious from these

simulations that the timing of the pulses is the most impor-
tant criterion for setting up low-power WALTZ decoupling
to avoid the many resonance conditions, especially at higher
B1 fields (shorter pulses) as can be seen in Fig. 7b. Since
pulse timing is very accurate even under typical experimen-
tal conditions and fluctuations in the spinning frequency are
typically below 10 Hz, this is not a critical condition but an
easy one to fulfill. The sensitivity to the exact value of the B1
field is much less pronounced, which reflects the good com-
pensation of B1 field deviations from the ideal value of the
WALTZ-type sequences (Shaka et al., 1983a, b; Shaka and
Keeler, 1987).

Experimental measurements on the pulse-length and field
dependence are shown in Fig. 8. The areas covered in the
experimental data are much smaller than the ones in the sim-
ulations of Fig. 7 to reduce the amount of measurement time
required. The experimentally covered area is marked by a
dashed white box in the numerical simulations of Fig. 7.
There is quite a good agreement between the simulations in
the CH2 three-spin system (Fig. 7) and the experimental mea-
surements on the CH2 group of glycine ethyl ester (Fig. 8).
The resonance conditions appear at the same pulse length,
and the dependence on the RF-field amplitude is also very
similar. The optimum for the decoupling in the experimental
data is shifted towards slightly higher B1 fields, which could
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Figure 6. Plot of the line intensities as a function of the pulse length, τ90, and the RF-field amplitude, ν1, for the WALTZ-64 pulse sequence,
assuming ideal rectangular pulses around the conditions ωr/ω1 = 10 (left side) and ωr/ω1 = 4 (right side). The topmost row shows the
analytical calculations of the resonance intensity around (a) k0 = 960, ν1 = 10 kHz, τ90 = 25 µs and (b) k0 = 384, ν1 = 25 kHz, τ90 = 10 µs.
The residual coupling was converted into a Gaussian line with the corresponding line width, and the line intensity of this line is plotted to
make the plots more easily comparable to the numerical simulations. The second row shows the peak height of the numerical simulations
for a two-spin system, with only a heteronuclear dipolar coupling of δCH/(2π )=−45.3 kHz around (c) ν1 = 10 kHz, τ90 = 25 µs and (d)
ν1 = 25 kHz, τ90 = 10 µs.

Figure 7. Plot of the line intensities in a three-spin CH2 system as a function of the pulse length, τ90, and the RF-field amplitude, ν1, for the
WALTZ-64 pulse sequence, assuming ideal rectangular pulses around the conditions ωr/ω1 = 10 (left side) and ωr/ω1 = 4 (right side). The
line height of the numerical simulations with all interactions is shown around (a) ν1 = 10 kHz, τ90 = 25 µs and (b) ν1 = 25 kHz, τ90 = 10 µs.
The parameters used for the simulations can be found in Sect. S1 in the Supplement. The dashed white box indicates the area which is
covered by the experimental data in Fig. 8
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Figure 8. Plot of the experimentally measured line intensities as a function of the pulse length, τ90, and the RF-field amplitude, ν1, for the
WALTZ-64 pulse sequence in glycine ethyl ester around the conditions ωr/ω1 = 10 (left side) and ωr/ω1 = 4 (right side). The line height of
the CH2 group around (a) ν1 = 10 kHz, τ90 = 25 µs and (b) ν1 = 25 kHz, τ90 = 10 µs.

Figure 9. Plot of the experimentally measured line intensities as a function of the irradiation offset on the protons (1�) and the RF-field
amplitude, ν1, for the WALTZ-64 pulse sequence in glycine ethyl ester around the conditions (a) ωr/ω1 = 10 corresponding to τ90 = 25 µs
around ν1 = 10 kHz and (b) ωr/ω1 = 4 corresponding to τ90 = 10 µs around ν1 = 25 kHz.

be due to inaccuracies in the RF-field calibration, B1-field
inhomogeneity in the probe, or possibly pulse transients.

3.3 Stability against chemical-shift offset

For high-power decoupling sequences, the effect of
chemical-shift offsets is often irrelevant because the RF-field
amplitudes are more than an order of magnitude larger than
typical proton chemical-shift ranges of 10 ppm correspond-
ing to 10 kHz on a 1 GHz spectrometer. In low-power de-
coupling with RF-field amplitudes of typically ν1 < νr/3,
the situation is different, and the stability of decoupling
with respect to chemical shifts becomes quite important.
The WALTZ sequences were designed as broadband rota-

tion pulses, which should provide good chemical-shift offset
compensation. The experimentally measured dependence on
the chemical-shift offset is shown in Fig. 9 for a pulse length
of τ90 = 25 µs (Fig. 9a) and τ90 = 10 µs (Fig. 9b). There are
clear modulations of the line intensity over the covered range
of chemical shifts, but at the optimum B1 field value, the
line height never drops below 95 % of the high-power ref-
erence value for a range of ±10 kHz for a RF-field am-
plitude of 10 kHz (Fig. 9a), while for a RF-field amplitude
of 25 kHz, the dependence is stronger, and the line height
reaches about 85 % of the high-power reference value for an
offset of ±5 kHz (Fig. 9b).

To understand the chemical-shift offset dependence bet-
ter, numerical simulations in two- and three-spin systems
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Figure 10. Plot of the numerically simulated line intensities as a function of the irradiation offset on the protons (1�) and the RF-field
amplitude ν1 for the WALTZ-64 pulse sequence in the three-spin CH2 system around the conditions (a) ωr/ω1 = 10 corresponding to
τ90 = 25 µs around ν1 = 10 kHz and (b) ωr/ω1 = 4 corresponding to τ90 = 10 µs around ν1 = 25 kHz.

Figure 11. Plot of the simulated line intensity in a CH2 three-spin system with dipolar couplings and CSA tensors as a function of the pulse
length, τ90, for the WALTZ-64 and the four-time-oversampled WALTZ-16 pulse sequence, assuming ideal rectangular pulses. The WALTZ-
64 peak heights are marked by blue circles, the WALTZ-16 peak heights by red triangles and the points belonging to resonance conditions
of WALTZ-16 by red hexagons. The corresponding RF-field amplitude for each value of τ90 can be calculated by ν1 = 1/(4τ90). The pulse
length correspond to values of τ90 = k0τr/(4z0) (a) Complete range from τ90 = 2.5 to 50 µs corresponding to k0 = 96 to 1920. (b) Enlarged
range around τ90 = 25 µs corresponding to an ideal B1 field of 10 kHz. (c) Enlarged range around τ90 = 10 µs corresponding to an ideal B1
field of 25 kH. As described in the Methods section, all simulations are processed with an exponential apodization of 30 Hz, with an intensity
of 1 corresponding to a non-decaying line.

were used. Simulations in two-spin systems with and with-
out J couplings and CSA tensors showed almost perfect de-
coupling over a large range of chemical shifts and B1 field
strengths. The almost perfect decoupling in the two-spin sys-
tem indicates that the deterioration of the decoupling perfor-

mance with increasing chemical-shift offset as observed ex-
perimentally (Fig. 9) is not due to changes in resonance con-
ditions from offset effects. Simulations in a three-spin CH2
system, including all interactions (dipolar couplings, J cou-
plings, and CSA tensors), are shown in Fig. 10 and show sim-
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ilar characteristics as the experimental data in Fig. 9. Com-
paring the results from two- and three-spin systems shows
that the deterioration of the decoupling quality with an in-
creasing offset is due to cross terms between the homonu-
clear and heteronuclear dipolar couplings. Indeed, numeri-
cal simulations with the homonuclear dipolar coupling set to
zero give almost perfect decoupling over the whole param-
eter range (see Figs. S12 and S13 in the Supplement). The
numerical simulations in small spin systems show a stronger
offset dependence than observed in experimental data. The
source of this discrepancy is not yet fully understood but
could be a consequence of the self-decoupling of the residual
splitting (Sinning et al., 1976; Mehring and Sinning, 1977;
Ernst et al., 1998) in large homonuclear coupled spin sys-
tems.

4 Conclusions

Low-power decoupling under MAS using WALTZ sequences
requires a timing of the sequence that avoids the many po-
tential resonance conditions even though the modulation fre-
quency of the WALTZ sequences in the low-power regime
is quite small, and very high Fourier coefficients are respon-
sible for the first-order recoupling terms. Two such condi-
tions which were characterized in detail are given at (i) ν1 =

νr/10, leading to a pulse length for the 90° pulse in the
WALTZ sequence of τ90 =

5
2τr, and (ii) ν1 = νr/4, leading

to a pulse length for the 90° pulse in the WALTZ sequence
of τ90 = τr. There are potentially many more such condi-
tions that could be used for good low-power decoupling us-
ing WALTZ sequences. To set up WALTZ decoupling, one
should first select the pulse length as this is the most impor-
tant parameter and then do a course optimization of the RF-
field amplitude. For samples with low signal-to-noise ratio,
the second step can be omitted and the RF-field amplitude
estimated from a pulse length determination since the pre-
cise setting of the B1 field seems to not be so critical. This
makes the WALTZ sequences easy to set up since there is no
critical parameter that has to be optimized, and the resonance
conditions can be predicted very reliably.

The choice of whether WALTZ-16 or WALTZ-64 is used
as the decoupling sequence makes little difference as one
can see from the simulations and experimental data col-
lected here and shown in the main paper for WALTZ-64 and
WALTZ-16 in the Supplement. At first glance, it might look
like the WALTZ-16 sequence has narrower areas where the
Fourier coefficients are zero, but fewer points are compen-
sated by a factor of four in the spacing of the resonance
conditions. The very similar behavior of WALTZ-16 and
WALTZ-64 with respect to resonance conditions can be seen
from Fig. 11, where we plot the simulated peak heights in
a CH2 group, including all interactions for WALTZ-64 and
WALTZ-16 but with the same time resolution of the τ90 pulse
length. This constitutes an oversampling of the WALTZ-16

sequence by a factor of 4 compared to the sampling at only
the resonance condition as shown in Fig. S3. The WALTZ-
64 peak heights are marked by a blue circle, the WALTZ-16
peak heights by a red triangle, and the points belonging to
resonance conditions of WALTZ-16 by red hexagons. One
can clearly see that the width of the resonance conditions is
very similar and that there is no clear advantage of WALTZ-
64 over WALTZ-16 in the width of the areas where we have
no residual line broadening from resonance conditions. The
similarities between WALTZ-16 and WALTZ-64 decoupling
can also be seen from Fig. S16 in the Supplement, where
the experimental peak height for both decoupling sequences
is shown in a single plot as a function of the pulse length.
There are small differences visible between the two curves,
but there are no significant differences in the areas where we
expect good decoupling.

To set up low-power WALTZ decoupling, it is recom-
mended to use ν1 = νr/10 for 100 kHz MAS frequencies and
beyond (0.7 mm rotors and smaller) for fully protonated sys-
tems. For 50–60 kHz MAS (1.3 mm rotors), mainly in deuter-
ated and back-exchanged systems, the ν1 = νr/4 condition
is most likely better due to the higher RF-field amplitude.
Where the transition from one condition to the other exactly
happens will also depend on sample composition and espe-
cially the proton density of the sample. To answer this ques-
tion, more experimental data on different samples and spin-
ning frequencies are needed.

How the WALTZ sequences compare to other commonly
used low-power decoupling sequences like AM-XiX (Agar-
wal et al., 2013), SWf-TPPM (Thakur et al., 2006), SPINAL-
64 (Garg et al., 2024), or ROSPAC (Simion et al., 2022)
under different experimental conditions, i.e., spinning fre-
quency range and proton density, is an important question
that is beyond the scope of this paper. This topic is currently
under investigation in our laboratory.
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