Supplement of Magn. Reson., 5, 51-59, 2024
https://doi.org/10.5194/mr-5-51-2024-supplement

© Author(s) 2024. CC BY 4.0 License. MAGNETIC
A\ RESONANCE
Supplement of

A modular library for fast prototyping of solution-state nuclear
magnetic resonance experiments

Michat Gérka and Wiktor Kozminski

Correspondence to: Wiktor KoZminski (kozmin@chem.uw.edu.pl)

The copyright of individual parts of the supplement might differ from the article licence.

1 Implementation of a HSQC experiment
prosol relations=<me:=

include =Avance.incl=
include <Grad.incl=

define DIMS 2

Wariable definitions for the 2D hlock:
include <MEfincludesfinit.incl=

e

1 ze

; Relaxation delay:
include <MEfincludes/start.incl=

; 20 (proximal) block:
include =MEfincludesfend.incl=
exit

include =MEfincludes/phasecycles.incl=

; Receiver phase:
phRec = PROXIMAL PH31

Fig. S1. Pulse program code for the ME implementation of a 2D experiment.

We will illustrate the functioning of the library using a (non-sensitivity enhanced) 2D HSQC experiment. This experiment is
set up by using the 2D.me.pp pulse program of Fig. S1. and selecting the HSQC option by appending —-DHSQC to
ZGOPTNS. A *H-C experiment (*H-"N is the default) can be selected by appending —-DPROXIMAL_C to ZGOPTNS.

The program uses a custom prosol file and imports the standard TopSpin library files Avance.incl and Grad.incl containing
macros for controlling the lock system and gradient amplifier. After defining the dimensionality of the experiment as 2 the
init.incl file performs setup of the ME library and includes the chosen 2D module for the first time. The ze statement opens
the real-time portion of the pulse program and the following start.incl file implements the relaxation delay with optional
solvent presaturation (-DPRESAT in ZGOPTNS). It includes the chosen 2D module (here it is hsqc.me.pp) for the second
time, but in the case of a 2D HSQC this has no effect. The end.incl module includes the 2D HSQC module for a third time
implementing the three corresponding evolution periods of the experiment. Afterwards the end.incl module includes an
acquisition block (with decoupling and options for homodecoupling). The exit statement ends the real-time part of the
experiment and the following phasecycles.incl file sets up a 4 step phase cycle. The receiver phase is calculated using the
PROXIMAL_PH31 macro defined in the HSQC module — in more complex experiments user-defined phase cycles can be

added to the macro.

"am 2 pht P pRY P2 iapt phd r2oho Fiagt ez 0 phe r2pho

" nwo Ut Al LU ~ ~w i "k
Thasimal*o s Promamal™ 0
o ™ u WORAD dMx Any wonaD dovAD . i ™ v AGRAD AORADR Sy TpresimaiPest JORAD SARADHENNT ¥ 1GPAD o2]! on
n ! | ' Bia
Unch 1000 %o Snet 1000 i
LA
ay

"

22 pho P21 ph11e03 ra2gho P phid= 0032 rzegm

LT e b ey ks nw
n PRLADYY PRRASYY PaLAL PUrADS pokans PRAALS pakALtd poRaO 1A

INBLN =

2

Fig. S2. Pictorial representation of a HSQC experiment implemented using the ME library.

A graphical representation of a 2D HSQC *H-*C with radiation dampening gradients (-DRDGRAD in ZGOPTNS), water
flipback (-DFB in ZGOPTNS) and gradient selection (-DGS in ZGOPTNS) implemented using the pulse program from
Fig. S1. is presented in Fig. S2. The full version of the hsgc.me.pp program is available in the library, here we will analyze

each of its sections separately.

#

»

LU o R e) IR R O N B O

ifndef INIT_DONE

; Set up chemical shift evolution time:
define delay TProximal
"TProximal = 0"

define delay TproximalPost
define delay dHX : H -=> HXz period.
define delay dHX2 1 ; Second H period - before acquisition.

10 |define delay dHX2 2 ; Second H period - before acquisition.

»

; Compensate J evolution delays for gradients and ewvolution during pulses:

13 | "dH¥ = timeHx/2 - pGProximall - dGProximall - eHx excitation"

14 | "dH¥2 1 = timeHx/2 - pGRAD - dGRAD - eH¥ WATERGATE/2 - eHx excitation®
15 | "dHXZ 2 = timeHx/2 - pGRAD - dGRAD - eHX_WATERGATE/Z - ME_de"

16

17 | ; Compensate for inwversion pulses during X 50 evolution:

18 "TproximalPost = larger(pH#{_inversion, pY_inversion]"

19

20 | /4For FB - determine whether solvent should be +z ar -z after last H excitation pulse:*/

21 | &

if defined(WG)

22 | /% WATERGATE pulse won't invert solvent -= solvent to z:*/

23 | #
24 |4

define phPROXIMAL_SOLVENT ph2
glse

25 | f# If there is inversion in the second IMEPT leave solwvent along -z after first IMEPT:#/

26 | #
7| #

#
#
32 | #
#
#

define phPROXIMAL SOLVENT pho
endif

Phase of last H excitation pulse:
ifdef GS
define phGS ph3
glse
define phGS ph2
endif

36 | "acgto = Q"

r

39 | #

»

42 | #

Fig. S3

First section (at the init.incl position) of the code is presented in Fig. S3. and contains the code for the calculation of lengths
of delays. After defining the needed variables the lengths of the delays for the evolution of J,x scalar coupling are adjusted
to accommodate optional gradients (pGRAD), gradient delays (IGRAD) and the effective evolution during pulses flanking
(eHX_excitation) and (if selected in ZGOPTNS) the WATERGATE block (eHX_WATERGATE). The TproximalPost

s set to compensate for the length of the inversion pulses (for H and optionally Y — without Y nuclei pY_inversion is

pulses

delay i

37 | baseopt_echo

elif defined (INIT_DOME) && !defined (ME_PULSES)

elif defined (ME_PULSES) && !defined (IMPORT_PHASES)

. The first part of the hsgc.me.pp file implementing the proximal HSQC module.

set to 0 s elsewhere) in the middle of the X chemical shift evolution period.

The part of the module that is included in a pulse program at the position of the start.incl file (line 40) is empty, as no real-

time calculations need to be performed for a standard HSQC.

41
42
a3
a1
29
16
a7
48
e

20

=%
7 h

52
53
54
55
56
57
58
59
a0
61
62
53
64
a5
66
67
a8
a4
70
71
72
73

-
/

™
78
7
78
79
80
81
82
83
a1

85
86
a7
88
a9
90

91
92
93
94
95
96
97
a8

Fig. S4. The second part of the hsgc.me.pp file implementing the proximal HSQC module.

P

*

=

TR RER TR RN

eldf defined (RE_PULSES) && !defined (TMPORT PHASES)

ifnde! PROXIMAL_X_START

e -> HzX2:
(HX_excitation{pho)):fH
PROXIMAL_GRAD_LONG(gpProximall)
dHX

{center (HX_refocussing(phi)):fH (X_inversion(phe)):fx)
dHX
PROXIMAL_GRAD_LONG(gpProximall)
(HX_TUpback(phl)):TH
H20_FLIPBACK(pho)

endif /*X_START*/

PROXTMAL_GRAD_LONG{gpProximald)

Hehz -> HzNy < Hehxe with N evolution £T1):
(X_excitation(phProximall)):fXx

ROGRAD_ON

TProximal*o,5

ROGRAD_OFF

(center (HX_inversion(pho)):fH (Y_inversion(ph0)):1Y)
ROGRAD_ON_HEG

TProximal®o,5

ROGRAD_OFF

GRAD_PROXIMAL (gpProximalX, gpProximal2)
(X_refocussing(phe)):1X

GRAD_PROXIMAL (gpProximalX2, gpProximal2)
ROGRAD_COHP

TproximalPost

(X_flipback (phProximal3)): X

PROXIMAL_GRAD_LONG{gpProximal®)

Hzxrz -> Ht:

H20_FLIPBACK(phGS + phPROXTRAL SOLVENT)
(HX_excitation(phGS)):fH

GRAD_PROXIMAL_GS(gpProximalH, gpProximal3)

dHxz_ 1

{center (HX_WATERGATE(pho)):fH (X_refocussing(pho)):fx)
GRAD_PROXIMAL_GS(gpProximalH2, gpProximals3

dHx2_2 !

ifndef GS

define PROXIMAL_MCI FI1PH(calph{phProximal3, +u0), caldel(TProximal, +inl))
define PROXINAL_MC2 F2PH(calph(phProximal3, +90). caldel(TProximal, +in2))
defing PROXIMAL MC3 FIPH(calph(phProximal3, +090), caldel(TProximal. +in3))
defing PROXTRAL MC4 FaPH(calph(phPraximal3, +90), caldel(TProximal, +ind))

else
define PROXIMAL_MCI FlEA(calgrad(EA), caldel(TProximal,
define PROXIMAL MC2 FZEA(calgrad(EA), coldel(TProximal,
define PROXIMAL MC3 FIEA(calgrad(ER), caldel(TProximal.
define PROXIMAL _MCA FAEA(calgrad(EA), caldel{TProximal,
endif

+inl1) & calph{phProximall,
+in2) & calph(phProximall,
+in3) & calph(phProximall,
+in4) & calph(phProximall,

+180) & calph{phRec.
+190) & calph(phRec,
+108) & calph(phRec.
+180) & calph(phRec,

+180))
+180))
+180))
+180))

Fig. S4. presents the third section of the code (at the end.incl position) implementing the actual HSQC experiment. All
pulses are implemented using the libraries low-level functionality (with a HX_ prefix for protons and X_ prefix for the active
heteronucleus) and can thus be switched between hard and shaped pulses and the length of delays (such as dHX) will be
automatically adjusted as per the previous section — for dHX using eHX_excitation.

The first evolution period (lines 57-64) implements an INEPT transfer to the X nucleus with optional gradients flanking the
H refocusing pulse. The optional flipback pulse H20 FLIPBACK will be skipped if the options —DFB is not selected using
ZGOPTNS. The initial block can be skipped by setting the macro PROXIMAL_X START - the experiment than use X
steady steady-state magnetization instead of protons.

The second evolution period (lines 70-83) implements an X chemical shift evolution period with refocusing of the coupling
to protons and optionally to Y nuclei. Gradients can be used to mitigate radiation dampening for longer maximum evolution
times in the X dimension. In this case RD_GRAD (RD_GRAD_NEG) will be replaced by a statement switching on a
positive (negative) square gradient with RDGRAD_OFF switching it off. If the RDGRAD option is not used all those
macros will have no effect. The GRAD_PROXIMAL macro enable the implementation of three different options. If gradient
selection is desired (-DGS in ZGOPTNS) gradients on two sides of the X refocusing pulse will have different amplitudes.
With extra gradients (-DGRAD_SHORT) the two gradients will have equal amplitudes and without any of the two options
the statements will have no effect.

The third evolution period (lines 88-94) implements the second INEPT block. Solvent flipback is implemented as in the first
INEPT and selection gradients as in the second evolution period. Instead of a standard HX_refocussing pulse a
HX_WATERGATE variant is used. Without the appropriate option (-DWG in ZGOPTNS) it will have the same effect as
HX_refocussing, but with the option turned on a selected WATERGATE-type block will be used — by default it is W5 with
corrections (Liu et al., 1998).

The rest of this section (lines 96-106) illustrates one of the limitations of the pulse programming language used. Since this
module can also be used in a 3 or 4D NOESY multiple variants of an MC statement are specified. For gradient selected

experiments echo-antiecho MC statements are used and “standard” (TPPI/States-TPPI/States) otherwise.

108
11a
111
11z
115
114
115
118
117
118
118
120
121
122
123
124
1325
128
127
128
128
130
131
152
153
134
155
138
157
158
138
140
141
142
145
144
145
las
147
l4s
145
150
151
152

elif defined (IMPORT_PHASES)

;K excitation:

if !defined (DISTAL PHASES 2)
phProximall = 0 2

define PROXIMAL PHASES 2

elif tdefined (DISTAL_PHASES_4)
phProximall = 0 & 2 2

define PROXIMAL_PHASES 4

else
phProximall =0 0 0 0 2 2 2 2

define PROXIMAL_PHASES_ 8

endif

; ¥ flipback:

if tdefined (DISTAL_PHASES_4) && !defined (PROXIMAL_PHASES_4)
phProximal3 = 0 & 2 2

elif ldefined (DISTAL_PHASES 3) && ! defined (PROXIMAL_PHASES_B)
phProximal3 =0 0 0 0 2 2 2 2

elif tdefined (DISTAL_PHASES 16) && ! defined (PROXIMAL_PHASES_16)
phProximal3 =0 0 0 0 0 OV O 222222272

else
phProximal3 = @

endif

define PROXIMAL_PH31 phProximall + phProximal3

jgpzProximall: Gradient in Hz -= HzXz echo: 1%.

;opzProximal?: sShort gradient in X evolution echo: 5%.
;opzProximal3: short gradient in Hzxz -= Ht (WATERGATE] echo: 21%.
;opzProximald: Gradient after Hz -= Hzxz echo: 3%.

;opzProximalt: Gradient after ¥ evolution echo : 11%.

;opzProximalx: First coherence selection gradient fon MN/CH: B80%.
;opzProximalx2: Second coherence selection gradient (on M/C): (.
ifndef PROXIMAL C

;opzProximalH: Third coherence selection gradient fon H): 1%.
;opzProximalH2: Forth coherence selection gradient {on H): 9.1%.
else

;gpzProximalH: Third coherence selection gradient fon Hl: 1%.
;gpzProximalH2: Forth coherence selection gradient (on H): 21.1%.
endif

endif /*INIT DOME*/

Fig. S5. The first part of the hsqc.me.pp file implementing the proximal HSQC module.

The third section (Fig. S5.) defines phase programs and contains gradient amplitude suggestions (lines 136-152). Since in

NOESY experiments the distal module will be included before this proximal module it will signal which lengths of phase
cycles it uses by setting the corresponding macros — by default it will be DISTAL_PHASES 2 and DISTAL_PHASES 8.

The HSQC module will therefore use a {x, -x} cycle for the X excitation pulse in a 2D experiment and a {X, X, -X, -x} cycle

in a NOESY experiment. The macro PROXIMAL_PH31 is set appropriately to complement the phase cycles of pulses.

6

2 Example configuration utility for 4D NOESY

Global settings
|_| PRESAT [| FB
Proximal 2D
Type: %Sensitivity enhanced HSQC .7

] GS
lv] GRAD

| GRAD_SHORT
Distal 2D

Type: (HMQC »
[]GS

v| GRAD

| GRAD_SHORT

Fig. S6. me.config.py GUI configurator for the 4D NOESY pulse program.

In Fig. S6. we present the GUI of an experimental configuration utility “me.config.py” for the 4D NOESY pulse program.
The ZGOPTNS variable is updated after each selection. The utility is experimental, since the underlying TopSpin Jython
infrastructure is underdocumented and the utility suffers some performance problems. Changing the active TopSpin window
during program operation can also lead to bugs or unintentional changes to other experiments ZGOPTNS variable.
Nonetheless we think that the source code of the program can serve as an inspiration or be re-used in other efforts in building

a pulse program library — whether it is based on ME or not.

References

Liu, M., Mao, X., Ye, C., Huang, H., Nicholson, J. K., and Lindon, J. C.: Improved WATERGATE Pulse Sequences for
Solvent Suppression in NMR Spectroscopy, Journal of Magnetic Resonance, 132, 125-129,
https://doi.org/10.1006/jmre.1998.1405, 1998.

