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Abstract. A modified Anderson–Weiss approximation for describing double-quantum (DQ) NMR experiments
in systems with many I = 1/2 spins is proposed, taking inter-spin flip-flop processes into special consideration.
In this way, an analytical result is derived for multi-spin systems for the first time. It is shown that in the initial
stages of DQ intensity buildup, the probability of flip-flop processes in DQ experiments is half as large as
in analogous Hahn echo or free induction decay experiments. Their influence on the experimentally observed
DQ NMR signal becomes dominant at times t > (9/2)1/2T eff

2 ≈ 2.12T eff
2 , where T eff

2 is the effective spin–spin
relaxation time measured by the Hahn echo. Calculations and a comparison with spin dynamics simulations of
small spin systems of up to eight spins reveal a satisfactory agreement.

1 Introduction

The seminal papers by Baum and Pines (Baum et al., 1985;
Baum and Pines, 1986) started the field of double-quantum
(DQ) or, more generally, multiple-quantum (MQ) NMR. At
the qualitative level, the idea of the method is quite simple.
The system of spins under study is continuously irradiated by
a special sequence of radiofrequency (RF) pulses, which al-
lows one to change the relative importance of different parts
of the initial Hamiltonian of spin–lattice interactions, induc-
ing different quantum transitions in the spin system. In other
words, the irradiation pattern creates a new effective interac-
tion Hamiltonian that induces selective quantum transitions
in the spin system. In the mentioned initial papers (Baum et
al., 1985; Baum and Pines, 1986), the method was mathemat-
ically justified for solids in which thermal motions of spins
can be neglected in comparison with the initial spatial dis-
tances between them. An additional feature of solids is the
large difference between the spin–spin and spin–lattice re-
laxation time, T eff

2 � T1. This allows us, at each time much
shorter than the spin–lattice relaxation time, t � T1, to ne-
glect the influence of the so-called non-secular part of the

spin–lattice interaction Hamiltonian on the dynamics of the
spins under study and to limit ourselves to considering only
its secular part.

Subsequently (see, for example, Graf, 1998; Dollase et
al., 2001; Saalwächter, 2002a, b, 2007; Saalwächter et al.,
2003, 2006; Saalwächter and Heuer, 2006; Fechete et al.,
2002; Mordvinkin and Saalwächter, 2017; Mordvinkin et al.,
2020; Vaca Chavez and Saalwächter, 2011; Shahsavan et al.,
2022, and references therein), the method was phenomeno-
logically generalized for the case when the relative spatial
displacements of spins during the experiment cannot be con-
sidered small, but the situation is still such that T eff

2 � T1.
In recent work (Brekotkin et al., 2022), it has been proven
by methods of statistical physics that in the limit 1→ 0,
where 1 is the time interval between the nearest RF pulses,
the phenomenological method of accounting for spatial dis-
placements of spins during the experiment gives correct re-
sults. Thus, a general relation allowing for a quantitative ac-
count of the corresponding corrections was obtained. Rele-
vant analytical results related to DQ NMR have recently been
obtained for model solid-state many-spin one-dimensional
I = 1/2 systems in which magnetic dipole–dipole interac-
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tions have been considered only between nearest neighbors
(see Bochkin et al., 2022; Bochkin et al., 2024; Fel’dman et
al., 2024; Doronin et al., 2000, and references cited therein).

For the case of the spin system I = 1/2, the dominant
interactions determining the spin relaxation are, as a rule,
magnetic dipole–dipole interactions. The secular part of
the Hamiltonian has the following form (see, for example,
Fatkullin et al., 2012; Fatkullin et al., 2013):

Ĥ sec
dd =

∑
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}ωij
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2Î zi Î
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j − Î
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j
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parameter ωij describes in frequency units the effective
strength of the dipole–dipole coupling of spins with numbers
i and j . It is given by the following expression:

ωij =
1

8π
µ0γ

2}
(
1− 3cos2θij

)
r3
ij

=Dij

(
1− 3cos2θij

)
2

, (2)

where rij is the distance between interacting spins; θij is
the angle between direction z, defined as the direction along
which the external magnetic field is aligned, and the vector
connecting the discussed spins; Îαi is the operator of the α
component of the spin with number i; } is Planck’s constant
divided by 2π ; µ0 is the magnetic field constant; and γ is
the gyromagnetic ratio of the spins. Dij = µ0γ

2}/
(

4πr3
ij

)
is the dipole–dipole coupling constant. The Hamiltonian
(Eq. 1) in this paper plays the role of the original spin–
lattice interaction Hamiltonian. In the lowest order of pertur-
bation theory, it induces in a spin system only zero-quantum
transitions (dephasing processes or zero-quantum coherence)
through terms proportional to Î zi Î

z
j and flip-flop processes

proportional to Î+i Î
−

j + Î
−

i Î
+

j . We also note that the non-
secular part of the Hamiltonian of magnetic dipole–dipole
interactions inducing the processes of spin–lattice relax-
ation describes the processes of single-quantum and double-
quantum coherence. However, at each time of interest, t �
T1, they can be neglected.

Under irradiation of the spin system by a special RF pulse
sequence referred to as the Baum–Pines (BP) sequence (see
details in Baum et al., 1985; Baum and Pines, 1986), the dy-
namics of the spin system at each time t � T1 is determined
by not only the Hamiltonian Eq. (1) but also the effects asso-
ciated with the irradiation. In fact, there are two conceptually
different experiments, each consisting of two stages of equal
duration τDQ. The first half of both experiments is called the
excitation stage, and the second half is called the reconver-
sion stage. At the moment of time 2τDQ the signal of the
studied spin system is measured. Normally, a four-step phase
cycle is applied to the relative overall phase of the recon-
version stage in combination with the receiver phase to fil-
ter for either (4n+ 2)-quantum coherences (“DQ signal”) or

4n-quantum coherences (“reference signal”). In the follow-
ing, we use a simplified yet equivalent description of these
two experiments (Saalwächter, 2013). They essentially differ
from each other in the fact that in the first case, during both
periods of the experiment, the phase of RF exposure does
not change, and in the second experiment, during the period
of reconversion, the phase of RF exposure changes by 90°,
which changes a sign of the of the resulting effective spin
Hamiltonian, i.e., performs the time-reversal operation with
respect to the spin variables. We denote the measured signal
in the first experiment by A0

(
2τDQ

)
and in the second exper-

iment by A1
(
2τDQ

)
.

In solids, the joint effect of the BP sequence and the
Hamiltonian Eq. (1), in the limit 1→ 0, where 1 is the
time interval between the nearest RF pulses, the spin sys-
tem’s time evolution can be described in terms of an effective
DQ Hamiltonian with the following structure:

Ĥ n
DQ = (−1)nθ(t−τDQ)∑

i<j

}ωij
(
Î
y
i Î

y
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x
i Î

x
j

)
= (−1)nθ(t−τDQ)∑

i<j

}ωij
2

(
Î+i Î

+

j + Î
−

i Î
−

j

)
, (3)

where θ (x) is the Heaviside step function, n= 0,1. The
case n= 0 corresponds to the first mentioned version of
the DQ experiment without phase change, i.e., to the signal
A0
(
2τDQ

)
, and n= 1 to the second version with a 90° phase

shift, i.e., to the signal A1
(
2τDQ

)
. Note also that the Hamil-

tonian Eq. (3) for the case of solids is usually derived by the
average Hamiltonian theory (see, e.g., Haeberlen, 1976) and
can, in principle, also be obtained also via the Floquet for-
malism (see, e.g., Ivanov et al., 2021, and references cited
therein).

In the lowest order of perturbation theory, or each time
t < T ∗fl , where T ∗fl is the characteristic time of flip-flop pro-
cesses created by the Hamiltonian Eq. (1), the Hamiltonian
Eq. (3), in contrast to Eq. (1), induces double-quantum (DQ)
transitions (or creates DQ coherences) of interacting spins.
At longer times, of course, more complex quantum transi-
tions involving coherent behavior of an even number of spins
become essential. At a time t = τDQ, the operator in Eq. (3),
changes its sign, which is dynamically equivalent to a time-
reversal operation for the case when n= 1.

For situations where spins are moving, Eq. (3) was heuris-
tically generalized by considering the coupling constant as
a function of time. The validity of such a generalization is
shown by Brekotkin et al. (2022) by a sequential quantum
statistical calculation showing that the terms added to the re-
lation vanish in the limit 1→ 0; in addition, a general rela-
tion is obtained that allows one to quantify the corresponding
contributions to the experimentally measured signal, if nec-
essary.
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In this paper, we ignore the mentioned effect and work
with an effective Hamiltonian of the form

Ĥ n
DQ (t)=

∑
i<j

}ω(n)
ij (t)
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x
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x
j

)
, (4)

where

ω
(n)
ij (t)= (−1)nθ(t−τDQ)ωij (t) . (5)

Here, ωij (t) can be obtained from ωij of Eqs. (1) and (3)
by transition to the ordinary quantum mechanical interac-
tion (Dirac) representation, where the role of the zeroth-order
Hamiltonian, i.e., the zero-point Hamiltonian or the domi-
nant part of the Hamiltonian (see also Eq. 8), is a sum of the
lattice Hamiltonian and the Zeeman Hamiltonian of the in-
vestigated spins with an external magnetic field. Recall that
the properties of the Heaviside step function used in Eq. (5)
are such that θ (x)= 0 at x < 0 and θ (x)= 1 at x ≥ 0, which
allows us to analytically account for the inverted sign of the
DQ Hamiltonian during the reconversion period in experi-
ments when n= 1.

The Hamiltonian Eq. (4) itself is already quite complex
and does not allow for accurate calculations in nontrivial
cases. The standard approximation that allows one to ob-
tain closed analytic relations is the Anderson–Weiss (AW)
approximation (Anderson and Weiss, 1953; Abragam, 1981;
Kimmich, 1997), the second cumulant approximation in
common parlance, which completely ignores the effects of
flip-flop processes. Alternatively, the Hamiltonian Eq. (4)
can be rewritten in the following form:
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By direct calculation one can see that[
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x
i Î
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where Î z =
∑
k

Î zk is the z component of the total spin system.

This exact result allows us to modify the usual Anderson–
Weiss approximation so that the effects of flip-flop processes
on the experimentally observed signals will be accounted for
at least in the mean-field approximation. A detailed study of
this circumstance is the main purpose of this article.

2 Theoretical part

2.1 General considerations

An inevitable and important initial element of all quantum
statistical calculations of experimentally measured dynami-
cal quantities is the transition to the interaction representa-
tion, synonymous to the Dirac representation. This transition
is performed by dividing the full initial Hamiltonian of the
system, Ĥ , into a sum of the zeroth-order Hamiltonian, Ĥ0,
and the “interaction” Hamiltonian, Ĥint:

Ĥ = Ĥ0+ Ĥint. (8)

In problems of NMR spectroscopy, the lattice Hamiltonian,
ĤL, and the Hamiltonian of the Zeeman interaction of the
spins under study (ĤZ = }ω0Îz, ω0 being the resonance fre-
quency), are usually included in Ĥ0 = ĤL+ĤZ; all other in-
teractions are assumed to be included in Ĥint. In the DQ ex-
periments discussed in this paper, the measured quantity is
the z component of the total system spin Î z =

∑
k

Î zk . The ex-

istence of the identity Eq. (7) allows one to include the DQ
part of the Hamiltonian

Ĥ fl
DQ ≡−

∑
i<j

}ω(n)
ij (t)

(
Î
y
i Î

y
j + Î

x
i Î

x
j

)
(9)

in the zeroth-order part of the Hamiltonian, thereby reformu-
lating the transition into the Dirac representation. Only such
a procedure should be accurately described since the initial
Hamiltonian itself, Eq. (3), is an effective Hamiltonian gen-
erated by the joint action on the spin system of the secular
part of the Hamiltonian of magnetic dipole–dipole interac-
tions, Eq. (1), and the irradiation of the RF spin system by
the Baum–Pines sequence.

In DQ NMR experiments described in the laboratory co-
ordinate system and the Schrödinger representation, based
upon irradiation of the spin system of the BP sequence
(or its equivalent modifications), we have an initially time-
dependent Hamiltonian

Ĥ (n) (t)= ĤL+ ĤZ + Ĥ
sec
dd + Ĥ

(n)
BP (t) , (10)

where Ĥ (n)
BP (t) is the Hamiltonian of the interaction of the

studied spin system with the irradiation field of the BP pulse
sequence of type n= 0,1. Consequently, the evolution oper-
ator is initially a Dyson chronological, time-ordered, expo-
nential propagator:

Û (DQ,n) (t)= T̂ exp

− i}
t∫

0

Ĥ (n) (t1)dt1

 . (11)

The transition into the interaction representation will be car-
ried out in two steps. First, the following Hamiltonian plays
the role of the zeroth-order Hamiltonian as usual:

Ĥ0 (t)= ĤL+ ĤZ. (12)
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The Eq. (11) can then be rewritten as follows:

Û (DQ,n) (t)= Û0 (t) Û (DQ,n)
1 (t) , (13)

where

Û0 (t)= T̂ exp
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}
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(
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)
Û
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In the limit 1→ 0, according to Brekotkin et al. (2022), we
have
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Now we can return to Eq. (6) and introduce the following
notations to shorten the formulae:

Ĥ
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y
j + Î
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This represents the key step of our new approach as the
Hamiltonian Eq. (18) commutes with the Zeeman Hamilto-
nian and can thus be absorbed in a new zero-point Hamilto-
nian to be used for the transition to another interaction frame,
as discussed below.

In DQ experiments, the measured quantity is the z com-
ponent of the total magnetic moment of the resonant spins,
which in turn is proportional to the z component of the to-
tal spin Î z =

∑
k

Î zk . The measurement, as already noted, is

carried out for a time t = 2τDQ. In the high-temperature ap-
proximation by spin variables, the signal with n= 0,1 for a
given spin system is

An
(
2τDQ

)
=

β}ω0

(2I + 1)Ns〈
Trs
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Î zÛ (DQ,n) (2τDQ

)
Î zÛ∗(DQ,n) (2τDQ

))〉
eq
, (19)

where Ns is the total number of spins in the system with
the resonance frequency, ω0; β is the inverse temperature;
and the trace operation, Trs (. . .), is performed over the spin
variables. Due to the unitarity of the propagator, one has

Û∗(DQ,n) (t)=
(
Û (DQ,n) (t)

)−1
, and the bracket 〈. . .〉eq de-

notes equilibrium averaging over all lattice variables.
Note once again that
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Î z;Ĥ0

]
= 0, which allows us to

rewrite Eq. (19) as follows:
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Next, we represent the propagator Û (DQ,n)
1 (t) as follows:
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where
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It is worth noting that the transition reflected in Eqs. (21) and
(22) is analogous to the transition in Eqs. (13) and (14) and
represents the second step in transitioning to the interaction
representation that we are ultimately interested in. Substitut-
ing the relation Eq. (22) into (20), taking into account the
identity (Eq. 7), we obtain

An
(
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)
=

β}ω0
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Trs

(
Î zÛ
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2
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Î zÛ
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where
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}
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H

(n)
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 . (24)

Note that in deriving relations (22) and (23), only a single
asymptotically exact approximation, Eq. (15), is made.

2.2 The simplest approximation

If we neglect the influence of flip-flop processes, i.e., putting
Ĥ

(n)
DQ,fl (t)= 0 in Eqs. (21) and (22), then with respect to the
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spin variables, Eq. (23) can be counted exactly if the dynam-
ics of the lattice variables can be treated classically. Indeed,
in this case,

[
Ĥ

(n)
DQ,yy (t2) ;Ĥ (n)

DQ,yy (t1)
]
= 0 and the propaga-

tor Û (DQ,n)
2 (t) with respect to spin variables take a relatively

simple form:
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ω
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Substituting relations (25) and (26) into formula Eq. (20) us-
ing the algebraic properties of spin operators for I = 1/2 (see
details in Fatkullin et al., 2012, and Fatkullin et al., 2013), we
obtain the following simplest approximation for experimen-
tally observed DQ signals:
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with
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ωik (t1)dt1,ϕrec
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2τDQ∫
τDQ

ωik (t1)dt1. (28)

It is important to note that the derivation of relation (27)
proposed in this paper, in contrast to the previous work
(Fatkullin et al., 2013), does not use the Anderson–Weiss
approximation directly. For a system of spin pairs, when
i,k = 1,2, our Eq. (27) exactly recovers the known result:

A
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2.3 Effect of flip-flop transitions

As already noted, flip-flop transitions are induced by the par-
tial Hamiltonian Ĥ (n)

DQ,fl (t) given by Eq. (18). Their influence

on the experimentally observed signal An
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)
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the Hamiltonian ˆ̃H (n)
DQ,yy (t); see relations (20)–(22), which

can be rewritten in the following way:

ˆ̃
H

(n)
DQ,yy (t)=

∑
i<j

2}ω(n)
ij (t)

(
Î
y
i Î
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The approximation considered earlier, in Sect. 2.2, is equiv-

alent to neglecting the dependence of the operator
(
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t
on time. In this section, we consider the approximation by its
projection in Liouville spin space to the initial value:
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The quantity P̃ n,flij {t;0} does not depend on spin variables,
but it is a complex function of time-dependent lattice vari-
ables. Later we see that after averaging over the lattice vari-
ables, it can be, for the case of n= 0, viewed as the prob-
ability that during the time interval t , none of the spins in
question with numbers i and j participated in the flip-flop
process with other spins.

Consider the expansion of the value P̃ n,flij {t2; t1} in a per-

turbation theory series with respect to Ĥ (n)
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The first-order contribution by ω(n)
kl (τ1) in relation (33) turns

out to be exactly 0:

Trs

(
Î
y
i Î

y
j

[
Î xk Î

x
l + Î

y
k Î

y
l ; Î

y
i Î

y
j

])
=−Trs

(
Î
y
i Î

y
j

[
Î
y
i Î

y
j ; Î

x
k Î

x
l + Î

y
k Î

y
l

])
= Trs

([
Î
y
i Î

y
j ; Î

y
i Î

y
j

]
; Î xk Î

x
l + Î

y
k Î

y
l

)
= 0. (34)

The relation is thus simplified:

P̃
(n)fl
ij (t2; t1)= 1−

1
4

t2∫
t1

dτ2

τ2∫
t1

dτ1
∑
k,l;s,t

ω
(n)
kl (τ2)ω(n)

st (τ1)

Trs

([
Î
y
i Î

y
j ; Î

x
k Î

x
l

][
Î xs Î

x
t ; Î

y
i Î

y
j

])
Trs

((
Î
y
i

)2(
Î
y
j

)2
)

+ . . . (35)

The standard commutator and trace calculations on the
right-hand side lead to the following result:

∑
k,l;s,t

ω
(n)
kl

(τ2)ω(n)
st (τ1)

Trs
([
Î
y
i
Î
y
j
; Îx
k
Îx
l

][
Îxs Î

x
t ; Î

y
i
Î
y
j

])
Trs

((
Î
y
i

)2(
Î
y
j

)2
)

=
4
3
I (I + 1)

∑
k

′
(
ω

(n)
ik

(τ2)ω(n)
ik

(τ1)+ω(n)
jk

(τ2)ω(n)
jk

(τ1)
)

+
8
5

{
I (I + 1)−

3
4

}
ω

(n)
ij (τ2)ω(n)

ij (τ1) , (36)

where
∑
k

′. . . implies that summation is performed with the

restrictions k 6= i,j .
For the case of spins I = 1/2, the last term on the right-

hand side of relation (34) is exactly 0. This is expected
because the mutual flip-flop transitions between spins with
numbers i and j do not change the value of the product Î yi Î

y
j

in the considered case. At the same time, flip-flop transi-
tions with other system spins are accounted for in the terms
proportional to ω(n)

ik (τ2)ω(n)
ik (τ1)+ω(n)

jk (τ2)ω(n)
jk (τ1), which

change the value of Î yi Î
y
j .

Hereafter, we assume that the motion of the lattice vari-
ables is correctly described by classical dynamics, which al-
lows us to neglect the explicit time ordering of the corre-

sponding variables; relation (35) takes the following form:

P̃
n,fl
ij {t2; t1} = 1−

I (I + 1)
3

t2∫
t1

dτ2

τ2∫
t1

dτ1
∑
k

′

(
ω

(n)
ik (τ2)ω(n)

ik (τ1)+ω(n)
jk (τ2)ω(n)

jk (τ1)
)

+ . . .

= 1−
1
6
I (I + 1)

∑
k

′

((
ϕ

(n)
ik (t2; t1)

)2
+

(
ϕ

(n)
jk (t2; t1)

)2
)

+ . . ., (37)

where ϕ(n)
st (t2; t1)=

t2∫
t1

ω
(n)
st (τ )dτ .

Note that in the right-hand side of Eq. (32) we have taken

into account only projections of the operator
(
Î
y
i Î

y
j

)fl

t
on

the initial spin operator Î yi Î
y
j and neglected its projections

on the spin operators such as Î yk Î
y
l for cases when k 6= i,j

or l 6= i,j . By direct and lengthy calculations analogous to
Eqs. (33)–(34), one can see that in the second order of per-
turbation theory in ω(n)

kl (τ ), their contributions to Eq. (35) are
exactly zero.

In further calculations, we will apply the Anderson–Weiss
approximation with respect to the magnitude P̃ n,flij {t2; t1} :

P̃
n,fl
ij {t2; t1} = exp

{
−

1
6
I (I + 1)

∑
k

′

((
ϕ

(n)
ik (t2; t1)

)2

+

(
ϕ

(n)
jk (t2; t1)

)2
)}
. (38)

It seems appropriate to note that the approximation equation,
Eq. (32), reconstructs the formal mathematical structure of
the previously studied Hamiltonian Eq. (16) by modifying in
it only the time-dependent spin–lattice interaction constant:

ˆ̃
H

(n)
DQ,yy (t)'

∑
i<j

2}ω̃(n)
ij (t) Î yi Î

y
j , (39)

with

ω̃
(n)
ij (t)= P̃ n,flij (t;0)ω(n)

ij (t) . (40)

Effects associated with the Hamiltonian Eq. (18) are now
considered by the presence of a multiplier P̃ fl

ij (t;0). There-
fore, by analogy with relation (27), we can immediately write
down the relations for experimentally observed signals:

An
(
2τDQ

)
=
β}ω0

4

∑
k

〈∏
i

cos
(
ϕ̃ex
ik + (−1)nϕ̃rec

ik

)〉
eq

, (41)
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N. Fatkullin et al.: Analytical treatment of proton double-quantum NMR intensity buildup 7

with

ϕ̃ex
ik =

τDQ∫
0

ω̃ik(t1) dt1, ϕ̃rec
ik =

2τDQ∫
τDQ

ω̃ik(t1) dt1. (42)

From the experimentally measured quantities A0
(
2τDQ

)
and

A1
(
2τDQ

)
, one can construct the so-called normalized DQ

(nDQ) buildup function:

InDQ
(
τDQ

)
=

1
2
A1
(
2τDQ

)
−A0

(
2τDQ

)
A1
(
2τDQ

) . (43)

Using Eq. (41), we get

InDQ
(
τDQ

)
=

1
2

1−

∑
i

〈∏
j

cos
(
ϕ̃

(0),ex
ij + ϕ̃

(0),rec
ij

)〉
eq∑

i

〈∏
j

cos
(
ϕ̃

(1),ex
ij − ϕ̃

(1),rec
ij

)〉
eq

 . (44)

2.4 Interpretation of P̃ n,fl
i j
{t2;t1}

The quantity under consideration is defined by relation (32);
Eq. (37) is its Taylor expansion in Ĥ (n)

DQ,fl (t), and Eq. (38) is
in turn similar to its Anderson–Weiss approximation. Aver-
aging in all the indicated relations was carried out only over
spin variables. Therefore, according to Eq. (31), P̃ n,flij {t2; t1}

remains a function of lattice variables, i.e., it depends, in
general, on the spatial coordinates of spins at all previ-
ous time moments. It is not in itself experimentally mea-
surable. Experimentally measured quantities that depend on
P̃
n,fl
ij {t2; t1}, as follows from Eqs. (19), (43), (44), con-

tain an additional averaging over the equilibrium distribu-
tion of lattice variables. In mathematical terms, the quantity
P̃
n,fl
ij {t2; t1} is a multi-dimensional random process, micro-

scopically defined by the Hamiltonian of lattice variables ĤL.
After averaging Eq. (37) over the lattice variables, we ob-

tain

P
n,fl
ij {t2; t1} ≡

〈
P̃
n,fl
ij {t2; t1}

〉
eq

= 1−
I (I + 1)

3

t2∫
t1

dτ2

τ2∫
t1

dτ1
∑
k

′

(〈
ω

(n)
ik

(τ2)ω(n)
ik

(τ1)+ω(n)
jk

(τ2)ω(n)
jk

(τ1)
〉
eq

)
+ . . .

= 1−
1
6
I (I + 1)

∑
k

′

(〈(
ϕ

(n)
ik (t2; t1)

)2
〉

eq

+

〈(
ϕ

(n)
jk (t2; t1)

)2
〉

eq

)
+ . . . (45)

Using the Anderson–Weiss approximation for this relation,
we obtain

P
n,fl
ij {t2; t1}= exp

{
−

1
6
I (I + 1)

∑
k

′

(〈(
ϕ

(n)
ik

(t2; t1)
)2
〉

eq

+

〈(
ϕ

(n)
jk (t2; t1)

)2
〉

eq

)}
. (46)

An expression similar to Eqs. (45) and (46) with numerical
multiplier accuracy was obtained in Fatkullin et al. (2012),
which discussed the modified Anderson–Weiss approxima-
tion with respect to the free induction decay (FID) signal of
the proton spin system:

P
FID,fl
kl (t)= exp

{
−

t∫
0

dτ (t − τ )
I (I + 1)

6}2

∑
m

′

(〈
Ãkm (t) Ãkm (0)

〉
eq

+

〈
Ãlm (t) Ãlm (0)

〉
eq

)}
, (47)

where Ãkl (t)= Akl (t)− 2Jkl (t). Jkl is the J coupling con-
stant between spins with numbers k and l (here correct-
ing a misprint of the numerical coefficient before the
coupling constant in Fatkullin et al., 2012) and Akl (t)=
γ 2}2

r3
kl (t)

(
1− 3cos2 (θkl (t))

)
with variables identical to Eq. (2)

in this paper. The value P FID,fl
kl (t) can be viewed as the prob-

ability that a given pair of numbered k and l spins will not
participate in flip-flop processes over time t with any third
spin of the system.

In terms of the present paper, Jkl = 0 and Akl (t)=
2ωkl (t). To consider motions of the lattice variables as clas-
sical, Eq. (47) can be rewritten in the following way:

P
FID,fl
kl (t)= exp

{
−

t∫
0

dτ (t − τ )
2I (I + 1)

3}2

∑
m

′

(
〈ωkm (τ )ωkm (0)〉eq+〈ωlm (τ )ωlm (0)〉eq

)}
= exp

{
−

1
3
I (I + 1)

∑
m

′

(〈(
ϕ

(0)
km (t;0)

)2
〉

eq

+

〈(
ϕ

(0)
lm (t;0)

)2
〉

eq

)}
. (48)

The difference in the numerical coefficients 1/6 and 1/3 of
the ratios in Eqs. (46) and (48), respectively, are noticeable.
It is related to the fact that in the first case, the flip-flop pro-
cesses are induced by the modified RF irradiated Hamilto-
nian Eq. (4), and in the second case by the secular part of the
Hamiltonian of magnetic dipole–dipole interactions (Eq. 1).
The indicated difference in the numerical coefficients indi-
cates that in the case of DQ experiments, the influence of flip-
flop processes is weaker than for FID or Hahn echo and will
appear at later times. To complete the picture, it seems ap-
propriate to quote an expression from Fatkullin et al. (2012)
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for the probability that spin number k will not participate in
flip-flop processes at intervals t :

P
FID,fl
k (t)= exp

{
−

t∫
0

dτ (t − τ )
I (I + 1)

6}2

∑
m

′

〈
Ãkm (τ ) Ãkm (0)

〉
eq

}
= exp

{
−
I (I + 1)

3

∑
m

′

〈(
ϕex
km (t;0)

)2〉
eq

}
, (49)

where the second line on the right-hand side is rewritten in
terms of the variables of this paper.

From these examples, it seems to us that the value
P̃
n,fl
ij {t2; t1} for the case when n= 0 can be regarded as a

conditional probability for spins with numbers i and j not
to participate in flip-flop processes with other system spins
during the time interval t1 ≤ t ≤ t2, provided that the lattice
variables change along the phase trajectory defined by a par-
ticular set of lattice coordinates during the specified time in-
terval.

2.5 The case of a (quasi-)rigid lattice and
Anderson–Weiss approximation

In this case, spins undergo only small oscillations in the
vicinity of the equilibrium positions. Alternatively, the case
also applies to anisotropic fast-limit motions (such as in poly-
mer networks at high temperatures), where the dipolar cou-
plings are replaced by quasi-static and possibly rather small
residual dipolar couplings of order 3ωij/ (5N ), where N is
the number of statistical segments between cross-links (Kuhn
and Grün, 1942). Also in this case, relevant oscillations
around the mean value of 3ωij/ (5N ) are rather small for rel-
evant long timescales. In both cases, the time dependence
of frequencies ωij (t) in the Hamiltonian Eq. (4) can be ne-
glected, and consequently ω(n)

ij (t)= (−1)nθ(t−τDQ)ωij . Then,
the signal A1 (t) is always fully recovered at time t = 2τDQ.
Our approximation, Eq. (32), preserves this property. This
follows from relations (37) and (38) since, as is easy to see,
we have for 0≤ t ≤ τDQ

P̃
1,fl
ij

{
t + τDQ;0

}
= P̃

1,fl
ij

{
τDQ− t;0

}
(50)

and therefore

ϕ̃
(1),ex
ij − ϕ̃

(1),rec
ij = ωij

τDQ∫
0

(
P̃

1,fl
ij

{
t1+ τDQ;0

}
− P̃

1,fl
ij

{
τDQ− t1;0

})
dt1 = 0. (51)

Note that this property is not trivial at all since the flip-flop
processes are elementary steps of spin diffusion, which is ir-
reversible for the signal A0

(
2τDQ

)
and reversible in time for

the signal A1
(
2τDQ

)
. This property allows us to rewrite rela-

tion (44) for the rigid lattice as follows:

I
rig
nDQ

(
τDQ

)
=

1
2

1−
1
Ns

∑
i

〈∏
j

cos
(
ϕ̃ex
ij + ϕ̃

rec
ij

)〉
eq

 . (52)

Using Eq. (42), we can rewrite Eq. (52) as follows:

I
rig
nDQ

(
τDQ

)
=

1
2

1−
1
Ns

∑
i

〈∏
j

cos


 2τDQ∫

0

ω̃
(0)
ij (t1)dt1


〉

eq

 . (53)

Let us now consider the following quantity:

∏
i

(
2τDQ

)
≡

〈∏
j

cos


 2τDQ∫

0

ω̃
(0)
ij (t1)dt1


〉

eq

. (54)

Decomposing the right-hand side into a Taylor expansion, we
obtain

∏
i

(
2τDQ

)
=

∏
j

1−
1
2!

2τDQ∫
0

dt2

2τDQ∫
0

dt1
〈
ω̃

(0)
ij (t2)ω̃(0)

ij (t1)
〉
eq
+ . . .

 . (55)

Considering the quantity ω̃(0)
ij (t1) as stochastic stationary ran-

dom processes whose correlation functions have symmetry
with respect to time reversal, we obtain

∏
i

(
2τDQ

)
=

∏
j

1−
1
2!

2τDQ∫
0

dt2

2τDQ∫
0

dt1
〈
ω̃

(0)
ij

(t2 − t1)ω̃(0)
ij

(0)
〉
eq
+ . . .


=

∏
j

1−

2τDQ∫
0

dτ
(
2τDQ − τ

)〈
P̃

0,fl
ij (τ ;0) P̃ 0,fl

ij (0;0)ω(0)
ij (τ )ω(0)

ij (0)
〉
eq
+ . . .

 . (56)

Then we can apply a mean-field-like approximation as fol-
lows:

∏
i

(
2τDQ

)
=

∏
j

(
1−

2τDQ∫
0

dτ
(
2τDQ− τ

)
〈
P̃

0,fl
ij (τ ;0) P̃ 0,fl

ij (0;0)ω(0)
ij (τ )ω(0)

ij (0)
〉
eq
+ . . .

)

'

∏
j

(
1−

2τDQ∫
0

dτ
(
2τDQ− τ

)
〈
P̃

0,fl
ij (τ ;0) P̃ 0,fl

ij (0;0)
〉
eq

〈
ω

(0)
ij (τ )ω(0)

ij (0)
〉
eq
+ . . .

)
. (57)
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By definition (see Eq. 32), we have P̃ 0,fl
ij (0;0)= 1. There-

fore, we can rewrite Eq. (57) as follows:

∏
i

(
2τDQ

)
'

∏
j

(
1−

2τDQ∫
0

dτ
(
2τDQ− τ

)
〈
P̃

0,fl
ij (τ ;0)

〉
eq

〈
ω

(0)
ij (τ )ω(0)

ij (0)
〉
eq
+ . . .

)

=

∏
j

(
1−

2τDQ∫
0

dτ
(
2τDQ− τ

)
P

0,fl
ij (τ ;0)

〈
ω

(0)
ij (τ )ω(0)

ij (0)
〉
eq
+ . . .

)
. (58)

Remembering that we started with the approximation of the
product of cosines (see relation 54) and remembering that for
a rigid lattice ω(0)

ij (t)= ωij , it is natural to use the following
approximation for the original relation (53):

I
rig
nDQ

(
τDQ

)
=

1
2

(
1−

1
Ns

∑
i

∏
j

cos


√√√√√√2ω2

ij

2τDQ∫
0

dτ
(
2τDQ− τ

)
P

0,fl
ij (τ ;0)

). (59)

Using the approximation in Eq. (46) for the value P 0,fl
ij (τ ;0),

after a number of steps, Eq. (59) is transformed into the fol-
lowing form:

I
rig

nDQ
(
τDQ

)
=

1
2

(
1−

1
Ns

∑
i

∏
j

cos
(
ωijTij

))
, (60)

with

�2
ij ≡

I (I + 1)
6

(∑
k

′

(
ω2
ik +ω

2
jk

))
,

Tij=

√√√√ 2
√
πτDQ
�ij

erf
(
2�ij τDQ

)
−

1

�2
ij

(
1− exp

(
−4�2

ij τ
2
DQ

))
. (61)

Equation (60) has the following asymptotic values:

I
rig

nDQ
(
τDQ

)
=


1
Ns

∑
i,j

ω2
ij τ

2
DQ for τDQ��−1

ij ∝ T
eff

2 ,

1
2

(
1−

1
Ns

∑
i

∏
j

cos

(
ωij

√
2
√
πτDQ

�ij

))
for τDQ ��−1

ij ∝ T
eff

2 .

(62)

For cases in which the spatial displacements of spins during
DQ experiments cannot be neglected, the Anderson–Weiss
approximation is usually used. With respect to our Eq. (44),
it leads to the following formula:

InDQ
(
τDQ

)
=

1
2

1−

∑
i

exp

{
−

1
2
∑
j

〈(
ϕ̃

(0),ex
ij + ϕ̃

(0),rec
ij

)2
〉

eq

}
∑
i

exp

{
−

1
2
∑
j

〈(
ϕ̃

(1),ex
ij − ϕ̃

(1),rec
ij

)2
〉

eq

}
 . (63)

If all spins have an equivalent environment, then the expres-
sion is simplified:

InDQ
(
τDQ

)
=

1
2

(
1− exp

{
−

∑
j

(〈
ϕ̃

(0),ex
ij ϕ̃

(0),rec
ij

〉
eq

+

〈
ϕ̃

(1),ex
ij ϕ̃

(1),rec
ij

〉
eq

)})
. (64)

2.6 Estimation of characteristic flip-flop transition times
in DQ experiments

As noted at the beginning of Sect. 2.4, the new expressions
for the DQ signals (Eq. 41) differ significantly from the sim-
plified one (Eq. 27) only at sufficiently large time t ≥ τfl

DQ,
where τfl

DQ is the characteristic time of the flip-flop processes

determined by the value P̃ n,flij {t;0} (see Eq. 38). Now we will
try to express this time through the effective spin–spin relax-
ation time, T eff

2 , defined by the relation gFID (T eff
2
)
= e−1,

where gFID (t) is the FID or Hahn echo signal governed
by dipolar dephasing and an approximately Gaussian ini-
tial decay. To do this, let us begin by analyzing the modi-
fied Anderson–Weiss approximation for gFID (t) obtained in
Fatkullin et al. (2012) and written in terms of the notation of
this paper:

gFID (t)= exp
{
−

3
4
I (I + 1)

4
Ns

∑
k,l

′

t∫
0

dτ (t − τ ) 〈ωkl (τ )ωkl (0)〉eqP
FID,fl
kl (τ )

}
. (65)

Since we are interested in relatively short times in the rela-
tion (64), we can set P FID,fl

kl (τ )= 1, which, combined with
the assumption that all spins have the same environment, al-
lows us to convert it to the form

gFID (t)= exp

{
−

3
2
I (I + 1)

∑
l

′

(〈(
ϕ

(0)
kl (t;0)

)2
〉

eq

)}
. (66)

If we apply the Anderson–Weiss approximation to Eq. (45),
we obtain

P
n,fl
ij {t;0}= exp

{
−

1
6
I (I + 1)

∑
k

′

(〈(
ϕ

(n)
ik

(t;0)
)2
〉

eq

+

〈(
ϕ

(n)
jk (t;0)

)2
〉

eq

)}
= exp

{
−

1
3
I (I + 1)

∑
k

′

(〈(
ϕ

(n)
ik

(t;0)
)2
〉

eq

)}
, (67)

where we determine that
∑
k

′

〈(
ϕ

(n)
ik (t;0)

)2
〉

eq
=

∑
k

′

〈(
ϕ

(n)
jk (t;0)

)2
〉

eq
. Note that by virtue of the last ap-

proximation, the values of P 0,fl
ij {t;0} and P

FID,fl
k (t) are

equal for n= 0.
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Let us now consider the case of the DQ experiment, n= 0;
i.e., no time reversal operation with respect to spin variables
is performed at time t = τDQ. We see that the expressions for
gFID (t) and P 0,fl

ij {t;0} are similar. Now we can determine the
corresponding characteristic times by means of the relations:

gFID (t)= exp

{
−

(
t

T eff
2

)α}
,

P
0,fl
ij {t;0} = exp

{
−

(
t

T
DQ,fl
ij

)α}
, (68)

where 1≤ α ≤ 2 is the system-dependent exponent. In
solids, α = 2; in high molecular polymer melts, 1.25≤
α ≤ 1.75 (see, for example, Kimmich and Fatkullin, 2017;
Rössler et al., 2013; Fatkullin et al., 2015); and for low
molecular liquids, α = 1 (see, for example, Mehring, 1983;
Abragam, 1961). From Eqs. (66), (67) and (68) we deduce
the following relation between the discussed characteristic
times:

T
DQ,fl
ij =

(
9
2

)1/α

T eff
2 . (69)

We see that the numerical coefficient linking the two char-
acteristic times is quite large even with the largest possible
value of the exponent:

α = 2 : T DQ,fl
ij =

(
9
2

)1/2

T eff
2 ≈ 2.12T eff

2 . (70)

The latter suggests considering the time
(

9
2

)1/2
T eff

2 ≈

2.12T eff
2 as a lower bound starting from which the influ-

ence of flip-flop processes becomes dominant. The duration
of the DQ experiment is equal to 2τDQ, so the influence of in-
termolecular flip-flop processes on the experimentally mea-

sured signal can be neglected at times τDQ <
(

9
8

)1/2
T eff

2 ≈

1.06T eff
2 .

3 Discussion

3.1 Effect of flip-flop processes

Relations (41)–(44) are the main general results of this pa-
per. They have a formal mathematical structure with a more
simplified approach (see relation 27), completely neglecting
flip-flops during DQ NMR experiments. The difference is

hidden in the values ϕ(n)
ij =

2τDQ∫
0
ω

(n)
ij (t1)dt1 in Eq. (27) and

ϕ̃
(n)
ij =

2τDQ∫
0
ω̃

(n)
ij (t1)dt1, with ω̃(n)

ij (t)= P̃ n,flij (t;0)ω(n)
ij (t), in

Eqs. (41)–(44). As we can see, the influence of flip-flop pro-
cesses was taken into account by multiplying each frequency

ω
(n)
ij (t1) by the value of P̃ n,flij (t;0), defined by Eq. (32).

As it is argued in Sect. 2.4, this quantity is closely related
to the probabilities of spins with numbers i and j during
the time interval t to not participate in flip-flop processes
with any other spin of the system. This quantity is a com-
plex function of the lattice variables. However, after averag-
ing over the lattice variable P n,flij {t2; t1} ≡

〈
P̃
n,fl
ij {t2; t1}

〉
eq
=〈

P̃
n,fl
ij {t2− t1;0}

〉
eq

(see relation 45), it provides the probabil-

ity that the spins with numbers i and j have their initial time-
zero mutual orientation at time t2− t1. For times shorter than
the characteristic flip-flop transition time |t2− t1| � T

DQ,fl
ij ,

this means that the discussed spins did not undergo flip-flop
transitions with any other spins in the system. For the case
of a (quasi-)rigid lattice, our approach allows us to obtain
the reversibility of the DQ experiment in time for the case
n= 1 (see Eqs. 50 and 51) and after using an Anderson–
Weiss-type approximation for the transition from Eqs. (58) to
(59). Experimentally measurable normalized buildup func-
tions have a rather simple mathematical structure as repre-
sented by Eq. (60).

3.2 Numerical results and comparison with spin
dynamics simulations

We now turn to comparing the results of Sect. 2.5, specif-
ically the quasi-static approximation, to results of spin dy-
namics simulations based upon solving the Liouville–von
Neumann equation in small time steps for finite few-spin
systems for the explicit BP pulse sequence (as well as sim-
ple FIDs after a 90° pulse), while always assuming δ pulses.
For time efficiency, we did not simulate the two different
BP experiments with variable reconversion phase but using a
fixed 90° phase shift and filtering the density matrix for DQ
coherences after the excitation block, thus directly calculat-
ing the DQ buildup curve. We used an earlier home-written
code (Saalwächter and Fischbach, 2002) that is not optimized
(no sparse-matrix algebra is implemented), which means that
simulations are limited to eight spins due to the large dimen-
sion (up to 28) of the density matrix and the operators/prop-
agators. We implemented the analytical solution, Eqs. (60)
and (61), on the basis of the very same code, using the same
core routines handling the dipolar interaction tensors and the
same input files with spin system parameters.

As to spin systems, we aimed at mimicking a simple main-
chain protonated polymer, where the chain motions provide
a fast-limit average of all conformations between two cross-
links or entanglements. This provides uniaxial averaging of
all intra-chain dipolar tensors, resulting in residual coupling
tensors that are all colinear (parallel to the end-to-end dis-
tance of the chain) and reduced in magnitude by a factor of
about 100 compared to the static limit (Saalwächter, 2007).
A physically realistic model would have to be based on a
trajectory of a molecular dynamics simulation. For simplic-
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ity, we chose to simulate cutouts of all-trans alkane struc-
tures (CH2)n using canonical CH and CC distances of 0.109
and 0.154 nm, respectively, assuming tetrahedral symmetry
(see the inset of Fig. 1a). This model provides rHH = 0.178
nm and thus an intra-CH2 static-limit coupling constant of
DHH/2π = 24 Hz (see Eq. 2). We always detect (or calcu-
late for) the central protons. Uniaxial averaging is imple-
mented by symmetric three-site jumps mimicking fast rigid-
body rotation (leading to a scaling of the HH dipolar cou-
plings by −0.5 when the HH bond is perpendicular to the
rotation axis), providing a situation with all-colinear dipolar
tensors. To reach residual couplings corresponding to those
of polymer melts, a scaling factor of 0.01 was applied to all
couplings, leading to a dominant intra-CH2 residual dipolar
coupling constant, DHH

res /2π = 122 Hz. Another set of sim-
ulations considered a propyl fragment in g+g+ conforma-
tion (locating two outer protons in the CCC plane) with up to
two additional protons located at the van der Waals distance
above either of the two central protons (with an unscaled re-
mote coupling of DHH/2π ≈ 9 kHz). Powder averaging was
performed over only 40 angles of β between the main axis
of the averaged tensor and the magnetic field (as we simu-
late in the time domain, convergence was reached within the
discussed limited time intervals).

Simulation results of DQ buildup curves are compared in
Fig. 1a for a CH2 group (for which simulation and analytical
prediction are identical) and for rotating alkyl cutouts starting
with propyl (six protons). For rotation around the all-trans (z)
axis, the secondary couplings of the central CH2 protons to
the ones on the side are very small after uniaxial z averaging,
due to angles between the HH vectors and the z axis being
close to the magic angle. This is obvious from the very small
difference between the CH2 and the “propyl z“ responses. To
mimic a more complex spin system with a larger spread of
couplings, we inclined the rotation axis by 20°, rending the
couplings of the central CH2 group to the ones on the differ-
ent sides different. As a result, the coherent oscillations are
significantly damped. Adding more CH2 groups (with butyl
being the largest feasible spin system for the simulations)
damps the oscillations even more, leading to a buildup curve
that reaches the expected plateau at IDQ = 0.5 from below.

The analytical results shown in Fig. 1b, for the first time
possible for systems beyond a spin pair, mimic these trends
surprisingly well. Notably, the changes in the buildup curves
upon adding more CH2 groups, which is easily possible in
the analytical calculations, does not change the result sig-
nificantly. For a more quantitative comparison, we directly
compare in Fig. 2a the simulations and analytical calcula-
tions for the propyl 20° and butyl 20° cases. While the agree-
ment between the former pair is very satisfactory, large devi-
ations are observed in the latter case. This may well be due
to the finite spin system and specificities related to the all-
colinear dipolar tensors. In Fig. 2, we also plot simulated
FIDs, which can be used to extract T eff

2 . Up to τDQ = T
eff

2 ,
simulated and analytical results match within 15 %. To ex-

Figure 1. 1H DQ buildup curves of all-trans alkyl cutouts rotat-
ing about the molecular long axis (z) or about an axis inclined by
20° (a) from spin dynamics simulations and (b) analytically calcu-
lated from Eqs. (60) and (61).

plore the effect of the all-tensor colinearity in these calcula-
tions, we add in Fig. 2b simulations and calculations for a
static three-dimensional spin system (with a dipolar scaling
factor of 0.005 to arrive at a similar coupling magnitude as
before), in this case of propyl fragment in g+g+ conforma-
tion, optionally adding two remote protons. It is observed that
the agreement between simulations and analytical solutions
within T eff

2 is generally even better, confirming the hypothe-
sis that a three-dimensional distribution of variable coupling
tensors is maybe a better basis for the application of the AW
approximation inherent to Eq. (67).

Thus, for cases when we have a large scatter in the cou-
pling constants for different spins, this result, in our opin-
ion, can be considered quite satisfactory. The improvement
of the result requires a more detailed treatment of flip-flop
processes between different spins than we have done in the
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Figure 2. 1H DQ buildup curves of alkyl cutouts, comparing spin
dynamics simulation results and analytical calculations, (a) in all-
trans conformation rotating about an axis inclined by 20° (all cou-
plings scaled by 0.01; see Fig. 1) and (b) propyl (six spins) in static
g+g+ conformation (all couplings scaled by 0.005), with up to two
additional remote protons located at the van der Waals distance
above either of the two central CH2 protons (DHH/2π ≈ 9 kHz).
Simulated FID signals are also shown to indicate T eff

2 .

transition from relation (45) to relation (46), which does not
take into account the returns of spin polarization during spin
diffusion to the initial spin, which will lead to a slower decay
of the function in Eq. (46) at time τDQ ≥ T

eff
2 . Also at the

discussed times, it will become necessary to improve the ap-
proximation in Eq. (32) due to the simultaneous exchange of
two different pairs of spins by their mutual spin polarizations
(see the remark after Eq. 37). It may also be important to
further develop the ideas presented by Bochkin et al. (2022,
2024) and Fel’dman et al. (2022).

As a final note, a more detailed assessment, using more re-
alistic and much larger spin systems, was beyond the scope
of the present work. With larger spin systems as well as more
current simulation software and increased computing power,
the agreement between simulations and theory on the one
hand and experimental results on the other hand is of course
expected to be even better. Here, we note that our analyti-
cal approximation, so far valid up to τDQ = T

eff
2 , will need

to be improved by consideration of higher-order corrections.
On the other hand, our simplistic approach to setting up the
spin systems is not expected to provide any better agreement
as long as the local conformational dynamics, and also in-
termolecular couplings are not realistically considered. This
will require the combination of spin dynamics simulations
with (in the simplest case) pre-averaged interaction tensors
extracted from trajectories of atomistic molecular dynamics
simulations.

4 Conclusions

The mathematical identity, Eq. (7), allows us to reformu-
late the derivation of experimentally measured signals in DQ
NMR experiments in such a way that taking into account the
effects of inter-spin flip-flop processes is natural and sim-
ple. In this way, it was possible for the first time to provide
an analytical calculation of DQ buildup curves in multi-spin
systems. From a formal point of view, it all comes down to
redefining the phases of mutual rotations of spins induced by
the DQ Hamiltonian Eq. (4); cf. relations (27) and (41), (44).
The influence of flip-flop transitions translates to phases that
are linearly dependent on the conditional probability P̃ n,flij (t)
that the corresponding pair of spins did not participate in flip-
flops with any other spin of the system during the time inter-
val t ; see Eqs. (40) and (42). The structure of the DQ Hamil-
tonian Eq. (4) itself is such that the inherent flip-flop proba-
bilities are half the size of those induced by the secular part of
the dipole–dipole interaction Hamiltonian Eq. (1). The latter
allows us to neglect the effects of flip-flop processes in DQ
experiments and use the simplified description given by rela-
tion (27) of sufficiently long timescales in units of the effec-
tive spin–spin relaxation time, t < 2.12T eff

2 . A comparison
of the predictions with spin dynamics simulations of simple,
small spin systems of different sizes provided a promising,
near-quantitative agreement for τDQ ≤ 1.06T eff

2 , yet the ori-
gin of existing deviations for longer times requires further
work.

Data availability. The simulation codes as well as datasets
generated and analyzed for this study as they appear in the
figures of this article can be found on the Zenodo reposi-
tory (https://doi.org/10.5281/zenodo.13628349, Saalwächter and
Fatkullin, 2024).
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