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Additional Experiments

Figure S1A shows the comparison between experimental spin-echo curve(Hahn, 1950)
(stars) and mono-exponential fitting (black line) with the obtained T, value of 88 ms from least-
square fitting. Comparison of the experimental spin-lock curves with continuous (red triangles)

and half-rotor-filled (blue squares) rf-field pulses show that the T, value remains unchanged.

Figure S1B shows the comparison between experimental inversion recovery curve(\Vold et al.,
1968) (stars) and mono-exponential fitting (black line) with the obtained T; value of 680 ms

from least-square fitting.
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Figure S1 ¥ C T2/ T1p (A) and T1 (B) measurement for polybutadiene rubber. (A) The experimental spin-echo
(stars) and mono-exponential fit (black line) at 20 kHz MAS. The red triangles and blue squares represent
experimental spin-lock curves with continuous (at 10 kHz MAS) and half-rotor-filled (at 20 kHz MAS) rf-field
pulses, respectively. For each case, 1 kHz rf-field strength was applied. (B) The experimental inversion recovery
(stars) and mono-exponential (black line) curves at 20 kHz MAS.

Figure S2A shows the 1D *3C spectrum of polybutadiene rubber at 10 kHz MAS (black)
and without spinning (red). Figure S2B shows the 1D **C spectrum of polybutadiene rubber at
10 kHz MAS with optimal (black) and deliberately degraded (red) shimming files. Figure S2C-E
shows SL profiles with optimal shimming (C, same as Figure 2A) and deliberately degraded (D

and E) shimming files. The same data is shown was used for D and E, and displayed either as

intensities (D) or integrals of the signal (E).
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Figure S2 *3C spectra and SL profiles of polybutadiene rubber with different shims. (A) 1D signal at 10 kHz MAS
(black) and static (red). (B) 1D signal at 10 kHz MAS with optimal (black) and deliberately degraded (red)
shimming. (C-E) 13C signal is shown as a functions of the rf-field strength (v, , y-axis) and mixing time (g, , x-axis)
of the SL with optimal shims (C) and deliberately degraded shims (D and E). For (D) and (E), the same acquired

data was used; the difference is that in (D), the intensity is displayed, while in (E), the signal integral is shown.

Additional simulations and FOH

To understand the origin of the pseudo-RRD effect, we start with the simplest case,

investigating the behavior of an on-resonance spin (1) during the rf-field spin-lock (Hg;). The
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single spin inside the coil may be affected by an additional time-periodic term (H,), orthogonal

to the applied rf-field spin-lock. For simplicity, we also do not include any relaxation effects.

This additional term can depend on the external magnetic field (Bo modulation), or the strength
of the applied RF-field spin-lock (B1 modulation). In solid samples, it can arise due to
anisotropic interactions. The first and second modulations are related to inhomogeneities in the
external magnetic field and RF field, respectively. The third could arise in the samples if there is
some degree of alignment and therefore residual anisotropic interactions present. Knowing the
exact values of these modulations (and shapes in the case of the distribution) is important when
their influence is investigated quantitatively for a specific coil. Our goal here is the qualitative

determination of the source of the pseudo-RRD effect in the experiments.

In all three cases, the total Hamiltonian for this spin (starting from Egn. (3) in the main text) can

be described as follows:

Heotat = Hst, + He = wg Iy + 21 ¥ a, cos(nwgt + ¢,)1,0p, Eqn. (S1)
where wg; = 2mvg;.. Here, Op = 1 for a single spin or Op = 25, for a two-spin system. While
for anisotropic interactions, n is 1 or 2,(Mehring, 1983; Olejniczak et al., 1984) for Bo and B1
modulations, n may take any integer value.(Aebischer et al., 2021) This is because these
modulations are not purely sinusoidal, there are contributions from overtone frequencies. In the
experimental SL profiles (Figures 2 and 3 in the main text), two rotary-resonance conditions are
clearly observed. Therefore, in the following discussion, n = 1, 2 will be considered for all three

cases.

The simulated SL-signal is defined as follows:
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where T is a Dyson operator. To simplify Eqn. (S1), the total Hamiltonian is transformed into the

tilted rf-field frame:(Mehring, 1983)

Hit: = Usi'Heoe (D Usy, — Hgy, Eqn. (S3)
where Ug;, = e~ 'sttx js a propagator. The modified Eqn. (S2) in the titled frame is written as
follows:

Se(ts) = Tr {IXTe—ifgSL dtH{(f,tIX’Tei fyst dtH{gt}, Eqn. (S4)
since the initial and the measured operators (I,) commute with Ug; .

The modified Eqgn. (S1) is:

Hige = 2 XA, ay cos(nwgt + ¢p) (IzCOS((DSLt) + IySin((DSLt)) Op, Eqn. (S5)
where Op remains unchanged as it commutes with Ug;,. The Eqn. (S5) can be rewritten in the

following way:

yrf Eqn. (S6)

tot =
nY2_ia, [(cos((an + ws )t + ¢p) + cos((hwg — wg )t + cl)n)) I, +
(sin((nooR + wg )t + cl)n) - sin((nooR — wg )t + q;n)) Iy] Op.
We see in Eqn. (S6) both 1,0p and Iy(’)f) operators, which do not commute with the initial and

final operators and are cosine or sine modulated. For small an, these terms can be approximated

as zero, except for specific values of the spin lock frequency.

Under specific cases, when kwg — wg;, = 0 (k=1 or 2), Eqgn. (S6) can be rewritten as:
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HESe = ma[cos(dn)1, — sin(Py)1y]0p + Hige, Eqn. (S7)
while HX, is:

2

HI, = T[Z ap [cos((n + K)wgt + ¢y )1, + sin((n + k) wgt + ¢y, )1,|Op
n=1 Eqn. (S8)

+aj[cos((—D** wgrt + ¢y, )1, — sin((—1)** *wgt + ¢, )1, ]Op,
where for the k=1 condition, j=2; and for the k=2 condition j=1. Egn. (S7) can be further
simplified using average Hamiltonian theory,(Haeberlen and Waugh, 1968) considering only the

first-order term:

THfg” = mTracos(dn)l, — sin(dn)l,|Op = eitalx Tk, Gpeitaly,  EAN- (S9)

where the average, H{ét(o), is taken over one rotor period (Tg = Vi = i—n). Regardless of the
R R

explicit form of the Op operator, the measured spin-lock signal, according to Eqns. (S4) and (S9)
is as follows:
Ssi.(tsL = NgTr) =~ cos (“a_kNSL), Eqn. (S10)
VR

since e~ '®nlx commutes with the initial and final operators. For dipolar interactions, Eqn. (S10)
should be modified to account for all orientations:

Ssi.(ts, = Ng.Tr) = [ dQ cos ("Tj_k NSL), Eqn. (S11)

R

The integration over orientation () indicates the powder averaging with Euler angles,

(a, B,v)-(Mehring, 1983)

Figure S3 compares numerical (solid lines) and FOH curves (stars) under the rotary-

resonance conditions vg;, = vy (Figures S3A-C) and vg;, = 2vg (Figures S3D-F) and different a
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values, related either to Bo modulation (Figures S1A and D), dipolar interaction (two-spin

system, Figure S3B and E) or B; modulation (Figures S3C and F). Numerical simulations were

performed using in-house MATLAB scripts based on the numerical solution of the equation of

motion.(Nimerovsky and Goldbourt, 2012). These figures show full agreement between

numerical and FOH curves. In all three cases, the changes in ayvalues affect the modulation

frequency of the spin-lock signal.
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Figure S3 Numerical spin-lock (solid) and FOH (stars, Egns. (S10) and (S11)) signals were simulated with different

values of By modulation (a single spin, A and D), dipolar coupling values (two spin-system, B and E) and B;

modulation (a single spin, C and F) at rotary-resonance conditions, where vg;, = vg (A-C) and vg;, = 2vg (D-F). In

(A) and (D), a, = 0.5a; with a;: 0 — black; 200 Hz — red; 400 Hz — blue and 737 Hz — cyan. In (B) and (D), a; =

‘%’sin(ZB) anda, = — V7Dsin2 (B) with dipolar coupling values v, of: 0 — black; 200 Hz — red; 400 Hz — blue and

737 Hz —cyan. In (C) and (F), a, = 0.25a, with a;: 0 — black; 0.5% — red; 1% — blue and 1.37% — cyan. All

simulations performed at 10 kHz MAS.
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Dependence of the numerical (solid lines) and FOH curves (stars) on MAS rate is shown
in Figure S4 under the conditions a; = 2a, = 0.2 kHz of Bo modulation (Figures S4 A and D),
vp = 0.2 kHz of dipolar interaction (Figures S4 B and E) and a; = 4a, = 1 % of nominal B,
(Figures S4 C and F), for both rotary-resonance conditions (vs;, = vg and vg;, = 2vg). Only for
B1 modulation (Figures S4 C and F) does the change of MAS rate affect the modulation

frequency. This is a simple consequence of B: modulation amplitude scaling up with Bs.
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Figure S4 Numerical spin-lock (solid) and FOH (stars, Egns. (S10) and (S11)) signals were simulated for B
modulation (a single spin, A and D), dipolar coupling values (two spin-system, B and E) and B; modulation (a
single spin, C and F) at rotary-resonance conditions, where vg; = vg (A-C) and vg;, = 2vg (D-F) under different vg:
10 kHz — black; 20 kHz — red; and 35 kHz — blue.

While Figure S4 shows spin-lock signals only at rotary-resonance conditions, Figure S5
presents numerical SL profiles for spin-lock strengths between 1 and 44 kHz under three
different MAS rates: 10 kHz (A-C), 20 kHz (D-F) and 35 kHz (G-I) for Bo modulation (A, D and

8



G), dipolar interaction (B, E and H) and Bo modulation (C, E and I). The same conclusions as in
Figure S4 are observed: for Bo modulation (A, D and G) and dipolar interaction (B, E and H), the
changes in MAS do not affect the modulation frequency, while for B; modulation (C, F and I),
this is not the case (marked in gray in Figure S5). Additionally, the profiles show that the rotary-
resonance conditions are narrow: a deviation of only 100 Hz from these conditions almost
completely removes the influence of the time-dependent term on the spin-lock signal in all

figures.
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Figure S5 Numerical SL profiles showing the influence of time dependence introduced via B, modulation (a; =

0.5

-0.5

0.5

-0.5

0.5

-0.5

0.5a, = 100 Hz, A, D and G), dipolar interaction (vp = 200 Hz, B, E and H) and B1 modulation (a; = 0.25a, =

0.01vg;, C, Fand I). The simulated signal is shown as a function of the rf-field strength (vg;,, axis y) and mixing

time (tg;,, axis x) of the SL under three different MAS rates: 10 kHz (A-C), 20 kHz (D-F) and 35 kHz (G-I). The

values in gray represent the coordinates of the first minimum in the profiles. No phenomenological relaxation was

included in the simulations.
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In addition to time dependence induced by B: inhomogeneity, there is also time
independent inhomogeneity,(Engelke, 2002; Gupta et al., 2015; Hoult, 1976; Paulson et al.,
2004; Tosner et al., 2017, 2018) which is most clearly seen along the axis of the rotor (the spatial
distribution of the applied vg;, values to Hg; ). Including this in the simulation broadens the
rotary-resonance conditions. With addition of a time-independent term, parallel to the applied

spin lock Hamiltonian becomes:

Hsp = 2m(vsplx — A, vsilx) = 2mvs;, (1 — A, )1y, Eqn. (512)
where A represent the inhomogeneity factor for a given position in the sample. Experimentally,
the reason of the appearance of this term is due to the fact that a solenoidal coil produces a
higher rf-field at the center, as compared with the edges. Rather than explicitly averaging over
the sample volume, we consider an approximate linear distribution of spin-lock signal. The
average signal is then the sum of M signals with vg;,; = vg, (1 -(1-1) %) 1=1,..,M)and

normalized with a Gaussian weighting factor,(Engelke, 2002; Gupta et al., 2015; Paulson et al.,

2004; Xue et al., 2022) gg, i

~ _:t - .t
SSL(tSL) = Ng Z]lvil 125 : I Tr {IXTe_IIOSL dtI‘Itotal,IIX"[‘el fOSL dthotal,l} Eqn (813)

a-1
1.89 i

2
where T is a Dyson operator, g1 = e_( ) and N is a normalization factor.

The total Hamiltonian, Hyqay), is defined as follows:

A —
Hiotal1 = wsy, (1 -(1-1) %) Iy + 2 Y2_; a, cos(nwgt + dp)1,0p. Eqn. (S14)
In the following simulations, Ag =0.05 (5% with respect to applied vg;,). While the value of Ag,

as well as the weighting factor can be different from coil to coil, this term is not the source of the

appearance rotary-resonance conditions. However, this term broadens the rotary-resonance

11
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conditions and alters the positions and values of the first minimum signal intensities, as shown in

Figure S6.

As in the previous simulations, for Bo modulation (A, D and G) and dipolar interaction (B, E and
H), changes in MAS do not affect the modulation frequency, while for B: modulation (C, F and
), this is not the case. Additionally, for both Bo modulation and dipolar interaction, the
intensities at the first minima show a dependence on MAS rate, while for B1 modulation, they do
not (marked in gray in Figure S6). This differing dependence on MAS rate for B1 modulation
versus Bo modulation and dipolar interaction could indicate which effect plays a major role in
rotary-resonance condition experiments for isotropic samples. Since the rotary-resonance effect
is observed for *H spins in 99.96% D,0 (Figure 3A-B in the main text), the dipolar interaction

was not included in simulations in the main text.

12
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Figure S6 Numerical SL profiles with an additional time-independent term (Ag, = 0.05, Egns. S12-S14) showing the

influence of time dependence introduced via Bo modulation (a; = 0.5a, = 100 Hz, A, D and G), dipolar interaction

(vp = 200 Hz, B, E and H) and B; modulation (a; = 0.25a, = 0.01vg;, C, F and I). The simulated signal is shown

as a function of the rf-field strength (vg;,, axis y) and mixing time (tg;,, axis x) of the SL under three different MAS

rates: 10 kHz (A-C), 20 kHz (D-F) and 35 kHz (G-1). The values in gray represent the coordinates of the first minimum

in the profiles. No phenomenological relaxation was included in the simulations.
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Time-dependent modulation may also be distributed. In that case, spin-lock signal will

depend on the additional loop:

Ssi.(tst) = Eqn. (S15)
~ _.rt .t
Nrg kaﬁl fese 2124 8B, TT {IXTe_‘ o™ dtHtoral gcn I, Te' 08 dthtal'(k'l)},

where N ; is a normalization factor, x=B; or By. The total Hamiltonian, Heta), k1), 1S defined as

follows:

Hiotal, (k1) = Eqn. (S16)

(’)SL(l - GSL,l)Ix + {zﬁAx,k Zﬁ:l dn COS(ant + ¢n)}lz®a

where X=B; or B,,.

Table S1 summarizes the amplitudes and the weighting factors for all time-dependent (Bo and B:

modulations) and time-independent (B:1) terms:

a,, (in kHz) The Amplitude The weighting factor

B, modulation | a; = 2a, = 0.2 Ap,x = (k—1)/25 feox = (k—1)/25

k=[1:26]

B, modulation, 0.05 (4 aad=DY
" time- - Gz = (1= 1)¥ gp, = e (189557)
independent

1=[1:29]

B; modulation, a, = 4a, (1.26%=DY* (1.26%=DY*

time-dependent = 0.1vg, Ap k= <1 —e (12655°) ) feik=e (12655

k=[1:29]

Table S1 The summary of the amplitudes and the weighting factors for Bo and B, modulations (the simulations are

shown in Figures 4 and 5 in the main text).

For B1 modulation, the bi-quadrate exponential distribution function does not represent the real
distribution of the time-dependent B: modulation; it simply provides non-linear sampling, different

from the time-independent term. Figure S7 depict the weighting factors as functions of amplitudes

14
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for time-dependent Bo (Figure S7A), time-dependent B: (Figure S7B) and time-independent B

(Figure S7C).
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Figure S7 The weighting factors (axis y) and the amplitudes (axis x) for simulations of time-dependent By, (fg, «, A)

and By (f, x, B). (C) displays the weighting factor for time-independent rf-field inhomogeneity (Gs;, ;).

Figure S8 shows the weighting factors (the color map) according to the range of input
inhomogeneity factor values (y-axis) and Bo modulation amplitude values (x-axis, A) and By
modulation amplitude values (x-axis, B). For Bo modulation (A), the amplitude with the highest
value of 200 Hz has the largest weighting factor (red), while for B; modulation (B), the opposite
is true — the amplitude with 0 value has the largest weighting factor on the total signal. This
approximates the expectation that a Bo field inhomogeneity (e.g. in the y direction) would more
strongly affect the sample at the rotor wall, where there is more sample volume. On the other
hand, the B; field inhomogeneity may be less linear, and affect only a small annulus of sample
near the coil. Changes to the distribution mainly affect the location of the first minimum in the

SL intensity (see Figure S6 and Figures 4 and 5 in the main text).
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Figure S8 The weighting factor maps are plotted as a function of the inhomogeneity factor (y-axis, in %) and Bo (A)
or B1 (B) amplitude modulations (x-axis). (A) The amplitudes values range between [0:200] (Hz). (B) The
amplitude values range between [0:9.14] (%) with respect to the applied vg; value. In both color maps, the
inhomogeneity factor ranges between [0:5] (%) with respect to the applied vg; value.

In the main text, Figures 4 and 5 show the simulated SL-lock profiles where time-dependent (By
or Bo modulations) and time-independent (the inhomogeneity) are simulated with the distribution

(Table S1).
Sample preparation

Commercial polybutadiene rubber with C at natural abundance was cut in a single piece
to fill a 1.3 mm MAS rotor. For the commercial 99.96% DO, 5 mM of Cu?*
ethylenediaminetetraacetic acid disodium salt was added to accelerate the acquisition. The liquid

water was then placed into a 1.3 mm MAS rotor.

A 4 mm MAS rotor was filled with 20 percent polyethylene glycol solution in water with 3C at

natural abundance. Specifically, 26 mg of PEG was dissolved in 250 pL D20 (10 %). This

16
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sample was filled in a 4 mm Bruker zirconium oxide (ZrO2) rotor and the cap was glued on top

with two component epoxy to prevent leakage during spinning
Solid NMR Spectroscopy

1.3 mm probe: Spin-Lock experiments were conducted on a Bruker Avance 111 HD spectrometer
operating at 14.1 T (600 MHz H frequency) using a DVT600W2 BL1.3 mm HXY probe. The
experiments were performed at static, 10, 20 and 35 kHz MAS. The temperature of the nitrogen

cooling gas set to 289 K, with 300 liters per hour.

D>0. The experiments were performed without decoupling. In each experiment, 8 scans were
recorded. The delay time between single experiments was set to 2.8 s. For determination of the
reference rf-field *H power, the 1D *H signal was recorded as a function of the length of a single

pulse (on resonance).

Polybutadiene rubber. For decoupling of the heteronuclear j-coupling, WALTZ-16 was
used:(Shaka et al., 1983) 80 us 2-n pulses (12 kHz rf-field strength). In each experiment, 56
scans were recorded. The delay time between single experiments was set to 2 s. For
determination of the reference rf-field *C power, the 1D *3C signal was recorded as a function of

the length of a single pulse (on resonance).

4mm probe: Spin-Lock experiments were conducted on a Bruker Avance 111 HD spectrometer
operating at 14.1 T (600 MHz H frequency) using a 4 mm HXY probe. The experiments were
performed at 10 kHz MAS. The temperature of the nitrogen cooling gas was set to 290 K, with

300 liters per hour.

Polyethylene glycol solution. SWs-TPPM was used for decoupling of the heteronuclear j-

coupling:(Thakur et al., 2006) 120 us for single ~n-pulse and 6.3 kHz rf-field strength. In each

17
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experiment, 64 scans were recorded. The delay time between single experiments was set to 2 s.
For determination of the reference rf-field $3C power, 1D **C signal was recorded as a function

of the length of a single pulse.
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