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Additional Experiments  9 

Figure S1A shows the comparison between experimental spin-echo curve(Hahn, 1950) 10 

(stars) and mono-exponential fitting (black line) with the obtained 𝑇2 value of 88 ms from least-11 

square fitting. Comparison of the experimental spin-lock curves with continuous (red triangles) 12 

and half-rotor-filled (blue squares) rf-field pulses show that the 𝑇2𝜌 value remains unchanged.  13 

Figure S1B shows the comparison between experimental inversion recovery curve(Vold et al., 14 

1968) (stars) and mono-exponential fitting (black line) with the obtained 𝑇1 value of 680 ms 15 

from least-square fitting.      16 
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 1 

Figure S1 13C T2 / T1ρ (A) and T1 (B) measurement for polybutadiene rubber. (A) The experimental spin-echo 2 

(stars) and mono-exponential fit (black line) at 20 kHz MAS. The red triangles and blue squares represent 3 

experimental spin-lock curves with continuous (at 10 kHz MAS) and half-rotor-filled (at 20 kHz MAS) rf-field 4 

pulses, respectively. For each case, 1 kHz rf-field strength was applied. (B) The experimental inversion recovery 5 

(stars) and mono-exponential (black line) curves at 20 kHz MAS.      6 

Figure S2A shows the 1D 13C spectrum of polybutadiene rubber at 10 kHz MAS (black) 7 

and without spinning (red). Figure S2B shows the 1D 13C spectrum of polybutadiene rubber at 8 

10 kHz MAS with optimal (black) and deliberately degraded (red) shimming files. Figure S2C-E 9 

shows SL profiles with optimal shimming (C, same as Figure 2A) and deliberately degraded (D 10 

and E) shimming files. The same data is shown was used for D and E, and displayed either as 11 

intensities (D) or integrals of the signal (E). 12 
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 1 

Figure S2 13C spectra and SL profiles of polybutadiene rubber with different shims. (A) 1D signal at 10 kHz MAS 2 

(black) and static (red). (B) 1D signal at 10 kHz MAS with optimal (black) and deliberately degraded (red) 3 

shimming. (C-E) 13C signal is shown as a functions of the rf-field strength (𝜈𝑆𝐿 , y-axis) and mixing time (𝑡𝑆𝐿, x-axis) 4 

of the SL with optimal shims (C) and deliberately degraded shims (D and E). For (D) and (E), the same acquired 5 

data was used; the difference is that in (D), the intensity is displayed, while in (E), the signal integral is shown.   6 

Additional simulations and FOH  7 

To understand the origin of the pseudo-RRD effect, we start with the simplest case, 8 

investigating the behavior of an on-resonance spin (I) during the rf-field spin-lock (HSL). The 9 



4 
 

single spin inside the coil may be affected by an additional time-periodic term (Ht), orthogonal 1 

to the applied rf-field spin-lock. For simplicity, we also do not include any relaxation effects.  2 

This additional term can depend on the external magnetic field (B0 modulation), or the strength 3 

of the applied RF-field spin-lock (B1 modulation). In solid samples, it can arise due to 4 

anisotropic interactions. The first and second modulations are related to inhomogeneities in the 5 

external magnetic field and RF field, respectively. The third could arise in the samples if there is 6 

some degree of alignment and therefore residual anisotropic interactions present. Knowing the 7 

exact values of these modulations (and shapes in the case of the distribution) is important when 8 

their influence is investigated quantitatively for a specific coil. Our goal here is the qualitative 9 

determination of the source of the pseudo-RRD effect in the experiments. 10 

In all three cases, the total Hamiltonian for this spin (starting from Eqn. (3) in the main text) can 11 

be described as follows: 12 

Htotal = HSL + Ht = ωSLIx + 2π ∑ ann cos(nωRt + ϕn)IzOp̂, Eqn. (S1) 

where ωSL = 2πνSL. Here, Op̂ = 1 for a single spin or Op̂ = 2Sz for a two-spin system. While 13 

for anisotropic interactions, n is 1 or 2,(Mehring, 1983; Olejniczak et al., 1984) for B0 and B1 14 

modulations, n may take any integer value.(Aebischer et al., 2021) This is because these 15 

modulations are not purely sinusoidal, there are contributions from overtone frequencies. In the 16 

experimental SL profiles (Figures 2 and 3 in the main text), two rotary-resonance conditions are 17 

clearly observed. Therefore, in the following discussion, n = 1, 2 will be considered for all three 18 

cases.    19 

The simulated SL-signal is defined as follows: 20 
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SSL(tSL) = Tr {IxT̂e−i ∫ dtHtotal
tSL

0 IxT̂ei ∫ dtHtotal
tSL

0 }, Eqn. (S2) 

where T̂ is a Dyson operator. To simplify Eqn. (S1), the total Hamiltonian is transformed into the 1 

tilted rf-field frame:(Mehring, 1983) 2 

Htot
rf = USL

−1Htot(t)USL − HSL, Eqn. (S3) 

where USL = e−iωSLtIx is a propagator. The modified Eqn. (S2) in the titled frame is written as 3 

follows: 4 

SSL(tSL) = Tr {IxT̂e−i ∫ dtHtot
rftSL

0 IxT̂ei ∫ dtHtot
rftSL

0 }, Eqn. (S4) 

since the initial and the measured operators (Ix) commute with USL. 5 

The modified Eqn. (S1) is: 6 

Htot
rf = 2π ∑ an

2
n=1 cos(nωRt + ϕn) (Izcos(ωSLt) + Iysin(ωSLt)) Op̂, Eqn. (S5) 

where Op̂ remains unchanged as it commutes with USL. The Eqn. (S5) can be rewritten in the 7 

following way: 8 

Htot
rf = 

π ∑ an
2
n=1 [(cos((nωR + ωSL)t + ϕn) + cos((nωR − ωSL)t + ϕn)) Iz +

(sin((nωR + ωSL)t + ϕn) − sin((nωR − ωSL)t + ϕn)) Iy] Op̂. 

Eqn. (S6) 

We see in Eqn. (S6) both IzOp̂ and IyOp̂ operators, which do not commute with the initial and 9 

final operators and are cosine or sine modulated. For small an, these terms can be approximated 10 

as zero, except for specific values of the spin lock frequency.   11 

Under specific cases, when kωR − ωSL = 0 (k=1 or 2), Eqn. (S6) can be rewritten as:  12 
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Htot
rf = πak[cos(ϕn)Iz − sin(ϕn)Iy]Op̂ + Helse

rf , Eqn. (S7) 

while Helse
rf  is: 1 

Helse
rf = π ∑ an

2

n=1

[cos((n + k)ωRt + ϕn)Iz + sin((n + k)ωRt + ϕn)Iy]Op̂ 

+aj[cos((−1)k+1ωRt + ϕn)Iz − sin((−1)k+1ωRt + ϕn)Iy]Op̂, 

 

Eqn. (S8) 

where for the k=1 condition, j=2; and for the k=2 condition j=1. Eqn. (S7) can be further 2 

simplified using average Hamiltonian theory,(Haeberlen and Waugh, 1968) considering only the 3 

first-order term:  4 

TRHtot
rf (0)

= πTRak[cos(ϕn)Iz − sin(ϕn)Iy]Op̂ = e−iϕnIx
πak

νR
IzOp̂eiϕnIx, Eqn. (S9) 

where the average, Htot
rf (0)

, is taken over one rotor period (TR =
1

νR
=

2π

ωR
). Regardless of the 5 

explicit form of the Op̂ operator, the measured spin-lock signal, according to Eqns. (S4) and (S9) 6 

is as follows: 7 

SSL(tSL = NSLTR) ≈ cos (π
ak

νR
NSL), Eqn. (S10) 

since e−iϕnIx commutes with the initial and final operators. For dipolar interactions, Eqn. (S10) 8 

should be modified to account for all orientations: 9 

SSL(tSL = NSLTR) ≈ ∫ dΩ cos (π
ak

νR
NSL), Eqn. (S11) 

The integration over orientation (Ω) indicates the powder averaging with Euler angles, 10 

(α, β, γ).(Mehring, 1983) 11 

Figure S3 compares numerical (solid lines) and FOH curves (stars) under the rotary-12 

resonance conditions νSL = νR (Figures S3A-C) and νSL = 2νR (Figures S3D-F) and different ak 13 
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values, related either to B0 modulation (Figures S1A and D), dipolar interaction (two-spin 1 

system, Figure S3B and E) or B1 modulation (Figures S3C and F). Numerical simulations were 2 

performed using in-house MATLAB scripts based on the numerical solution of the equation of 3 

motion.(Nimerovsky and Goldbourt, 2012). These figures show full agreement between 4 

numerical and FOH curves. In all three cases, the changes in akvalues affect the modulation 5 

frequency of the spin-lock signal.     6 

 7 

Figure S3 Numerical spin-lock (solid) and FOH (stars, Eqns. (S10) and (S11)) signals were simulated with different 8 

values of B0 modulation (a single spin, A and D), dipolar coupling values (two spin-system, B and E) and B1 9 

modulation (a single spin, C and F) at rotary-resonance conditions, where νSL = νR (A-C) and νSL = 2νR (D-F). In 10 

(A) and (D), a2 = 0.5a1 with a1: 0 – black; 200 Hz – red; 400 Hz – blue and 737 Hz – cyan. In (B) and (D), a1 =11 

νD

√2
sin(2β) and a2 = −

νD

2
sin2(β) with dipolar coupling values νD of: 0 – black; 200 Hz – red; 400 Hz – blue and 12 

737 Hz – cyan. In (C) and (F), a2 = 0.25a1 with a1: 0 – black; 0.5% – red; 1% – blue and 1.37% – cyan. All 13 

simulations performed at 10 kHz MAS. 14 
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Dependence of the numerical (solid lines) and FOH curves (stars) on MAS rate is shown 1 

in Figure S4 under the conditions a1 = 2a2 = 0.2 kHz of B0 modulation (Figures S4 A and D), 2 

νD = 0.2 kHz of dipolar interaction (Figures S4 B and E) and a1 = 4a2 = 1 % of nominal B1 3 

(Figures S4 C and F), for both rotary-resonance conditions (νSL = νR and νSL = 2νR). Only for 4 

B1 modulation (Figures S4 C and F) does the change of MAS rate affect the modulation 5 

frequency. This is a simple consequence of B1 modulation amplitude scaling up with B1.   6 

       7 

Figure S4 Numerical spin-lock (solid) and FOH (stars, Eqns. (S10) and (S11)) signals were simulated for B0 8 

modulation (a single spin, A and D), dipolar coupling values (two spin-system, B and E) and B1 modulation (a 9 

single spin, C and F) at rotary-resonance conditions, where νSL = νR (A-C) and νSL = 2νR (D-F) under different νR: 10 

10 kHz – black; 20 kHz – red; and 35 kHz – blue.  11 

While Figure S4 shows spin-lock signals only at rotary-resonance conditions, Figure S5 12 

presents numerical SL profiles for spin-lock strengths between 1 and 44 kHz under three 13 

different MAS rates: 10 kHz (A-C), 20 kHz (D-F) and 35 kHz (G-I) for B0 modulation (A, D and 14 
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G), dipolar interaction (B, E and H) and B0 modulation (C, E and I). The same conclusions as in 1 

Figure S4 are observed: for B0 modulation (A, D and G) and dipolar interaction (B, E and H), the 2 

changes in MAS do not affect the modulation frequency, while for B1 modulation (C, F and I), 3 

this is not the case (marked in gray in Figure S5). Additionally, the profiles show that the rotary-4 

resonance conditions are narrow: a deviation of only 100 Hz from these conditions almost 5 

completely removes the influence of the time-dependent term on the spin-lock signal in all 6 

figures.  7 
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 1 

Figure S5 Numerical SL profiles showing the influence of time dependence introduced via B0 modulation (a1 =2 

0.5a2 = 100 Hz, A, D and G), dipolar interaction (νD = 200 Hz, B, E and H) and B1 modulation (a1 = 0.25a2 =3 

0.01νSL, C, F and I). The simulated signal is shown as a function of the rf-field strength (νSL, axis y) and mixing 4 

time (tSL, axis x) of the SL under three different MAS rates: 10 kHz (A-C), 20 kHz (D-F) and 35 kHz (G-I). The 5 

values in gray represent the coordinates of the first minimum in the profiles. No phenomenological relaxation was 6 

included in the simulations. 7 
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In addition to time dependence induced by B1 inhomogeneity, there is also time 1 

independent inhomogeneity,(Engelke, 2002; Gupta et al., 2015; Hoult, 1976; Paulson et al., 2 

2004; Tošner et al., 2017, 2018) which is most clearly seen along the axis of the rotor (the spatial 3 

distribution of the applied νSL values to HSL). Including this in the simulation broadens the 4 

rotary-resonance conditions. With addition of a time-independent term, parallel to the applied 5 

spin lock Hamiltonian becomes: 6 

HSL  = 2π(νSLIx − ΔB1
νSLIx) = 2πνSL(1 − ΔB1

)Ix, Eqn. (S12) 

where ΔB1
 represent the inhomogeneity factor for a given position in the sample. Experimentally, 7 

the reason of the appearance of this term is due to the fact that a solenoidal coil produces a 8 

higher rf-field at the center, as compared with the edges. Rather than explicitly averaging over 9 

the sample volume, we consider an approximate linear distribution of spin-lock signal. The 10 

average signal is then the sum of M signals with νSL,l = νSL (1 − (l − 1)
ΔB1

M
) (l = 1, … , M) and 11 

normalized with a Gaussian weighting factor,(Engelke, 2002; Gupta et al., 2015; Paulson et al., 12 

2004; Xue et al., 2022)  gB1,l: 13 

SSL(tSL) = N𝑔 ∑ gB1,l
M
l=1 Tr {IxT̂e−i ∫ dtHtotal,l

tSL
0 IxT̂ei ∫ dtHtotal,l

tSL
0 }, Eqn. (S13) 

where T̂ is a Dyson operator, gB1,l = e−(1.89
(l−1)

M
)

2

 and N𝑔 is a normalization factor.  14 

The total Hamiltonian, Htotal,l, is defined as follows: 15 

Htotal,l = ωSL (1 − (l − 1)
ΔB1

M
) Ix + 2π ∑ an

2
n=1 cos(nωRt + ϕn)IzOp̂. Eqn. (S14) 

In the following simulations, ΔB1
=0.05 (5% with respect to applied νSL). While the value of ΔB1

 16 

as well as the weighting factor can be different from coil to coil, this term is not the source of the 17 

appearance rotary-resonance conditions. However, this term broadens the rotary-resonance 18 
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conditions and alters the positions and values of the first minimum signal intensities, as shown in 1 

Figure S6.   2 

As in the previous simulations, for B0 modulation (A, D and G) and dipolar interaction (B, E and 3 

H), changes in MAS do not affect the modulation frequency, while for B1 modulation (C, F and 4 

I), this is not the case. Additionally, for both B0 modulation and dipolar interaction, the 5 

intensities at the first minima show a dependence on MAS rate, while for B1 modulation, they do 6 

not (marked in gray in Figure S6). This differing dependence on MAS rate for B1 modulation 7 

versus B0 modulation and dipolar interaction could indicate which effect plays a major role in 8 

rotary-resonance condition experiments for isotropic samples. Since the rotary-resonance effect 9 

is observed for 1H spins in 99.96% D2O (Figure 3A-B in the main text), the dipolar interaction 10 

was not included in simulations in the main text.   11 
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    1 

Figure S6 Numerical SL profiles with an additional time-independent term (ΔB1
= 0.05, Eqns. S12-S14) showing the 2 

influence of time dependence introduced via B0 modulation (a1 = 0.5a2 = 100 Hz, A, D and G), dipolar interaction 3 

(νD = 200 Hz, B, E and H) and B1 modulation (a1 = 0.25a2 = 0.01νSL, C, F and I). The simulated signal is shown 4 

as a function of the rf-field strength (νSL, axis y) and mixing time (tSL, axis x) of the SL under three different MAS 5 

rates: 10 kHz (A-C), 20 kHz (D-F) and 35 kHz (G-I). The values in gray represent the coordinates of the first minimum 6 

in the profiles. No phenomenological relaxation was included in the simulations. 7 
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Time-dependent modulation may also be distributed. In that case, spin-lock signal will 1 

depend on the additional loop: 2 

SSL(tSL) =

N𝑓,𝑔 ∑ 𝑓𝑥,𝑘
𝑊𝑥
𝑘=1 ∑ gB1,l

M
l=1 Tr {IxT̂e−i ∫ dtHtotal,(𝑘,𝑙)

tSL
0 IxT̂ei ∫ dtHtotal,(𝑘,𝑙)

tSL
0 }, 

Eqn. (S15) 

where N𝑓,𝑔 is a normalization factor, x=𝐵1 or 𝐵0. The total Hamiltonian, Htotal,(𝑘,𝑙), is defined as 3 

follows: 4 

Htotal,(𝑘,𝑙) = 

ωSL(1 − 𝐺𝑆𝐿,𝑙)Ix + {2π𝐴𝑥,𝑘 ∑ an
2
n=1 cos(nωRt + ϕn)}IzOp̂, 

Eqn. (S16) 

where x=𝐵1 or 𝐵0.  5 

Table S1 summarizes the amplitudes and the weighting factors for all time-dependent (B0 and B1 6 

modulations) and time-independent (B1) terms: 7 

 𝑎𝑛 (in kHz) The Amplitude The weighting factor 

𝐵0 modulation 

k=[1:26] 
𝑎1 = 2𝑎2 = 0.2  𝐴𝐵0,𝑘 = (𝑘 − 1)/25 𝑓𝐵0,𝑘 = (𝑘 − 1)/25 

𝐵1 modulation, 

time-

independent  

l=[1:29] 

 

- 
𝐺𝑆𝐿,𝑙 = (l − 1)

0.05

28
 gB1,l = 𝑒

−(1.89
(𝑙−1)

28
)

2

 

𝐵1 modulation, 

time-dependent 

k=[1:29] 

𝑎1 = 4𝑎2

= 0.1𝜈𝑆𝐿 𝐴𝐵1,𝑘 = (1 − 𝑒
−(1.26

(𝑘−1)
28

)
4

) 𝑓𝐵1,𝑘 = 𝑒
−(1.26

(𝑘−1)
28

)
4

 

Table S1 The summary of the amplitudes and the weighting factors for B0 and B1 modulations (the simulations are 8 

shown in Figures 4 and 5 in the main text).  9 

For B1 modulation, the bi-quadrate exponential distribution function does not represent the real 10 

distribution of the time-dependent B1 modulation; it simply provides non-linear sampling, different 11 

from the time-independent term.  Figure S7 depict the weighting factors as functions of amplitudes 12 
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for time-dependent B0 (Figure S7A), time-dependent B1 (Figure S7B) and time-independent B1 1 

(Figure S7C).      2 

 3 

Figure S7 The weighting factors (axis y) and the amplitudes (axis x) for simulations of time-dependent 𝐵0 (𝑓𝐵0,𝑘, A) 4 

and 𝐵1 (𝑓𝐵1,𝑘, B). (C) displays the weighting factor for time-independent rf-field inhomogeneity (𝐺𝑆𝐿,𝑙). 5 

Figure S8 shows the weighting factors (the color map) according to the range of input 6 

inhomogeneity factor values (y-axis) and B0 modulation amplitude values (x-axis, A) and B1 7 

modulation amplitude values (x-axis, B). For B0 modulation (A), the amplitude with the highest 8 

value of 200 Hz has the largest weighting factor (red), while for B1 modulation (B), the opposite 9 

is true – the amplitude with 0 value has the largest weighting factor on the total signal. This 10 

approximates the expectation that a B0 field inhomogeneity (e.g. in the y direction) would more 11 

strongly affect the sample at the rotor wall, where there is more sample volume. On the other 12 

hand, the B1 field inhomogeneity may be less linear, and affect only a small annulus of sample 13 

near the coil. Changes to the distribution mainly affect the location of the first minimum in the 14 

SL intensity (see Figure S6 and Figures 4 and 5 in the main text).      15 
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 1 

Figure S8 The weighting factor maps are plotted as a function of the inhomogeneity factor (y-axis, in %) and B0 (A) 2 

or B1 (B) amplitude modulations (x-axis). (A) The amplitudes values range between [0:200] (Hz). (B) The 3 

amplitude values range between [0:9.14] (%) with respect to the applied 𝜈𝑆𝐿  value. In both color maps, the 4 

inhomogeneity factor ranges between [0:5] (%) with respect to the applied 𝜈𝑆𝐿  value. 5 

In the main text, Figures 4 and 5 show the simulated SL-lock profiles where time-dependent (B1 6 

or B0 modulations) and time-independent (the inhomogeneity) are simulated with the distribution 7 

(Table S1).  8 

 Sample preparation 9 

Commercial polybutadiene rubber with 13C at natural abundance was cut in a single piece 10 

to fill a 1.3 mm MAS rotor. For the commercial 99.96% D2O, 5 mM  of Cu2+ 11 

ethylenediaminetetraacetic acid disodium salt was added to accelerate the acquisition. The liquid 12 

water was then placed into a 1.3 mm MAS rotor.   13 

A 4 mm MAS rotor was filled with 20 percent polyethylene glycol solution in water with 13C at 14 

natural abundance. Specifically, 26 mg of PEG was dissolved in 250 µL D2O (10 %). This 15 
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sample was filled in a 4 mm Bruker zirconium oxide (ZrO2) rotor and the cap was glued on top 1 

with two component epoxy to prevent leakage during spinning 2 

Solid NMR Spectroscopy 3 

1.3 mm probe: Spin-Lock experiments were conducted on a Bruker Avance III HD spectrometer 4 

operating at 14.1 T (600 MHz 1H frequency) using a DVT600W2 BL1.3 mm HXY probe. The 5 

experiments were performed at static, 10, 20 and 35 kHz MAS. The temperature of the nitrogen 6 

cooling gas set to 289 K, with 300 liters per hour.  7 

D2O. The experiments were performed without decoupling. In each experiment, 8 scans were 8 

recorded. The delay time between single experiments was set to 2.8 s. For determination of the 9 

reference rf-field 1H power, the 1D 1H signal was recorded as a function of the length of a single 10 

pulse (on resonance).   11 

Polybutadiene rubber. For decoupling of the heteronuclear j-coupling, WALTZ-16 was 12 

used:(Shaka et al., 1983) 80 μs 2-π pulses (12 kHz rf-field strength). In each experiment, 56 13 

scans were recorded. The delay time between single experiments was set to 2 s. For 14 

determination of the reference rf-field 13C power, the 1D 13C signal was recorded as a function of 15 

the length of a single pulse (on resonance).   16 

4mm probe: Spin-Lock experiments were conducted on a Bruker Avance III HD spectrometer 17 

operating at 14.1 T (600 MHz 1H frequency) using a 4 mm HXY probe. The experiments were 18 

performed at 10 kHz MAS. The temperature of the nitrogen cooling gas was set to 290 K, with 19 

300 liters per hour.  20 

Polyethylene glycol solution. SWf-TPPM was used for decoupling of the heteronuclear j-21 

coupling:(Thakur et al., 2006) 120 μs for single ~π-pulse and 6.3 kHz rf-field strength. In each 22 
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experiment, 64 scans were recorded. The delay time between single experiments was set to 2 s. 1 

For determination of the reference rf-field 13C power, 1D 13C signal was recorded as a function 2 

of the length of a single pulse.    3 
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