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Abstract. Enhanced transverse relaxation near rotary resonance conditions is a well-documented effect for
anisotropic solid samples undergoing magic-angle spinning (MAS). We report transverse signal decay associ-
ated with rotary resonance conditions for rotating liquids, a surprising observation, since first-order anisotropic
interactions are averaged at a much faster timescale compared with the spinning frequency. We report measure-
ments of 13C and 1H signal intensities under spin lock for spinning samples of polybutadiene rubber, polyethy-
lene glycol solution, and 99.96 % D2O. A drastic reduction in spin-lock signal intensities is observed when the
spin-lock frequency matches 1 or 2 times the MAS rate. In addition, oscillations of the signal are observed,
consistent with a coherent origin of the effect, a pseudo rotary resonance relaxation dispersion (pseudo-RRD).
Through simulations, we qualitatively describe the appearance of pseudo-RRD, which can be explained by time
dependence caused by sample rotation and an inhomogeneous field, the origin of which is an instrumental im-
perfection. Consideration of this effect is important for MAS experiments based on rotary resonance conditions
and motivates the design of new MAS coils with improved radio frequency (RF)-field homogeneity.

1 Introduction

Measurement of the transverse relaxation rates of nuclear
spins as a function of the applied RF-field spin-lock strengths
is an elegant and well-established method for detecting struc-
tural molecular dynamics (Abyzov et al., 2022; Alam et al.,
2024; Camacho-Zarco et al., 2022; Hu et al., 2021; Massi and
Peng, 2018; Palmer, 2015; Palmer and Massi, 2006; Prati-
har et al., 2016; Rangadurai et al., 2019; Sekhar and Kay,
2019; Stief et al., 2024). With magic-angle spinning (MAS)
NMR, (Andrew et al., 1958; Lowe, 1959) rocking motion
or slow exchange in molecular solids have been studied via
the impact on transverse relaxation. (Fonseca et al., 2022;
Keeler and McDermott, 2022; Krushelnitsky et al., 2018,
2023; Kurauskas et al., 2017; Lewandowski et al., 2011; Ma
et al., 2014; Marion et al., 2019; Öster et al., 2019; Quinn
and McDermott, 2009; Rovó and Linser, 2018; Shcherbakov
et al., 2023; Vugmeyster et al., 2023). This detection can
be achieved by performing a spin-lock experiment (Furman
et al., 1998), where the decay of magnetization is measured

as a function of the power of the applied spin-lock (SL)
pulse. For slow motion or slow exchange in the microsec-
ond (µs) range, the spectral densities (Redfield, 1957) of the
investigated spins may include additional terms (Kurbanov et
al., 2011; Marion et al., 2019) that arise from non-averaged
anisotropic interactions (Kurbanov et al., 2011; Rovó, 2020;
Schanda and Ernst, 2016). These terms depend on the sums
and differences between the nutation frequency induced by
the RF field (νSL = γB1/(2π )) and MAS rate (νR). Such de-
pendence causes a significant increase in the measured relax-
ation rates when νSL approaches one of the rotary resonance
conditions (νSL = νR or 2νR) (Marion et al., 2019).

For liquid samples, where SL experiments are routinely
used to detect fast exchange (Cavanagh et al., 2006; De-
verell et al., 1970; Palmer, 2004), sample rotation is not ex-
pected to induce any rotary resonance conditions based on
anisotropic spin interactions (Levitt et al., 1988; Oas et al.,
1988) since such interactions are eliminated by nanosecond-
timescale isotropic motion (Haeberlen and Waugh, 1968;
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Maricq, 1982). However, to our surprise, we still observed
changes in the SL signals at rotary resonance conditions
for liquid and liquid-like samples during SL experiments.
Since the signal decreases but is also clearly oscillatory, a
signature of coherent effects, we refer to this phenomenon
as a pseudo rotary resonance relaxation dispersion (pseudo-
RRD). A review of the literature revealed articles suggest-
ing related resonance conditions for rotating liquid samples:
in adiabatic TOCSY (total correlation spectroscopy) exper-
iments, enhanced performance was observed under specific
matching conditions in relation to the spinning frequency
(Kupče et al., 2001; Zektzer et al., 2005).

In this article, we measured pseudo-RRD for several liquid
and liquid-like samples and observed similar effects in each.
Through numerical simulations (Nimerovsky and Goldbourt,
2012), we show that this behavior can be qualitatively ex-
plained by the influence of the periodic component of the
applied RF field, which arises from the rotation of the sam-
ple in a spatially inhomogeneous RF field (Aebischer et al.,
2021; Tošner et al., 2017).

2 Results and discussion

We measured pseudo-RRD for natural-abundance 13C
polybutadiene rubber at 10, 20, and 35 kHz MAS. The same
pseudo-RRD behavior is observed for a polyethylene glycol
solution at 10 kHz MAS and for residual protons in liquid
deuterium oxide (99.96 %). The polybutadiene rubber dis-
plays liquid-like spectra but does not undergo translational
diffusion due to the elastomeric properties of a cross-linked
polymer. On the other hand, since the polybutadiene is an
elastomer and therefore may not undergo perfect isotropic
averaging, we also recorded data for a polyethylene glycol
solution and liquid water.

Figure 1 displays the spin-lock sequence. Similar to pre-
viously proposed versions (Vugmeyster et al., 2022), it con-
tains a heat compensation block (Wang and Bax, 1993) (HC),
followed by a π/2 pulse, T2 filter (Schmidt-Rohr et al.,
1992) (to reduce any broad signal components from the poly-
mer), and spin-lock pulse (SL). The mixing times for HC
and SL pulses were the same during a single experiment
(tHC = tSL =NSLTR), while the sum of the RF-field powers
of these applied pulses always equaled a fixed value. In all
experiments, we used continuous HC and SL (Fig. 1b) ex-
cept in one (the data are shown in Fig. 2c), where we applied
windowed pulses (Fig. 1b). During acquisition, WALTZ16
decoupling (Shaka et al., 1983) was used.

The experimental 13C polybutadiene rubber SL profiles
(acquired with a 1.3 mm probe) under three different MAS
rates of 10 kHz (a and c), 20 kHz (d), and 35 kHz (b) are
shown in Fig. 2. For Fig. 2a, b, and d, a drastic reduction
in the SL signal is observed at rotary resonance conditions
when νSL equals either νR or 2νR. Together with reduction
in the SL signal, oscillations are observed. For Fig. 2c, we

Figure 1. Spin-lock sequence with heat compensation (HC), T2 fil-
ter (2 ms – π pulse – 2 ms), and spin-lock (SL) blocks. The SL and
HC elements consisted of a train of NSL rotor-synchronized con-
tinuous (a) or windowed (b) pulses with the same phase (φ2) and
RF-field strength (νSL). In all experiments, powerHC+ powerSL =
constant (equivalent to 50 kHz RF-field strength). During acquisi-
tion, WALTZ-16 decoupling (Shaka et al., 1983) (c) was applied to
the 1H channel.

used 10 kHz MAS and windowed pulses: half of the rotor
period is a window, as shown in Fig. 1b. Again, a drastic re-
duction in the SL signal is observed, but when νSL equals
either 2νR or 4νR. We previously observed similar behavior
for windowed cross-polarization (CP) profiles (Nimerovsky
et al., 2023), where increasing the window between rotor-
synchronized pulses from zero to half of a rotor period dou-
bled the required RF-field strength for CP transfers (Hart-
mann and Hahn, 1962). Interestingly, with windowed pulses,
the SL profile appears similar to that with continuous pulses,
and even under a low RF-field strength of 1 kHz, there is no
change in the SL signal intensities (Fig. S1a in the Supple-
ment). The experimental spin-echo (Hahn, 1950) and inver-
sion recovery (Vold et al., 1968) curves for this sample are
illustrated in Fig. S1a and b.

From Fig. 2, we can also observe that the location of the
first minimum signal intensity in the experimental SL pro-
files depends on the MAS rate (indicated in gray in Fig. 2).
For 10 kHz MAS (Fig. 2a and c), the locations are at approxi-
mately a 3 ms SL time, while for 20 kHz (Fig. 2d) and 35 kHz
(Fig. 2b), the locations are at approximately 1 and 0.4 ms, re-
spectively. However, in all four profiles at these minimum
points, the signal reaches a similar value of approximately
0.53.
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Figure 2. The 13C polybutadiene rubber signal (the peak intensities) is shown as functions of the RF-field strength (νSL, y axis) and mixing
time (tSL, x axis) of the SL under three different MAS rates: 10 kHz (a, c), 20 kHz (d), and 35 kHz (b). For (a), (b), and (d), continuous SL
was applied, while for (c), windowed (half of the rotor period was filled with the pulse) SL was implemented. The values in gray represent
the coordinates of the first minimum in the profiles. Additional experimental details are provided in the Supplement.

Rotary resonance conditions at νR and 2νR of RF-field
strength are also observed for the polyethylene glycol
(Fig. 3b, acquired with a 4 mm probe) and for residual pro-
tons in liquid deuterium oxide (Fig. 3d, acquired with a
1.3 mm probe). The 1D spectra of these samples are shown in
Fig. 3a and c for PEG and liquid water. For each sample, two
rotary resonance conditions are clearly observed at positions
equal to integer multiplies of the MAS rates (νSL = νR, 2νR).
For liquid water (Fig. 3d), the additional rotary resonance
condition with n= 3 appears very weak. We more carefully
sampled around this condition for the water sample.

The performance of the SL experiments on all three sam-
ples helps rule out the influence of translational diffusion
(Hahn, 1950) (which may be present for polyethylene glycol
and liquid water but not for polybutadiene rubber) or residual
dipolar interaction (Cohen-Addad and Vogin, 1974) (which
might be present for polybutadiene rubber but is not relevant
for polyethylene glycol and liquid water).

To identify the major source of the apparent rotary reso-
nance conditions in liquid and liquid-like samples, we per-
formed theoretical and numerical analysis of the spin-lock
(SL) signal (Eqs. 1–7 below). In this analysis, three possi-
ble sources of pseudo-RRD are considered, all of which are
time-dependent periodic functions. The first two are related
to B0 and B1 modulations, which arise from the rotation of
the sample within inhomogeneous B0 or B1 fields. Note that
the B0 field refers to the main field and that modulations in
B0 can be in any direction. Similarly, B1 field modulations
can occur in any direction, and z-direction modulations are
certainly present for a solenoid at the magic angle. The pre-
cise distributions ofB0 or B1 fields in MAS probes have been
previously investigated (Engelke, 2002; Gupta et al., 2015;
Hoult, 1976; Hürlimann and Griffin, 2000; Paulson et al.,
2004; Tošner et al., 2017, 2018). Here we consider a simpli-
fied model of field distributions in order to reveal the quali-
tative dependence on MAS rates rather than predict the exact
behavior of a particular probe. Note that the consideration
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Figure 3. 13C and 1H spin-lock profiles at 10 kHz MAS. (a, b) Single-pulse 13C spectra and SL profile of polyethylene glycol (PEG) acquired
with a 4 mm probe. (c, d) 1H single pulse and SL profile of 99.96 % D2O acquired with a 1.3 mm probe. The profiles in (b) and (d) show 13C
and 1H signal amplitudes (peak intensities) as a function of the RF-field strength (νSL, y axis) and mixing time (tSL, x axis) of the SL pulse.
The values in gray are the coordinates of the first minimum in the profiles. Additional experimental details are provided in the Supplement.

of spatially distributed B0 field inhomogeneity is compat-
ible with a narrow line width under MAS (Sodickson and
Cory, 1997). For completeness of the theoretical analysis, a
dipolar interaction between a pair of spins was also included
as a third possible source, although it may be disregarded
since the rotary resonance effect was observed for 1H spins
in 99.96 % D2O (Fig. 3a and b).

The effects of an inhomogeneous RF field on MAS spec-
tra have been investigated previously (Aebischer et al., 2021;
Goldman and Tekely, 2001; Tekely and Goldman, 2001;
Tošner et al., 2017). Rather than B1 oscillations, the coil re-
ceptivity was shown to oscillate due to rotation of the sample
relative to the coil, and the authors showed that this instru-
mental imperfection results in the appearance of sidebands
that are unrelated to the chemical shift anisotropy (CSA)
(Goldman and Tekely, 2001; Tekely and Goldman, 2001).
Sidebands due to rotation through inhomogeneous B0 and
B1 fields are a well-known effect in liquids (Malinowski and
Pierpaoli, 1969; Vera and Grutzner, 1986). For solid samples,

Aebischer et al. (2021) investigated the influence of time-
dependent modulations of the RF-field amplitude and phase
on the performance of selected recoupling sequences and nu-
tation experiments. In this case, the modulations did not sig-
nificantly affect most recoupling sequences, with the excep-
tion of double quantum C-symmetry sequences (Lee et al.,
1995). It was noted much earlier that oscillations in phase
were needed to fully explain experimental results in rotary
resonance recoupling (Levitt et al., 1988). Consistent with
the matching conditions identified in this study, Aebisher
et al. (2021) revealed significant effects at νR and 2νR in nu-
tation spectra. The distribution of B1 fields in a solenoidal
coil was elegantly visualized in SL experiments of solid sam-
ples, in which case the loss of signal at rotary resonance was
interpreted as CSA recoupling (Tošner et al., 2017).

To understand the origin of the pseudo-RRD effect, we
start with the simplest case, investigating the behavior of an
on-resonance spin (I ) during the RF-field spin lock. The sim-
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ulated SL signal is defined as follows:

SSL(tSL)= Tr
{
Ix T̂ e−i

∫ tSL
0 dtH ′totalIx T̂ ei

∫ tSL
0 dtH ′total

}
, (1)

where T̂ is a Dyson operator andH ′total is a total Hamiltonian.
We consider the effects of B0 and B1 modulations or dipo-
lar interaction. For all three sources, H ′total can be defined as
follows:

H ′total =H
′

SL+H
′
t = ωSLIx + 2π

∑
n

an cos(nωRt +φn)

×[Iz cosϕ+ Iy sinϕ]Ôp ,
(2)

where ωSL = 2πνSL and H ′SL is an ideal spin-lock Hamilto-
nian. Here, Ôp= 1 for a single spin with B0 (ϕ ≥ 0) or B1
(ϕ = π/2) modulations or Ôp= 2Sz with ϕ = 0 for a two-
spin system (dipolar interaction). While for dipolar interac-
tion, n is 1 or 2 (Mehring, 1983; Olejniczak et al., 1984),
for B0 and B1 modulations, n may take any integer value
(Aebischer et al., 2021). This is because these modulations
are not purely sinusoidal; there are contributions from over-
tone frequencies. In the experimental SL profiles (Figs. 2
and 3), two rotary resonance conditions are clearly observed.
Therefore, in the following discussion, n= 1,2 will be con-
sidered for all three cases. Also note that for the cosine
modulated terms of Eq. (2), only Iy (and not Iz) survives
the rotating frame transformation and secular approxima-
tion for the case of B1 modulation. Both terms are rele-
vant for B0 modulations. For the dipolar interaction, an in-
versely depend on the distance between the pair of spins
and the orientation (Mehring, 1983; Olejniczak et al., 1984):
a1 = νD/

√
2sin(2β) and a2 =−νD/2sin2(β); νD = νD,IS =

−µ0/(8π2)(}γIγS)/(r3
IS) and (β) is the Euler angle with re-

spect to the rotor frame (Mehring, 1983). For B0 and B1
modulations, an values do not exhibit any orientation depen-
dence. It is worth noting that for B1 modulations, an values
change with the strength of the applied RF-field lock value
(νSL).

If ϕ does not vary with time, Eq. (2) can be simplified by
rotation of H ′total by an ϕ angle around the x̂ using the op-
erator eiϕIx . Such a rotation removes any dependence on ϕ,
since the initial and the final operators in Eq. (1) commute
with eiϕIx . The modified version of Eq. (2) is written as fol-
lows:

Htotal =e−iϕIxH ′totale
iϕIx =HSL+Ht

=ωSLIx + 2π
∑
n

an cos(nωRt +φn)IzÔp . (3)

Thus, while B0 modulation may occur anywhere in the y–
z plane, the theoretical treatment remains exactly the same
as for z modulation. Mathematically, this is also true for B1
modulation, while physically, these modulations are only rel-
evant when in the transverse plane.

In the Supplement, using average Hamiltonian theory
(AHT) and considering only the first-order terms (Haeberlen

and Waugh, 1968) under rotary resonance conditions (νSL =

νR or 2νR), the measured SL signal for B0 or B1 modulations
is as follows:

SSL(tSL =NSLTR)≈ cos(πaktSL) , (4)

while for dipolar interaction,

SSL(tSL =NSLTR)≈
∫

d�cos(πaktSL) , (5)

where the integration over orientation (�) indicates the pow-
der averaging with Euler angles, (α,β,γ ) (Mehring, 1983)
and k = 1 or 2. The derivations of Eqs. (4) and (5) are shown
in Eqs. (S1)–(S11) in the Supplement.

The complete agreement between AHT and numerical
simulations of SL signals (Figs. S3 and S4 in the Supple-
ment) indicates that this effect is fully explained with first-
order terms. Note that the simulations are fully coherent in
origin. The change in MAS rate affects only B1-induced sig-
nal modulations (Figs. S4 and S5 in the Supplement), since
the B1 field is also increased at the resonance condition.
Specifically, the strength of field oscillations (ak) increases
linearly with the B1 field, which matches the MAS frequency
at the resonance condition, and therefore the signal modu-
lation frequency also increases linearly. In the case of B0
modulation, adjustments to the shimming coil are expected
to have a profound effect, but oscillations in signal ampli-
tude are expected to be independent of the applied B1 field.
By contrast, for B1 modulation, changes in the strength of
the applied spin lock have a major effect, since the oscilla-
tion frequency of signal amplitude is expected to depend on
B1. These observations already point to B1 as the most likely
source of the observed pseudo-RRD effect, since the posi-
tion of the first signal minimum was observed to profoundly
depend on the MAS frequency (Fig. 2).

A better match between experiments and simulations log-
ically requires consideration of distributions in various pa-
rameters representing the position dependence of the sample.
Based on Fig. S5, for all three sources, the rotary resonance
conditions are very narrow. However, the addition of a spa-
tial distribution of applied νSL values to HSL broadens these
conditions (Eq. S14 and Fig. S6 in the Supplement), making
them more experimentally detectable and damping oscilla-
tions.

More generally, it makes sense to also consider distribu-
tions in the amplitude of B0 or B1 modulations (Eqs. S15
and S16 in the Supplement). The specific spatial distributions
chosen for B0 and B1 are summarized in Table S1 in the Sup-
plement and shown in Figs. S7 and S8 in the Supplement.
The types of inhomogeneity used roughly match the expec-
tation for solenoidal coils, where the sample near the ends of
the coil experiences a lower RF-field strength. Figures 4 and
5 show simulations for B0 and B1 modulation that include
these distributions. The inclusion of distributions in the simu-
lation primarily broadens the rotary resonance conditions and
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Figure 4. Simulated SL profiles showing the influence of time dependence introduced via B0 modulation, including distributions in SL
frequency and in amplitude of B0 modulation. The simulated signal is shown as a function of the RF-field strength (νSL, axis y) and mixing
time (tSL, axis x) of the SL under three different MAS rates: 10 kHz (a) and (c), 20 kHz (d), and 35 kHz (b). For (a), (b), and (d), continuous
SL was applied, while for (c) windowed SL was implemented (half of the rotor period was filled with the pulse). The values in gray represent
the coordinates of the first minima in the profiles. No phenomenological relaxation was included in the simulations. Additional simulated
details are provided in the Supplement.

affects the frequency and amplitude of the modulations in the
spin-lock signals. Relatively good agreement is observed be-
tween the experiment and simulation despite the imprecise
simulation of a spatial distribution of B1. A more quantita-
tive assessment would call for calculation of the exact val-
ues and shapes of B1 fields for a particular coil, as well as
better characterization of B0 distributions (Aebischer et al.,
2021; Engelke, 2002; Guenneugues et al., 1999; Hürlimann
and Griffin, 2000; Lips et al., 2001; Odedra and Wimperis,
2013; Paulson et al., 2004; Privalov et al., 1996; Schönzart
et al., 2024; Tošner et al., 2017, 2018). Note that the distribu-
tions are reasonable, considering the published calculations
for solenoidal coils (Gupta et al., 2015; Tošner et al., 2017;
Uribe et al., 2024).

Figure 4 shows simulations for B0 modulation that include
distributions in the SL frequency and in the amplitude of B0
modulation. While some similarities are seen compared with

the experimental data (Fig. 2), there are three major differ-
ences in the SL profiles, which should be highlighted. Firstly,
in Fig. 4, the intensities at the first minima show a depen-
dence on MAS rate (marked in gray in Fig. 4), whereas in
Fig. 2, the experimental profiles show only a slight depen-
dence. Secondly, in Fig. 4, the locations of these minima
in time (x axis) do not depend on the MAS rate (Fig. 4a,
b, and d) but are different when windowed pulses are ap-
plied (Fig. 4c). In contrast, the experimental profiles exhibit
the reverse behavior. Thirdly, with windowed pulses, as in
Fig. 4c, the second rotary resonance condition is attenuated
compared to continuous spin lock, while in Fig. 2c two ro-
tary resonance conditions are clearly detected. Additionally,
increasing the magnetic field inhomogeneity by deliberately
mis-setting the room temperature shims had little influence
on the SL profile (shown in Fig. S2 in the Supplement).
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Figure 5. Simulated SL profiles showing the influence of time dependence introduced via B1 modulation, including distributions in the SL
frequency and in the amplitude of B1 modulation. The simulated signal is shown as functions of the RF-field strength (νSL, axis y) and
mixing time (tSL, axis x) of the SL under three different MAS rates: 10 kHz (a) and (c), 20 kHz (d), and 35 kHz (b). For (a), (b), and (d),
continuous SL was applied, while for (c) windowed (half of the rotor period was filled with the pulse) SL was implemented. The values in
gray represent the coordinates of the first minima points in the profiles. Relaxation was not included in the simulations. Additional simulated
details are provided in the Supplement.

All of this indicates that a B0 modulation cannot be a ma-
jor source of the appearance of rotary resonance conditions
in these rotating liquids and liquid-like samples.

In contrast, simulations of SL profiles with time depen-
dence introduced via B1 modulation (Fig. 5) qualitatively
agree with the experimental plots, indicating that a B1 mod-
ulation is a better explanation for the appearance of rotary
resonance conditions in rotating liquids and liquid-like sam-
ples using conventional MAS NMR probes with solenoidal
coils. Hardware limitations including such time dependence
have been considered previously in the design of magneti-
zation transfer elements using optimal control (Blahut et al.,
2022, 2023; Glaser et al., 2015; Joseph and Griesinger, 2023;
Tošner et al., 2017, 2018).

This qualitative explanation, provided by simulations, in-
dicates that this effect can also be anticipated in experi-
ments involving solid samples, in addition to the desired

effects caused by molecular motion. It is therefore recom-
mended to consider coil inhomogeneity when measuring re-
laxation rates near rotary resonance conditions. Fortunately,
the magnitude of this effect is considerably smaller than the
strong relaxation observed in recent reports that detected
slow structural dynamics via near rotary resonance condi-
tions (Krushelnitsky et al., 2018).

3 Conclusions

Rotary resonance conditions, under which applied RF-field
strength equals an even multiple of the MAS rate, pro-
vide a powerful avenue to obtain specific structural infor-
mation via recoupling of anisotropic interactions in solids
(De Paëpe, 2012; Nishiyama et al., 2022) or for detect-
ing changes in the relaxation rates due to slow motion in
the microsecond (µs) range (Rovó, 2020). Canonically, ro-
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tary resonance conditions are not expected in liquids due
to the averaging of first-order anisotropic interactions from
(sub)nanosecond isotropic motion (Haeberlen and Waugh,
1968; Maricq, 1982). In this article, we present experimen-
tal data, in which we detected rotary resonance conditions
in a liquid and a liquid-like sample. We qualitatively explain
the major source of these conditions, which can occur from a
combination of two factors: the rotation of the sample and a
spatially inhomogeneous RF field generated by a solenoidal
coil (Tošner et al., 2017). As a result, the RF-field Hamil-
tonian contains time-dependent terms, which leads to signal
decrease, i.e., pseudo relaxation behavior, at or near rotary
resonance conditions. To mitigate these effects, it may be
advantageous to consider different hardware designs (Chen
et al., 2018; Xu et al., 2021), e.g., RF coils that produce more
homogeneous RF fields (Grant et al., 2010; Kelz et al., 2019;
Krahn et al., 2008; Stringer et al., 2005)
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