
Supplement of Magn. Reson., 6, 173–181, 2025
https://doi.org/10.5194/mr-6-173-2025-supplement
© Author(s) 2025. CC BY 4.0 License.

Open Access

Supplement of

Coherence locking in a parallel nuclear magnetic resonance probe
defends against gradient field spillover
Mengjia He et al.

Correspondence to: Neil MacKinnon (neil.mackinnon@kit.edu) and Jan G. Korvink (jan.korvink@kit.edu)

The copyright of individual parts of the supplement might differ from the article licence.



Contents

S1. Two-detectror array gradient simulation 2

S2. Dephasing by gradient field spillover 4

S3. Optimization of coherence-locking pulse 6

S4. Heteronuclear decoupling and homonuclear J-coupling impact 9

S5. Simulation of coherence-locking efficiency 11

S6. Simulation of parallel HSQC 12

S7. Simulation of parallel HMQC 15

S8. Influence of gradient imperfection 18

S9. The parallel probe and parallel HSQC spectra 19

1



S1. Two-detectror array gradient simulation

The gradient current in detector 1 was represented by i1(t) = 3sin(1000πt), as shown in

Fig. S1b. This current generates a field gradient of 75 Gauss/cm in sample 1, although not

explicitly shown. Two situations now arise at detector 2: first, the applied gradient at detector

1 can induce a current in the coil at detector 2, thereby creating an opposing field. Second, the

gradient field generated at detector 1 is not fully shielded, so that this field spillover penetrates

the sample at detector 2. The induced current i2 in detector 2 due to the magnetic flux change

was computed in Fig. S1d. Meanwhile, Fig. S1c portrays the magnetic field in sample 2

generated by i1 and i2. Notably, the gradient amplitude at detector 2 from i1 amounted to 0.5

Gauss/cm, resulting in a spillover ratio of 0.67%. This value is approximately 68 times higher

than the maximum gradient generated from the induced current i2, echoing similarities with

Lenz’s law, where the induced current’s magnetic flux opposes the change in flux but cannot

fully counteract it. Consequently, the field generated by the induced current was disregarded

in subsequent analyses. Fig. S1c highlights that field spillover induces an additional gradient

contribution alongside the primary gradient. When multiple gradient pulses are applied to select

a coherence transfer pathway, the designed gradient ratio may undergo distortion due to field

spillover.
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Figure S1. Gradient simulation for a two detector array. (a) Geometry of the detector array. (b)

The gradient coil in detector 1 was excited with a sin-shaped pulse. (c) The gradient field on sample 2

calculated with the excited current i1(t) and induced current i2(t), the ratio of maximum B(i1) and B(i2)

is 68. (d) Induced current i2(t) in detector 2.
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S2. Dephasing by gradient field spillover

For the evolution of p quantum coherence under the influence of a field gradient pulse Gz(t),

with duration τ , the spin coherence after the gradient pulse is given by1

ρ(τ) = ρ(0)exp[−ip
∫

τ

0
γGz(t)zdt] (S1)

where z is the spatial coordinate, and γ is the gyromagnetic ratio. The phase of the coherence

after the pulse is

φp(z) =−p
∫

τ

0
γGz(t)zdt (S2)

which forms a helix concerning the spatial coordinate. The wavelength of the helix is given by

λ =−2π/[p
∫

τ

0
γGz(t)dt] (S3)

So φp(z) can be also expressed as φp(z) = 2πz/λ

For a coherence transfer pathway with N coherences [p1, p2, ...pN ], Eq. S2 is expanded to

φp1→pN (z) =−
N

∑
i=1

pi

∫
τi

γiGz(t)zdt (S4)

And Eq. S3 is accordingly expanded to

λp1→pN =−2π/[
N

∑
i=1

pi

∫
τi

γiGz(t)dt] (S5)

To determine the decay in signal intensity induced by spillover, we consider a sample of

length l. The signal intensity is proportional to integrating the phase term across the entire

sample, expressed as

s =
∫ l/2

−l/2
eiφ(z),dz =

∫ l/2

−l/2
ei2πz/λ ,dz =

λ

π
sin

(
πl
λ

)
(S6)

where λ represents the wavelength of the gradient-induced phase helix corresponding to the

coherence transfer pathway, see Eq. S5. When λ approaches infinity, the signal achieves its

maximum amplitude smax = l, effectively extracting the specified coherence transfer pathway.

However, when λ is not sufficiently large or comparable to the sample size, the signal intensity

is given by

s
smax

=
λ

πl
sin

(
πl
λ

)
(S7)

4



which follows the well-known sinc function, as depicted in Fig. S2a. The effect on signal

intensity in the case of a parallel NMR measurement is plotted in Fig. S2b. The signal intensities

were extracted from a simulated parallel 1H-13C HSQC experiment, employing the fundamental

HSQC pulse sequence2, using the detector geometry outlined in Fig. S1. Each detector was

subjected to ’sin’ shaped gradients with a duration of 1 ms, considering spillover ratios which is

defined as the ratio between the maximum coupled gradient strength (Gcouple) and the maximum

primary gradient strength (Gprimary), expressed as RG = Gcouple/Gprimary, ranging from 0.1% to

1%. The gradient ratio in detector 2 was fixed at 2:2:-1, while for detector 1, the gradient ratios

of 2:2:1 (blue) and 2:2:-1 (orange) were considered.

a b

z

Re Im
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Figure S2. Signal intensity under field gradient dephasing. (a) Relative signal intensity plotted against

helix wavelength. (b) Relative intensity of the parallel HSQC signal depicted against gradient spillover

ratio. The gradient ratio in detector 2 is 2:2:-1, and the gradient ratio in detector 1 is 2:2:1 (blue) and

2:2:-1 (orange) respectively. The primary gradient strength is fixed at 75 Gauss/cm which is reached at

the first and second gradient pulse, the sample length is 8 mm, and the x-axis is presented on a logarithmic

scale.
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S3. Optimization of coherence-locking pulse

Optimal control theory Here, we provide a spin dynamics description of the optimal

control for coherence locking, within the Liouvillian space. In this space, the Hamiltonian

is represented as the commutation superoperator, and the spin state is represented as a column

vector. Without loss of generality, we consider coherence locking of a two-spin system, i.e., I

and S. The rotating frame Hamiltonian of the spin system can be written as the internal part

plus the control parts as

H(t) = Hint +Hrf(t)+Hg(t) (S8)

Hint = ωIIz +ωSSz +2πJIzSz (S9)

Hrf(t) = ∑
i

ωi,x(t)Ii,x +ωi,y(t)Ii,y (S10)

Hg(t) = Bg(t) ·Hz0 (S11)

where Hz0 is the labframe Zeeman Hamiltonian within 1 T magnetic field, the Bg(t) indicates

a time-dependent field drift by the gradient, so Hint +Hg(t) represents a time-dependent drift

Hamiltonian. The ωi,x(t) and ωi,y(t) are the control amplitude of the i channel RF pulse.

For numerical optimization, the time period of the pulse is divided into N equal slices, i.e.,

τ = N∆t, and the time-dependent Hamiltonian is approximated with the piecewise constant

function. The spin dynamics can be described as the density matrix ρ(t) evolves under the

propagator P(t). At the end of the pulse, the final spin state is given by3

ρ(τ) = PN · · ·P2P1ρ0 (S12)

where the k-step propagator Pk is

Pk = exp[−i(Hint,k +Hrf,k +Hg,k)∆t] (S13)

The fidelity function is measured by the inner product

η =< ρT |ρ(τ)>= trace[ρ†
Tρ(τ)] (S14)

For CLOC pulse, the target state ρT should be consistent with the initial state. For

non-Hermitian states, the fidelity takes the real value of Eq. S14. In this sense, the target
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propagator P commutes with the initial state. For example, we have [P, I−] = 0 for locking

of single spin state I−, or [P, I−S−] = 0 for locking of double quantum coherence I−S−.

In addition to the resonance offsets and RF inhomogeneity, two types of ensembles were

defined in the optimal control model: the drift Hamiltonians and the source-target pairs. To

account for gradient spillover, which induces a time- and space-dependent B0 drift, the sample

was divided into ng voxels along the z direction. Each voxel was assigned a time-dependent drift

Hamiltonian. The system Hamiltonian was constructed by assembling the drifts from all voxels

into the blocks of a block-diagonal matrix. Regarding the source-target pairs, it’s practical to

specify three coherences (Iz, I− and I+) for a single spin, so the optimal pulse is actually a

cyclic pulse. For multiple spins, including multiple coherences can be highly time-consuming,

potentially requiring several days with high-performance computers.

The fidelity function in Eq. S14 was expanded to

η =
1
n ∑

nrf

∑
ng

∑
noff

∑
nρ

η (S15)

where nrf, ng, noff, nρ denote the number of RF amplitudes, gradient strengths, resonance

offsets, and source-target pairs, respectively.

Parameters setting The following parameters were fixed for the single spin optimization.

• Pulse duration was 1 ms, divided into 1000 equivalent intervals.

• The gradient pulse has a sine shape, and the duration was 1 ms. The gradient field

was calculated at 12 voxels along the z-direction, i.e., ng = 12, the maximum value of

generated B0 drift was Bg,max =±0.25 Gauss.

• 1H offset, bandwidth is 7 kHz, noff = 51.

• 1H RF amplitude, ν1,H = 6 kHz, with ±20% inhomogeneity, nrf = 15.

• 13C offset, bandwidth is 6 kHz, noff = 51.

• 13C RF amplitude, ν1,C = 4 kHz, with ±15% inhomogeneity, nrf = 10.

Concurrent optimization is crucial when the J coupling cannot be neglected or averaged out

by single spin pulses. The concurrent optimization used identical parameters but focused on a

specific coherence, combining the 13C (noff,C = 25) and 1H (noff,H = 15) offsets while aligning

the B1 inhomogeneity (nrf = 10) across the two channels. The average J coupling was assumed

to be JHC = 145 Hz. The optimization was divided into 2 steps to accelerate optimization.
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• Step 1, the bandwidth of 1H and 13C were divided into 10 equivalent intervals, and the RF

inhomogeneity was divided into 3 intervals. The optimization stopped after 500 iterations

or the fidelity η > 0.9985, the calculated pulse was imported to step 2 as the initial guess.

• Step 2, the parameters indicated above were considered, the optimization stopped after

50 iterations or the fidelity η > 0.995.

The optimization was implemented with Spinach v2.84, in which the LBFGS-GRAPE

algorithm was specified as the optimization method. The single spin optimization used 40

CPU cores with a frequency of 2.1 GHz, the calculation time was approximately 1 hour. The

concurrent optimization used 64 CPU cores with a frequency of 2.6 GHz, the calculation time

was approximately 2 days.

a

b

Figure S3. The CLOC pulse shapes for 1H (a) and 13C (b), both of which are cyclic and universally

preserve the I−, I+ and Iz.
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S4. Heteronuclear decoupling and homonuclear J-coupling impact

The CLOC pulse has an additional heteronuclear decoupling effect due to its fast phase

jump, as the noise decoupling does. Here we calculate the effective coupling scale factor using

the average Hamiltonian theory5. In the toggling frame defined by Hrf +Hz, the J coupling

term has the following form6

Htog
J = 2πJ ∑

β ,γ

aI
zβ
(t)aS

zγ(t)Iβ Sγ = 2π · I ·J ·S (S16)

where J is a 3 by 3 time-dependent coupling tensor, its elements are given by

cβ ,γ(t) = aI
zβ
(t)aS

zγ(t) (S17)

where β , γ equal to x, y, z. The rotation coefficients aI
zβ
(t) can be calculated by

aI
zβ
(t) =< P†

I (t)Iz|Iβ > (S18)

where the propagator PI concerning the single spin I is defined by

PI(t) = T exp
[
−i

∫ t

0
HI(t ′)dt ′

]
(S19)

where T is the Dyson time-ordering operator, the single spin Hamiltonian is given by

HI(t) = HI,z +HI,rf = ωIIz +ωI,x(t)Ix +ωI,y(t)Iy (S20)

The calculated time-dependent coupling tensor in Eq. S17 was averaged over the pulse

period τ , i.e.,

cβ ,γ =
1
τ

∫
τ

0
cβ ,γ(t)dt (S21)

The coupling scale factor is defined as the Frobenius norm of averaged coupling tensor since

the maximum value of its norm is 1, i.e.,

χ = norm(c) (S22)

Due to homonuclear coupling, we observed intensity loss in the glucose HSQC spectra

when coherence-locking pulses were applied. This homonuclear coupling can be compensated

in optimal control. Specifically, when optimizing a universal locking pulse for a single 13C spin,

the model includes two 13C spins, the resonance offset is specified for only one spin, while the

other is fixed at zero offset. A J-coupling Hamiltonian,

HJ = 2πJ(I1xI2x + I1yI2y + I1zI2z) (S23)
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is included in the drift Hamiltonian, where J is set to a representative value, such as 40 Hz for

JCC. The compensation increases the RF power required for the optimal control pulse.

However, when two spins in a general spin system have a chemical shift difference

comparable to the J-coupling constant, compensation becomes infeasible. Since [Hrf,HJ] = 0

and [Hz,HJ] is nearly zero, HJ cannot be averaged out in the toggling frame defined by Hrf+Hz.

Consequently, the second-order spectrum cannot be fully recovered through coherence locking.

Fig. S4 shows the impact of homonuclear coupling on the locking efficiency of the 13C CLOC

pulse.

a b cwithout J-coupling J-coupling J-coupling & compensation

Figure S4. Simulated coherence locking efficiency of the 13C CLOC pulse subject to a two-13C spin

system. The efficiency is defined as η =< ρ0|ρT >, where ρ0 is the initial state, ρT is the final state. The

δν0 = ω1 −ω2, where ω1 is fixed at 0, and ω2 is swept from -3 kHz to 3 kHz, J = 50 Hz, and ν1 is the

RF amplitude of the pulse. (a) ρ0 = I1x + I2x, which commutes with HJ. (b-c) ρ0 = I1x, using the CLOC

pulse without J-coupling compensation (b) and with J-coupling compensation, where the RF amplitude

is increased to 6 kHz (c).
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S5. Simulation of coherence-locking efficiency

The coherence-locking efficiency as a function of resonance offset, RF inhomogeneity, and

gradient field strength were provided in Fig. S5 and Fig. S6. The efficiency was calculated by

the following fidelity function, where E is an identity matrix indicating the target propagator,

and P is the actual propagator.

η = trace(E†P) (S24)

a b c

Figure S5. Efficiency of 1H CLOC pulse. (a) ν1 = 6 kHz. (b) The B0 drift is 0.25 Gauss. (c) ν0 = 0.

a b c

Figure S6. Efficiency of 13C CLOC pulse. (a) ν1 = 4 kHz. (b) The B0 drift is 0.25 Gauss. (c) ν0 = 0.
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S6. Simulation of parallel HSQC

parameters glycine (channel 1) glucose (channel 2)

gradient ratio 4:1 4:-1

1H 13C 1H 13C

sweeping frequency, Hz 2k 5k 2k 6.25k

transmit offset, Hz 2k 5k 2k 10.625k

sampling points 128 128 128 128

zero-fill points 512 512 512 512

Table S1 The parameters for simulating parallel HSQC spectra. The spin system of glucose utilized

literature data for α-D-glucopyranose in D2O (25 oC, pH 7.0)7, the 13C-13C J-coupling was ignored.

For each t1 point, both S+ and S− were recorded by flipping the second gradient pulse in each channel,

resulting in a quadrature signal. The signal was apodized using the cos2(x) half-bell function in both

dimensions, and the real part of the Fourier transform was shown. A homogeneous B0 field was assumed

(B0 = 11.74 T). The sample was divided into 400 voxels along the z-direction, maximum B0 drift by

primary gradient was ±25 G, and maximum B0 drift by coupled gradient was ±0.2 G. A homogeneous

B1 field was assumed for CLOC pulses, perfect excitation and inversion pulses were assumed. J = 145

Hz.
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a b

c d

Figure S7. Simulated parallel HSQC spectra of glycine (a) and glucose (b). Panels (c) and (d) present

the corresponding 1D projections of (a) and (b), respectively. The grey lines represent the results without

gradient coupling, as a reference. The orange 1D projections display the spectra under gradient spillover

(no compensation), and the blue 1D projections display the results with coherence-locking compensation,

the lines are shifted just for clarity. Note that I+S+ and I−S+ were involved in the pathway for glycine,

hence the 13C signal picks up the −ωC, representing the negative chemical shifts.
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Figure S8. Simulated strong coupling effects on the glucose HSQC spectra. The relative intensity

represents the ratio of peak values in the coherence-locking case to those in the standard case. The

simulation excluded (blue lines) and included (orange lines) homonuclear J-coupling. The peak missing

is due to insufficient spectral resolution. The spin systems were taken form literature8–10.
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S7. Simulation of parallel HMQC

The coherence protection scheme relies on optimizing the CLOC pulse for a particular

coherence. A similar compensation approach was employed in the simulation of parallel HMQC

experiments2, as depicted in Fig. S9. In detector 1, the gradient pulse ratio was configured as

2:2:1 to select the I+S+ → I−S+ → I− pathway. Conversely, in detector 2, the gradient pulse

ratio was adjusted to 2:2:-1 to select the I+S− → I−S− → I− pathway. The CLOC pulses in

the HMQC were applied to the 1H & 13C channel, dependent on the double quantum coherence

to be protected. The simulated spectra of the parallel HMQC pulse sequence are presented in

Fig. S10, with glycine and glucose again serving as the samples in the respective detectors.

1H

G

𝐼+𝑆+ 𝐼−𝑆+ 𝐼−

𝐼+𝑆− 𝐼−𝑆− 𝐼−

decouple

13C
2∆ 2∆𝑡1

1H

decouple

13C

G

a

b

Figure S9. The scheme for gradient pulse compensation in a parallel HMQC pulse sequence involves

coherence locking indicated by the blue blocks. In 1 (a), the gradient pulse ratio was set to 2:2:1 to

select the I+S+ → I−S+ → I− pathway. In 2 (b), the gradient pulse ratio was set to 2:2:-1 to select the

I+S− → I−S− → I− pathway. The black blocks represent π/2 pulses and the white blocks represent π

pulses, with all phases set to zero unless specifically noted. ∆ = 1/4J.
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parameters glycine (channel 1) glucose (channel 2)

gradient ratio 2:2:1 2:2:-1

1H 13C 1H 13C

sweeping frequency, Hz 2k 5k 2k 6.25k

transmit offset, Hz 2k 5k 2k 10.625k

sampling points 256 256 256 256

zero-fill points 512 512 512 512

Table S2 The parameters for simulating parallel HMQC spectra. Only S+ or S− was recorded for

each channel, the signal was apodized using the cos(x) half-bell function in both dimensions, and the

magnitude of the Fourier transform was shown. A homogeneous B0 field was assumed (B0 = 11.74 T).

The sample was divided into 400 voxels along the z-direction, maximum B0 drift by primary gradient

was ±25 G, and maximum B0 drift by coupled gradient was ±0.2 G. The B1 field for CLOC pulse was

linearly scaled according to the voxel position, i.e., maximum at the center and minimum at the edges.

Perfect excitation and inversion pulses were assumed. J = 145 Hz.
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a b

c d

Figure S10. Simulated parallel HMQC spectra of glycine (a) and glucose (b). Panels (c) and (d) present

the corresponding 1D projections of (a) and (b), respectively. The grey lines represent the results without

gradient coupling, as a reference. The orange 1D projections display the spectra under gradient spillover

(no compensation), and the blue 1D projections display the results with coherence-locking compensation,

the lines are shifted just for clarity. In (d), the small peaks in the middle of the 13C projection indicate a

zero-frequency component. The averaged J-coupling evolution time causes imperfect coherence transfer,

leaving a residual transfer (I+ → I− → I−) that was not fully averaged out.
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S8. Influence of gradient imperfection

The gradient coil can be modeled as a resistor–inductor circuit, which processes low-pass

character, resulting in smoothing and phase delay of the gradient pulse. These transient effects

change the temporal alignment with the RF pulse and can cause efficiency degradation of

coherence locking. Here we gave the simulated locking performance considering the gradient

imperfection.

The quality factor of the gradient coil is Q = ωL/R where ω = π/τ and τ is the duration of

the ’sine’ shape pulse. The phase delay of the circuit is φ = tan−1(Q). The coherence-locking

efficiency considering phase delay response is given in Fig. S11.

a b

Figure S11. Coherence-locking efficiency considering the transient response of gradient coil. (a) The

transient response of gradient coil at different delay phases. (b) Coherence-locking efficiency of I− as a

function of delay phase and B0 drift, calculated using the 1H CLOC pulse.

18



S9. The parallel probe and parallel HSQC spectra
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Figure S12. View of the 4-detector probe (Voxalytic GmbH).
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Figure S13. Parallel HSQC spectra. Top panels: the spectra without gradient coupling. Middle panels:

the spectra under gradient spillover. Bottom panels: the spectra with coherence-locking compensation.

The 2D spectra were saved from TopSpin and plotted with Matlab using a Spinach utility function

’plot 2d.m’.
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