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Abstract. Analytical expressions for the description of the time evolution of spin systems beyond product–
operator formalism (POF) can be obtained if a low-dimensional subspace of the Liouville space has been found
in which the time evolution of the spin system takes place completely. This can be achieved using a procedure that
consists of repeated application of the commutator of the Hamiltonian with the density operator. This iteration
continues as long as the result of such a commutator operation contains a term that is linearly independent of
all the operators appearing in the previous commutator operations. The coefficients of the resulting system of
commutator relations can be immediately inserted into the generic propagation formulae given in this article if the
system contains two, three, or four equations. In cases where the validity conditions of any of these propagation
formulae are not met, the coefficients are used as intermediate steps to obtain both the Liouvillian and propagator
matrices of the system. Several application examples are given where an analytical equation can be obtained for
the description of the time evolution of small spin systems under the influence of two or more interactions.
This procedure for finding the Liouvillian matrix is not limited to time-independent interactions. Some examples
illustrate the treatment of time-dependent problems using this method.

1 Introduction

Considerable progress has been made in predicting the time
evolution of spin systems. Numerical calculations or simula-
tions are possible in large systems of coupled spins (Kuprov
et al., 2007), and the evolution during an arbitrarily long se-
quence of pulses can be simulated with the help of software
(Veshtort and Griffin, 2006; Bak et al., 2000; Hogben et al.,
2011), including the effect of thermal motion.

However, there may be situations where the analytical rep-
resentation of the time evolution is advantageous, providing
more physical intuition than a numerical procedure, which
can seem like a black box. The desire or need to take a look
inside this black box could be a motivation to deal with an-
alytical contexts. In many cases, product–operator formal-
ism (POF) (Slichter, 1987; Sorensen et al., 1983; Packer and
Wright, 1983; Wang and Slichter, 1986) has been used for
this purpose. This is a rather intuitive scheme where the states
of the spin system are represented by spin operators. Such a

tool can be very useful for doing short calculations without
access to fundamental quantum mechanics or without a sim-
ulation program. For demonstrations in discussions and lec-
tures, e.g., on the effects of pulse sequences like INEPT or
HSQC (Van De Ven and Hilbers, 1983), an illustrative expla-
nation can be given here.

As an example, consider the POF description of the propa-
gation of transversal magnetization of spin I = 1/2 which is
coupled by a scalar interaction to another spin S= 1/2 (cou-
pling constant J ):

Îx
2πJ ÎzŜz·t
−→ Îx cosπJ t + 2Îy Ŝz sinπJ t. (1)

This means that the spin system oscillates between two
states characterized by the operators Îz and 2ÎzŜz. Thus, the
evolution takes place in a 2-D subspace of the total opera-
tor space. In contrast, to describe a system with two spins
1/2, we need a 4× 4 density matrix. This means that the
Liouville–von Neumann equation is a system of 16 scalar

Published by Copernicus Publications on behalf of the Groupement AMPERE.



78 G. Hempel: Analytical expressions for time evolution

differential equations for each of the matrix elements. How-
ever, obviously it is possible in this example to reduce the
16-D problem to the 2-D one described by Eq. (1).

A question arises: are there other situations where dimen-
sionality reduction is possible? Candidates for such situa-
tions are, for example, the evolution of a spin system under
dipoledipole interaction and simultaneous rf irradiation, or
cross-polarization with respect to the finite RF power.

Îz
dipole–dipole interaction+ rf irradiation
−−−−−−−−−−−−−−−−−−−−−−→ ?

Îx
cross-polarization under a finite rf power
−−−−−−−−−−−−−−−−−−−−−−→ ?

Are there others? For numerical calculations, any reduction
in dimensionality leads to a reduction in computation time,
but to enable analytical calculations, which is the goal here,
this may be essential. The aims of this paper are (i) to intro-
duce a procedure for reducing the dimension of the problem,
(ii) to show examples of the application of this procedure
to obtain analytical equations, and (iii) to show the result-
ing generic propagation rules as templates for cases where
the problem could be reduced to a 2-D, 3-D, or 4-D problem.
The latter can be seen as an extension of the product–operator
formalism to somewhat more complex situations. (i) and (ii)
can be useful for simplifying some calculations through di-
mension reduction without any approximation. Even for nu-
merical calculations, this can be useful if it helps us to work
on low-dimensional systems. As an example, a system of two
spins I and S is mentioned here, which is subject to dipolar
interaction but which is decoupled by rf irradiation, and at the
same time magic-angle sample spinning (MAS) modulating
the dipolar oscillation takes place. Its time evolution can be
described by a system of three differential equations using
the method presented here. The application of the Shirley–
Floquet method will be greatly simplified here. On the other
hand, the application of the Liouville–von Neumann equa-
tion in the 4-D wave-function space leads to a system of 16
differential equations, even if some of its coefficients can be
0.

In Sect. 2, the mathematical background is investigated,
which makes it possible to reduce the dimension to the value
2 in cases where the POF is applicable. The results of this cal-
culation are applied to more complex structures in Sect. 3. Fi-
nally, in Sect. 4, some template formulae are given, together
with examples of cases where a reduction to 3-D, 4-D, 5-D,
and 6-D problems is possible.

As usual, in this paper operators are denoted by a hat (Â)

and superoperators by a double hat ( ˆ̂B), while the vector or
matrix associated with an operator is denoted by the same
symbol but in italics and in bold roman, respectively, and
without a hat (A and B). Scalar variables are written in italics.

2 Dimension reduction through POF

2.1 Condition for validity: commutator relations

As shown in the references cited above, the generic scheme
of the POF is as follows. The time evolution can be predicted
by the propagation rules

Â
Ĥ t
−→ Âcosλt + B̂ sinλt and

B̂
Ĥ t
−→ B̂ cosλt − Âsinλt

(2)

if and only if[
Ĥ, Â

]
= iλB̂ and[

Ĥ, B̂
]
=−iλÂ,

(3)

where
[
Â, B̂

]
≡ ÂB̂− B̂Â denotes the commutator between

the operators Â and B̂. That is, Eq. (2) describes the motion
of the density operator in a 2-D subspace of the total Liou-
ville space of the current spin system, although the Liouville
space has a much larger dimension.

However, Eq. (3) is often not satisfied when more than
one interaction must be considered. This applies, for exam-
ple, to an rf irradiation with strength ω1 in an ensemble of
spins I = 1/2 which are coupled to another spin ensemble
S= 1/2 (coupling frequency DIS). This situation can be de-
scribed by the Hamiltonian Ĥ =−2DISÎzŜz−ω1Îx and an
initial state ρ0 = Îz. The double calculation of the commuta-
tor of the Hamiltonian with Îz results not only in Îz, but also
an additional term. In this case, after the third application of
this commutator operation, the result will contain only the
operators already used:[
Ĥ, Îz

]
= iω1 Îy,[

Ĥ, Îy

]
=−iDIS · 2Îx Ŝz− iω1 Îz,[

Ĥ,2Îx Ŝz
]
= iDIS · Îy .

(4)

The connection between the commutator Eq. (3) and the
propagation Eq. (2) becomes much clearer if we reformulate
both sets of equations in matrix form,(
Â

B̂

)
Ĥ ·t
−→

(
cosλt sinλt
−sinλt cosλt

)(
Â

B̂

)
, (5)

if and only if
[
Ĥ, Â

]
[
Ĥ, B̂

]
= ( 0 iλ

−iλ 0

)(
Â

B̂

)
. (6)

For this analysis, it is important to note that the 2× 2 matrix
in Eq. (5) is the exponential of the 2× 2 matrix in Eq. (6)
multiplied by −it (see Sect. S2 in the Supplement):(

cosλt sinλt
−sinλt cosλt

)
= exp

(
0 λt

−λt 0

)
. (7)
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G. Hempel: Analytical expressions for time evolution 79

Obviously, for this case, it is possible to take a particular pa-
rameter (λ) of a system of commutator equations and insert it
into the template Eq. (2), which is formulated as a set of two
propagation formulae. Then the following questions arise:

1. Is it possible to apply this procedure to more complex
cases, such as that of Eq. (4)?

2. To what dimension can we reduce a given problem?

3. Are there any template propagation formulae for the
case where a reduction to a 3-D or 4-D case is possi-
ble?

As a final remark in this subsection, we note that we have
performed these calculations in the operator space (Liouville
space). This seems advantageous because it is the natural
way of treating this topic. We describe states in terms of op-
erators rather than wave functions (see above). Some prop-
erties of the Liouville space that are important for this work
are listed in Sect. 2.2.

2.2 Properties of the Liouville space that are important
in this article

In some papers, the space of wave functions is denoted as
the Hilbert space in order to have a contrast with the Liou-
ville space. However, this does not seem appropriate since
the space of linear operators also satisfies the conditions of
being a Hilbert space (Jordan, 2005).

– Definition of the scalar product of two operators Â and
B̂:
(
Â, B̂

)
:= Tr

(
A†
·B
)
, where A and B are the matrix

representations of Â and B̂ in the wave-function space
and the superscript † means the Hermitian conjugate of
the corresponding matrix.

– Two operators Â and B̂ are said to be orthogonal if their
scalar product is 0: Â⊥ B̂ ⇔

(
Â, B̂

)
= 0.

– The Euclidean norm of an operator is defined as the
square root of the scalar product of the operator with it-

self: ‖ Â ‖=
√(
Â, Â

)
=

√
Tr
(
A† ·A

)
. For the sake of

brevity, the term “norm” is used throughout this paper
to refer to the Euclidean norm. The rules for calculating
the norm values for some of the operators used in this
article are given in Appendix A. The norm of an opera-
tor is invariant with respect to a unitary transformation,
but it depends on the relevant space, which is different
for different numbers of spins. Therefore, the table in
Appendix A contains different norm equations for the
same operator but in different spaces.

– Each operator of this space can be expanded into a series
of basis operators. In particular, for the density operator

ρ, we have

ρ̂ = ρ1û1+ . . .+ ρd ûd = u
T
· ρ, (8)

where d is the dimension of the particular Liouville
space, ρ is a column matrix which contains the expan-
sion coefficients ρi (i ∈ {1. . .d}) of the density operator,
u is a column matrix whose elements are the basis op-
erators, and AT is the transpose of the matrix A. If all
the basis operators are pairwise orthogonal, ρi can be
calculated as follows:

ρi =
(
ρ̂, ûi

)
/ ‖ ûi ‖ (i ∈ {1. . .d}) . (9)

– Mappings between operators are described by superop-
erators:

i. Liouville superoperator (or simply “Liouvillian”)
for forming the commutator with the Hamiltonian:
ˆ̂
L: Â 7−→

[
Ĥ, Â

]
, also written as ˆ̂LÂ=

[
Ĥ, Â

]
,

and

ii. propagation superoperator (or simply “superpropa-
gator”) for describing the time evolution:
ˆ̂
U : ρ̂(0) 7−→ ρ̂(t), also written as

ρ̂(t)= ˆ̂Uρ̂(0). (10)

– The time evolution of the density operator is governed
by the Liouville–von Neumann equation. It is formu-
lated in the Liouville space as

d
dt
ρ̂ =−i

ˆ̂
Lρ̂. (11)

If ˆ̂L does not depend on time, the formal solution is

ρ̂(t)= ˆ̂U (t)ρ̂(0) with ˆ̂U (t)= exp
(
−i
ˆ̂
Lt
)
. (12)

Here we find a similarity to the matrix formulation of
the POF (Eqs. 5–7). In fact, the coefficient matrix of the
system of commutator equations is the transposition of
the Liouvillian matrix, and the coefficient matrix of the
POF (Eq. 5) is the transposition of the superpropagator.
This is proven in the Supplement (Sect. S1.1).

– The norm of the density matrix is time-invariant. This
can be proven by multiplying the Liouville–von Neu-
mann Eq. (11) by ρ̂:(
ρ̂ .

d
dt
ρ̂

)
=

1
2

d
dt

(
ρ̂ . ρ̂

)
=−i

(
ρ̂ .
ˆ̂
Lρ̂
)
= 0. (13)

The scalar product of a Hermitian operator (ρ̂) and its
commutator with another Hermitian operator (Ĥ ) is 0
(Sect. S1.2).
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80 G. Hempel: Analytical expressions for time evolution

The Liouville space formulation objective of this article is
to find a subspace of the total Liouville space that contains
all possible states occurring in the current problem and that
has the smallest possible dimension. An analogous procedure
is not possible in the wave-function space, where the time
evolution has to be calculated using Û (t)ρ̂(0)Û−1(t). In the
following section, commutator equations representing the ac-
tion of the Liouvillian are established. Their coefficients are
needed for further calculation of the propagation formulae.

2.3 Two forms and two bases for symbolic description of
the time evolution

For practical calculations, Eq. (10) is usually transformed
into a matrix equation. In the literature this is usually done
in two different forms, both of which can be found, e.g., in
Ernst et al. (1987) (Sect. 2.1.4).

Form 1:

ρ(t)= U(t) · ρ(0). (14)

The time evolution is described here in the space of N -
dimensional column matrices: ρ(t) is the density matrix ac-
cording to Eq. (8), i.e., a column containing the coefficients
of the expansion of the density operator ρ̂(t) into basis op-
erators. That is, we follow the propagation into the space
CN , i.e., the space of N -row column matrices with the
basis {(1,0, . . .,0)T, (0,1, . . .,0)T, . . ., (0,0, . . .,1)T

}. The su-

perpropagator ˆ̂U is an isomorphism in this space and can be
represented by the N ×N matrix U.

Form 2 (denoted here as the “propagation formula”):

Â1
Ĥ t
−→ V11Â1+V12Â2+ . . .+V1N ÂN ,

Â2
Ĥ t
−→ V21Â1+V22Â2+ . . .+V2N ÂN ,

. . .

ÂN
Ĥ t
−→ VN1Â1+VN2Â2+ . . .+VNN ÂN .

(15)

This means that the density operator, which is Â1 at t = 0,
evolves under the influence of the Hamiltonian Ĥ during
time t into a linear combination of independent operators
Â1, Â2, . . ., ÂN . Unlike form 1, here we work in the oper-
ator space with the basis {Â1, Â2, . . ., ÂN }.

Connection between both forms. U= VT if the basis col-
umn matrices (form 1) are assigned to the corresponding ba-
sis operators of the second basis. For proof, see Sect. S1.1.

This means that we can rewrite Eq. (15) as

Â1
Ĥ t
−→ U11Â1+U21Â2+ . . .+UN1ÂN ,

Â2
Ĥ t
−→ U12Â1+U22Â2+ . . .+UN2ÂN ,

. . .

ÂN
Ĥ t
−→ U1N Â1+U2N Â2+ . . .+UNN ÂN .

(16)

The set of all U values is the dual space of the set of all V.
Similarly, the coefficient matrix of the commutator equations
is the transposed Liouvillian matrix (see Sect. S1.1).

3 Procedure for finding propagation formulae

3.1 Requirements for a suitable subspace

To be sure that a given subspace S contains the whole evo-
lution of a spin system, we have to check that the action of

the propagator ˆ̂U on each operator Â of this subspace also
results in an element of the subspace:

∀Â ∈ S :
ˆ̂
U Â ∈ S. (17)

A subspace with this property is said to be propagator-
invariant (Jordan, 2005). This is equivalent to the Liouvillian
invariance of the subspace, i.e.,

∀Â ∈ S :
ˆ̂
L Â ∈ S, (18)

because the propagator is the sum of repeated ˆ̂L actions:

ˆ̂
UÂ= exp

(
−i
ˆ̂
Lt
)
Â=

∞∑
n=0

(−it)n

n!

ˆ̂
Ln Â ∈ S. (19)

A sufficient condition for a subspace spanned by û1 . . . ûN
(Eq. 8) to be Liouvillian-invariant is that the action of the
Liouvillian of any of the ûi values also results in an element

of that subspace, i.e., ˆ̂Lûi ∈ S ∀i ∈ {1. . .N}. A Liouvillian-
invariant subspace which is of interest here should at least
contain the initial density operator. Furthermore, all multiple
actions of the Liouvillian on the density operator must result

in elements of that subspace: ˆ̂Ln ρ̂(0) ∈ S ∀n ∈ N.
In principle we can construct such a subspace as the set of

all linear combinations of ρ̂(0), ˆ̂Lρ̂(0), ˆ̂L2ρ̂(0), . . ., ˆ̂LN ρ̂(0),
where N is the largest number for which this operator set is

linearly independent. This means that ˆ̂LN+1ρ̂(0) can be rep-
resented as a linear combination of all lower powers. Then,

all further applications of ˆ̂L lead to operators which are also
linearly dependent.

This procedure is reminiscent of the formation of Krylov
subspaces in matrix spaces (Watkins, 2007). For further con-
siderations in this article, in particular the calculation of ma-
trices, it is convenient to have basis operators that are pair-
wise orthogonal. This can be achieved by combining the
Krylov-like procedure with the Gram–Schmidt orthogonal-
ization, which is analogous to the Arnoldi procedure for ma-
trix spaces (Watkins, 2007). The details of the procedure are
presented in the next subsection.

3.2 First step: creating a closed system of commutator
equations

According to the result of the previous subsection, the ap-
plication of the Liouvillian to the initial density operator is
repeated as long as the result contains a component that is
linearly independent of all previous results. The action of
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the Liouvillian consists in forming the commutator of the
Hamiltonian with the considered operator. Consequently, the
search for this Liouvillian-invariant minimum subspace is
performed by repeatedly calculating the commutator of the
Hamiltonian using the operator representing the initial state
of the spin system, as shown in detail below.

Let us assume that the system under consideration is char-
acterized by the Hamiltonian Ĥ and the initial state density
operator by Â1.

Evaluation of the first commutator:
[
Ĥ, Â1

]
If the result is 0, the state of the spin system is constant

in time; see the Supplement (examples 0D-1 and 0D-2). In
the case where this commutator does not vanish, it can be
decomposed into a term which is proportional to Â1 and an-
other term Â12 which is orthogonal to the first one:[
Ĥ, Â1

]
= λ11Â1+ Â12 with Â12 ⊥ Â1. (20)

The commutator of two Hermitian operators is always or-
thogonal to both, as proven in the Supplement. This means
that, for a Hermitian Â1,

[
Ĥ, Â1

]
cannot have a component

that contains Â1 itself. This is different for non-Hermitian
operators (see Sect. 4.1).

We replace Â12→ λ12Â2, choosing the scalar λ12 so that
Â2 has the same norm as Â1. The corresponding table in Ap-
pendix A can be used to determine the norms of the opera-
tors.

Evaluation of the second commutator:
[
Ĥ, Â2

]
This will be decomposed as[
Ĥ, Â2

]
= λ21Â1+ λ22Â2+ λ23Â3, (21)

with the condition that Â3 is orthogonal to both Â1 and Â2.
The coefficient λ23 is chosen so that Â3 has the same norm
as Â1 and Â2.

If Â3= 0, i.e.,
[
Ĥ, Â2

]
is a linear combination of Â1 and

Â2, the procedure is finished. Then we have a system of com-
mutator equations like Eq. (3), i.e., the usual POF.

Evaluation of the nth commutator:
[
Ĥ, Ân

]
Similarly, it will be expanded into a series of operators

known from the previous commutator evaluations and a re-
mainder:[
Ĥ, Ân

]
= λn1Â1+ . . .+ λn,nÂn+ λn,n+1Ân+1, (22)

with the condition that Ân+1 is orthogonal to all of the Âk
values with k∈1. . .n. Again, the coefficient λn,n+1 is chosen
so that Ân+1 has the same norm as the other operators of this
set.

End of the procedure. If for a certain n=N the com-
mutator is a linear combination of the previously deter-
mined Âk without any remainder, the iteration is finished.

The set of pairwise orthogonal operators {Â1. . .ÂN } spans a
Liouvillian-invariant subspace of the entire Liouville space.
Its dimension is N .

Possible modification of the procedure. The remainder of
any commutator evaluation can be written as the sum of two
or more operators, all of which must be orthogonal to the
other operators. In some cases, this can simplify the coeffi-
cient matrix.

3.3 Second step: Liouvillian matrix

The result of the whole procedure is a system of equations
like the following:



[
^
H,

^
A1

]
[

^
H,

^
A2

]
[

^
H,

^
A3

]
...[

^
H,

^
AN−2

]
[

^
H,

^
AN−1

]
[

^
H,

^
AN

]


=


λ11 λ12 0 ... 0 0 0
λ21 λ22 λ23 ... 0 0 0
0 λ32 λ33 ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... λN−2,N−2 λN−2,N−1 0
0 0 0 ... λN−1,N−2 λN−1,N−1 λN−1,N
0 0 0 ... 0 λN,N−1 λN,N





^
A1
^
A2
^
A3
...

^
AN−2
^
AN−1

^
AN


. (23)

As shown in Sect. S1.1, the coefficient matrix is the trans-
position of the Liouvillian matrix. This system of equations
implies that the action of the Liouvillian on any Âi (i ∈
{1. . .N}) leads to a linear combination of Âi . In other words,
the subspace spanned by the operators Â1 . . . Ân is both
Liouvillian-invariant and propagator-invariant. The density
operator, once located in this subspace, will not leave it as
long as the interaction does not vary. This explains why the
POF can be applied successfully as a 2-D problem, even
if the complete Liouville space has a much higher dimen-
sion.

The zeros in the upper triangle of the coefficient matrix re-
sult from the above: if the remainder of the nth commutator is
identified with only one new operator, then λn,n+1 and Ân+1
are determined. λn,n+2, . . . and Ân+2, . . . are still unknown
in this step; the matrix elements to the right of them remain
zero. In the case of the modified procedure mentioned above,
the matrix structure in Eq. (23) changes. Then, λn,n+2. . . can
also be nonzero. Due to the hermiticity of the Liouvillian,
i.e., Lij = L∗ji , the lower triangle matrix has the same pat-
tern of zeros as the upper one. The coefficient matrix has a
band structure for the unmodified version of the procedure.

When the basis operators are Hermitian, all elements are
purely imaginary. This means that all elements of the main
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diagonal must be zero. However, if the basis contains non-
Hermitian operators, the main diagonal will contain nonzero
elements, but they must be real numbers.

3.4 Third step: estimation of the propagator matrix and
propagation rules

In principle, the propagator matrix can be obtained by evalu-
ating the matrix exponential according to Eq. (12):

U= exp(−iLt)=


U11 U12 . . . U1N
U21 U22 . . . U2N
. . . . . . . . . . . .

UN1 UN2 . . . UNN

 . (24)

L is a pure imaginary matrix for a Hermitian operator basis.
In this case, U only contains real elements and is orthogonal.
This means that the norms of all the rows and columns of this
matrix are unity:

N∑
i=1

U2
ij =

N∑
j=1

U2
ij = 1. (25)

The propagation rules can be obtained from the elements of
the transposed propagator matrix (for proof, see Sect. S1.1):

Â1
Ĥ t
−→ Â1 U11+ Â2 U21+ . . .+ ÂN UN1,

Â2
Ĥ t
−→ Â1 U12+ Â2 U22+ . . .+ ÂN UN2,

. . .

(26)

However, it is not necessary to recompute the matrix expo-
nential for each new situation. Instead, for low-dimensional
subspaces, the generic propagation formulae shown in the
next section can be used as a template. Here the elements
of the Liouvillian matrix have to be inserted directly, without
the need to perform the matrix exponentialization. This was
done above for the POF example, where the constant λ result-
ing from the commutator equations could be used directly as
the oscillation frequency.

4 Special cases

The situations in the examples shown below are character-
ized by different initial states and different Hamiltonians.
The Hamiltonians are listed in Appendix B.

A detailed analytical consideration of each example can be
found in the Supplement.

4.1 Reduction to a 1-D subspace

In this case, the commutator of the Hamiltonian with the den-
sity operator at t = 0, i.e., Â1, is proportional to Â1 itself,[
Ĥ, Â1

]
= λÂ1, (27)

and only occurs if Â1 is non-Hermitian, e.g., Â1 = Î+ ≡

Îx + iÎy as used for the characterization of the complex free
induction decay (FID) (Abragam, 1961). Then the coefficient
matrix only consists of one scalar λ. The propagator is also a
scalar:

U1D = e
−iλt . (28)

The corresponding propagation rule is

Â1
Ĥ t
−→ Â1e

−iλt . (29)

Example. A rotating frame, resonance offset 1ω, and com-
plex transversal magnetization, which is represented by Î+:

Î+
−1ωÎz t
−→ Î+e

−i1ωt . (30)

4.2 Case of reduction to a 2-D subspace

The corresponding equations are like Eqs. (3) and (6) and
belong to the POF. The Liouvillian matrix and the propaga-
tor matrix are the transpositions of the matrices in Eqs. (5)
and (6):

L2D =

(
0 −iλ

iλ 0

)
,

U2D = exp(−iL2Dt)=
(

cosλt −sinλt
sinλt cosλt

)
.

(31)

The propagation formulae are given by Eq. (2), which de-
scribes an oscillatory behavior between the initial state and
another state described by the commutator of the Hamilto-
nian, with the operator corresponding to the density operator
at the beginning.

In addition to the cases known from numerous POF ap-
plications, there are other situations that can be described
as time evolution in a 2-D subspace. All of them are well
known; they are listed here for the sake of completeness:

– FID of an ensemble of isolated pairs of equal spins (I1,
I2) after a π/2 pulse and homonuclear dipolar interac-
tion within the spin pairs; we observe the transversal
magnetization represented by the operator sum Î1x +

Î2x :

Î1x + Î2x
ĤII t
−→

(
Î1x + Î2x

)
cos

3
2
DIIt

− 2
(
Î1zÎ2y + Î1y Î2z

)
sin

3
2
DIIt. (32)

– FID of an ensemble of isolated pairs of nonequal spins
(I, S) after a π/2 pulse in the I channel and heteronu-
clear dipolar interaction within the spin pairs; we ob-
serve the transversal I magnetization represented by the
operator Îx :

Îx
ĤIS t
−→ Îx cosDISt − 2Îy Ŝz sinDISt. (33)
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– FID of an ensemble of spins I = 1 (e.g., 2H or 14N )
under quadrupolar interaction; we again follow the
transversal magnetization:

Îx
ĤQ t
−→ Îx cosωQt +

(
ÎzÎy + Îy Îz

)
sinωQt. (34)

– Ensemble of pairs of homonuclearly coupled equal
spins (I1, I2) with spin quantum number 1/2, where
initially spin 1 is oriented parallel to B0 and spin 2 is
oriented antiparallel to that. We follow the difference z
magnetization, which is represented by Î1z− Î2z:

Î1z − Î2z
ĤII t
−→

(
Î1z− Î2z

)
cosDIIt

+ 2
(
Î1x Î2y − Î1y Î2x

)
sinDIIt. (35)

– Cross-polarization within pairs of antiparallel nonequal
spins (I , S): both spins are locked in resonant rf
fields with equal nutation frequenciesω1I = ω1S �DIS
(Hartmann–Hahn (HH) condition). The Hamiltonian
and the state operators are given in the doubly rotating
frame following Hartmann and Hahn (1962), where the
z direction is along the rf irradiation. If initially the S
spins are oriented parallel to the locking field and the I
spins are antiparallel to that, the time evolution can be
described by following Ŝz− Îz:

Ŝz − Îz
ĤHH t
−→

(
Ŝz− Îz

)
cosDISt

+ 2
(
Îx Ŝy − Îy Ŝx

)
sinDISt. (36)

The last equation describes the behavior of the differ-
ence between I and S polarizations, not the individual
polarizations themselves. The time evolution of the lat-
ter requires at least a 3-D approach (see below).

The oscillation takes place in the first three examples be-
tween observable transversal magnetization and antiphase
states, in the last two examples between longitudinal dif-
ference magnetization and zero and double-quantum coher-
ences. These examples show an effect of the dimension re-
duction: to obtain a 2-D problem, the operators characteriz-
ing the states of the spin system have a more complicated
structure than in the simple cases above. For example, it
would be possible to consider the right-hand side of Eq. (32)
to be a linear combination of the four states Î1x , Î2x , 2Î1zÎ2y ,
and 2Î1y Î2z if a more illustrative notation is desired.

4.3 Case of reduction to a 3-D subspace

4.3.1 Generic notation

Here we deal with those cases where the procedure described
above reaches the cancellation condition after three commu-

tator equations of the forms[
Ĥ, Â

]
= iaB̂,[

Ĥ, B̂
]
=−iaÂ+ ibĈ,[

Ĥ, Ĉ
]
=−ibB̂,

(37)

where a, b ∈ R. In step 2, we determine the Liouvillian ma-
trix as the transposed coefficient matrix of Eq. (37):

L3D =

 0 −ia 0
ia 0 −ib

0 ib 0

 . (38)

From this we determine the matrix of the superpropagator as
the matrix exponential corresponding to Eq. (24):

U3D = exp(−iL3Dt)

=
1
q2


b2
+ a2 cosqt −aq sinqt ab(1− cosqt)

aq sinqt q2 cosqt −bq sinqt

ab(1− cosqt) bq sinqt a2
+ b2 cosqt

 , (39)

with q2
:= a2

+b2. The orthogonality of U3D, i.e., the valid-
ity of Eq. (25), can be verified immediately.

In step (3), according to Eq. (26), the following propaga-
tion rules are obtained from the columns of U3D:

Â
Ĥ t
−→ Â ·

b2
+ a2 cosqt
q2 + B̂ ·

a

q
sinqt + Ĉ ·

ab

q2 (1− cosqt), (40)

B̂
Ĥ t
−→ B̂ · cosqt + Ĉ ·

b

q
sinqt − Â ·

a

q
sinqt, (41)

Ĉ
Ĥ t
−→ Ĉ ·

a2
+ b2 cosqt
q2 + Â ·

ab

q2 (1− cosqt) − B̂ ·
b

q
sinqt, (42)

This can be seen as an extension of the POF to 3-D problems.
If all the basis operators are Hermitian, one of the eigen-

values of L3D is zero because of detL3D = 0. Therefore, the
solution of the Liouville–von Neumann equation may con-
tain a nonzero constant beyond the oscillating terms. The
propagator-matrix element (U3D)11 contains the time evolu-
tion of the initial state Â. The constant term b2/(a2

+ b2)
shows that the oscillations do not take place around zero as in
the 2-D case, but around another level. Moreover, its ampli-
tude is reduced to a2/(a2

+b2), while the frequency increases
more the smaller the amplitude is (Fig. 1).

There is one important special case: a = b. Here the prop-
agation formulae are simplified to

Â
Ĥ t
−→ Â · cos2 qt

2
+ B̂ ·

1
√

2
sinqt + Ĉ · sin2 qt

2
, (43)

B̂
Ĥ t
−→ B̂ · cosqt + Ĉ ·

1
√

2
sinqt − Â ·

1
√

2
sinqt, (44)

Ĉ
Ĥ t
−→ Ĉ · cos2 qt

2
+ Â · sin2 qt

2
− B̂ ·

1
√

2
sinqt. (45)

This is applied in the description of cross-polarization and
polarization transfer (see the corresponding examples be-
low).
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Figure 1. Time evolution of the prefactor of Â in Eq. (40) for differ-
ent ratios b/a. The particular case b = 0 leads to the 2-D case; there-
fore, the corresponding curve is a pure oscillation around 0. With
increasing b, the average levels of the related oscillations (dashed
horizontal lines) increase, whereas the corresponding amplitudes
decrease.

4.3.2 Group 1 of experiments leading to 3-D subspaces:
magnetization initially aligned parallel to B0

– Off-resonance nutation. This involves rf irradiation with
strength ω1 on an ensemble of isolated spins under res-
onance offset 1ω:

Îz

(
ĤIx+Ĥ1

)
t

−→ Îz ·
1ω2
+ω2

1 cosqt
q2

+ Îy ·
ω1

q
sinqt + Îx ·

ω11ω

q2 (1− cosqt), (46)

with q2
=ω2

1 +1ω
2.

– Nutation and dipolar interaction. The observed spin I ,
which is heteronuclearly coupled to the spin S, is addi-
tionally irradiated with rf of strength ω1I:

Îz

(
ĤIx+ĤIS

)
t

−→ Îz ·
D2
+ω2

1I cosqt
q2

+ Îy ·
ω1I

q
sinqt + 2Îx Ŝz ·

ω1ID

q2 (1− cosqt), (47)

with q2
= ω2

1I+D
2.

(The case of homonuclear interaction under rf irradiation
leads to a 4-D problem; see below.)

The similarity of the two Eqs. (46) and (47) is obvious. For
1ω→ 0 and DIS→0, respectively, they merge into an equa-
tion describing a rotation in the y–z plane. Both equations
reflect the well-known fact that a total inversion of the mag-
netization with a single rectangular pulse is only possible if

the offset or the coupling is zero. In addition, the coupling
and resonance offset change both the pulse duration τπ/2 re-
quired to reach maximum y magnetization and the pulse du-
ration τπ required to reach zero y magnetization to shorter
times:

τπ/2 =
π

2
√
ω2

1I+C
2
; τπ =

π√
ω2

1I+C
2
, (48)

with C =1ω for the off-resonance nutation (Eq. 46) and
C =DIS for the nutation under heteronuclear dipolar inter-
action.

4.3.3 Group 2 of experiments leading to 3-D subspaces:
FID under both rf irradiation and dipolar interaction

– Decoupling experiment: this involves an ensemble of
spin pairs {IS}, heteronuclear dipolar interaction be-
tween I and S, rf irradiation on the S channel with finite
rf power of strength ω1S, and observations of spin I .

Îx

(
ĤSx+ĤIS

)
t

−→ Îx ·
ω2

1S+D
2
IS cosqt
q2

− 2Îy Ŝz ·
DIS

q
sinqt

− 2Îx Ŝz ·
ω1SDIS

q2 (1− cosqt), (49)

with q2
=ω2

1S+D
2
IS. To obtain the corresponding equa-

tion for the J coupling, replace DIS with −πJ . This
equation describes a partial exchange of polarization
between x magnetization and two antiphase states.

The decoupling effect is explained as follows: the ob-
servable part of the density operator – the prefactor of
Îx – contains a constant part ω2

1S/
(
ω2

1S+D
2
IS
)

and an
oscillating part with the amplitude D2

IS/
(
ω2

1S+D
2
IS
)
.

Such oscillations were observed for instance in DIP-
SHIFT experiments (Kurz et al., 2013). Powder-
averaging leads to a rather fast decay of the oscillation,
which gives a broad line (Pake doublet) after Fourier
transformation, while the former gives a δ line. With in-
creasing rf strength ω1S , the prefactor of the broad peak
decreases to zero for infinite rf power, while that of the
δ line increases. The constant component is subject to
relaxation damping and chemical-shift-induced oscilla-
tion on a longer timescale and produces a more or less
narrow line.
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– On-resonance spin locking and heteronuclear dipolar
coupling:

Îx

(
ĤIx+ĤIS

)
t

−→ Îx ·
ω2

1I+D
2
IS cosqt
q2

− 2Îy Ŝz ·
DIS

q
sinqt

+ 2ÎzŜz ·
ω1IDIS

q2 (1− cosqt), (50)

with q2
=ω2

1I+D
2
IS. This oscillation frequency is in-

deed equal to that of the corresponding nutation experi-
ment (Eq. 47).

– On-resonance spin locking and homonuclear dipolar
coupling:

Î1x +Î2x

(
ĤIx+ĤII

)
t

−→

(
Î1x+ Î2x

)
·

4ω2
1I+

9
4D

2
II cosqt

q2

− 2
(
Î1yÎ2z+ Î1zÎ2y

)
·

3DII

2q
sinqt

+ 2
(
Î1zÎ2z− Î1yÎ2y

)
·

3ω1IDII

q2 (1− cosqt), (51)

with q2
→ 4ω2

1I+
9
4D

2
IS.

Comments on the spin-locking examples (Eqs. 50 and 51):

– Analogous to the other 3-D examples, the oscillation
takes place around a level that increases with ω1I.
The latter corresponds to the spin-locked part of the
transversal magnetization. At the same time, the ampli-
tude of the oscillation is reduced.

– These oscillations are observed at the beginning of
the spin-locking experiments (Krushelnitsky et al.,
2018, 2023) and have been described theoretically by
Garroway (1979) and McArthur et al. (1969). Due to
their orientation dependence, they decay quite rapidly
in a powder sample but can be refocused in MAS exper-
iments.

– The propagation Eq. (50) is related to the same Hamil-
tonian as Eq. (47). As a consequence, the oscillation
frequencies are the same. However, the different initial
states lead to different subspaces and thus to different
propagation formulae.

4.3.4 Group 3 of experiments leading to 3-D subspaces:
polarization transfer

The rf field strengths are assumed to be much larger than the
corresponding coupling frequencies. This situation is very
similar to the polarization transfer treated as a 2-D case. The
difference lies in the initial states. Instead of the antiparallel

orientation above, here one spin of the pairs is polarized and
the other is not. The initial states are now only described by
Î1z and Ŝz. Since these operators are not elements of the 2-D
subspaces of the polarization difference examples above, the
motion now takes place in other subspaces, which turn out to
be 3-D.

– Equal spins:

Î1z
ĤII t
−→ Î1z · cos2

(
DIIt

2

)
+

(
Î1xÎ2y+ Î1yÎ2x

)
· sinDIIt + Î2z · sin2

(
DIIt

2

)
. (52)

– Pair of unequal spins I, S under the Hartmann–Hahn
condition in the doubly rotating frame:

Ŝz
ĤHH t
−→ Ŝz · cos2

(
DISt

2

)
+

(
Îx Ŝy + Îy Ŝx

)
· sinDISt + Îz · sin2

(
DISt

2

)
. (53)

Müller et al. (1974) were the first to experimentally
demonstrate this oscillatory exchange of polarization
during cross-polarization.

– Depolarization of I spins in an ensemble of spin triples
{I,S1,S2} under the Hartmann–Hahn condition in the
doubly rotating frame: the coupling frequencies for the
I − S1 and I − S2 interactions are D1 and D2, respec-
tively. The interaction between S1 and S2 is assumed to
be zero. This can be realized experimentally by irradi-
ating the S spins with a resonance offset which is 1/

√
2

times the rf strength, known as the Lee–Goldburg con-
dition (Lee and Goldburg, 1965).

Îz
ĤHH2·t
−→ Îz · cos2


√
D2

1 +D
2
2

2
t


−

D1

(
Îx Ŝ1y − Îy Ŝ1x

)
+D2

(
Îx Ŝ2y − Îy Ŝ2x

)
√
D2

1 +D
2
2

sin
√
D2

1 +D
2
2 t

+

D2
1 Ŝ1z +D

2
2 Ŝ2z − 4D1D2 Îz

(
Ŝ1x Ŝ2x + Ŝ1y Ŝ2y

)
D2

1 +D
2
2

sin2


√
D2

1 +D
2
2

2
t

 (54)

Comments on the third item: the oscillation frequency is
the geometric sum of the individual frequencies. The os-
cillation takes place between the initial state and a mix-
ture of observable and unobservable states.

Note the first two propagation rules of the third group: in
addition to the orthogonality relations (Eq. 25), the linear
sum of the prefactors of the first and third terms is 1. Both
terms represent z magnetization. This condition reflects the
fact that the sum of the z polarizations is constant for cross-
polarization and polarization transfer. This is supported by
the fact that Î1z+ Î2z commutes with ĤII and Îz+ Ŝz com-
mutes with ĤHH. Figure 2 shows the time evolution of the
three prefactors in these propagation rules.
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Figure 2. Time evolution of the three prefactors in the propagation
rules shown in Eqs. (52) and (53).

4.3.5 Group 4 of 3-D examples: cross-polarization, finite
rf power, and possible deviation from the HH
condition

– Considering the polarization difference in the rotating
frame,

Ŝx − Îx

(
ĤIx+ĤSx+ĤIS

)
t

−→

(
Ŝx − Îx

)
·
ω2
1+D

2
IS cosq1t

q2
1

− 2
(
ÎzŜy − Îy Ŝz

)
·
DIS

q1
sinq1t

+ 2
(
ÎzŜz+ Îy Ŝy

)
·
ω1DIS

q2
1

sin2q1t, (55)

with ω1=ω1S−ω1I and q2
1=D

2
IS+ω

2
1, there are the

following comments:

- The CP oscillation frequency is no longer DIS as
calculated for infinite rf power (see above), but√
D2

IS+ (ω1I−ω1S)2, which increases with the dif-
ference in the two rf field strengths.

- Moreover, only the relative partD2
IS/q

2
1 of the total

magnetization participates in the oscillation. That
is, the greater the deviation from the Hartmann–
Hahn condition, the lower the maximum transmit-
ted polarization.

– Consider the polarization sum:

Ŝx + Îx

(
ĤIx+ĤSx+ĤIS

)
t

−→

(
Ŝx + Îx

)
·

4ω2
ø +D

2
IS cosqøt

q2
ø

− 2
(
ÎzŜy + Îy Ŝz

)
·
DIS

qø
sinqøt

+ 2
(
ÎzŜz− Îy Ŝy

)
·

2ωøDIS

q2
ø

sin2qøt, (56)

with ωø= (ω1S+ω1I)/2 and q2
ø =D

2
IS+ 4ω2

ø.

In contrast to the relations obtained for infinite ω1, the sum of
both polarizations oscillates. The amplitude decreases with
increasing rf power. This phenomenon is analogous to what
happens with spin locking and decoupling (see the corre-
sponding examples above).

4.4 Case of reduction to a 4-D subspace

4.4.1 Generic notation

This group of situations can be described by commutator re-
lations of the forms[
Ĥ, Â

]
= iaB̂,[

Ĥ, B̂
]
=−iaÂ+ ibĈ,[

Ĥ, Ĉ
]
=−ibB̂ ∓ iaD̂,[

Ĥ,D̂
]
=±iaĈ, (57)

where Â, B̂, Ĉ, and D̂ are pairwise orthogonal operators with
equal norms. According to step 2, we obtain the Liouvillian
matrix from these rules as a transposed coefficient matrix

L4D =


0 −ia 0 0
ia 0 −ib 0
0 ib 0 ±ia

0 0 ∓ia 0

 (58)

and the superpropagator matrix as

U4D =
1

2W
q2 cosq1 t+q1 cosq2 t −a(sinq1 t+sinq2 t) a(cosq1 t−cosq2 t) ∓q2 sinq1 t±q1 sinq2 t

a(sinq1 t+sinq2 t) q1 cosq1 t+q2 cosq2 t q2 sinq2 t−q1 sinq1 t ±a(cosq2 t−cosq1 t)

a(cosq2 t−cosq1 t) q1 sinq1 t−q2 sinq2 t q1 cosq1 t+q2 cosq2 t ∓a(sinq1 t+sinq2 t)

±q2 sinq1 t∓q1 sinq2 t ±a(cosq2 t−cosq1 t) ±a(sinq1 t+sinq2 t) q2 cosq1 t+q1 cosq2 t

 ,
(59)

with W 2
:= (a2

+b2)/4 and q1;2 :=W ∓b/2. The propaga-
tion rule for the case where Âwas the initial state can be read
from the first column of U4D in Eq. (59):

Â
Ĥ ·t
−→ Â ·

q2 cosq1t + q1 cosq2t

2W

+ B̂ ·
a(sinq1t + sinq2t)

2W

+ Ĉ ·
a(cosq2t − cosq1t)

2W

± D̂ ·
q2 sinq1t − q1 sinq2t

2W
. (60)

In some cases, another form of this propagation formula may
be appropriate for use; this is obtained from Eq. (60) by ap-
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plying some trigonometric rules:

Â
Ĥ ·t
−→ Â ·

(
cos(Wt) cos

bt

2
+

b

2W
sin(Wt) sin

bt

2

)
+ B̂ ·

a

W
sin(Wt)cos

bt

2
(61)

− Ĉ ·
a

W
sin(Wt) sin

bt

2

∓D̂ ·

(
cos(Wt) sin

bt

2
+

b

2W
sin(Wt)cos

bt

2

)
. (62)

4.4.2 Examples

– AB spin system with J coupling and distance of the
two lines 1ν :=1ω/(2π ); the spectrometer frequency
is assumed to be set at the midpoint between the two
resonances:

Î1x + Î2x
2πJ Î1z Î2z t
−→(

Î1x + Î2x

)
·
q2 cosq1t + q1 cosq2t

W

+

(
Î1y − Î2y

)
·
1ω

2
sinq1t + sinq2t

W

+ 2
(
Î1zÎ2x − Î1x Î2z

)
·
1ω

2
cosq1t − cosq2t

W

− 2
(
Î1y Î2z+ Î1zÎ2y

)
·
q1 sinq2t − q2 sinq1t

W
, (63)

where W = 2π
√
J 2+1ν2 and q1;2 =

π
(√
J 2+1ν2∓ J

)
. The cosine terms contain

two frequencies that give four line positions ±q1 and
±q2 symmetrically around zero after complex Fourier
transformation. The intensities are given by the prefac-
tors of the corresponding trigonometric functions. The
lower-frequency oscillation has the larger prefactor,
which reflects the roof effect. See, e.g., Abragam
(1961), Chap. XI, Sect. B. In this book, positions and
intensities are calculated from transition frequencies
and probabilities for the transitions between the levels.
Figure 3 shows the relationship between q1, q2, and the
intensities and positions of the four lines of an AB spin
system.

For the case 1ν = 0, the Hamiltonian commutes with
the initial state, with the consequence that the density
operator remains constant. The Fourier transform of this
is just a resonance at zero frequency.

– rf irradiation onto homonuclearly coupled spins 1/2
which are initially in equilibrium (nutation):

Î1z+ Î2z

(
ĤII+ĤIx

)
t

−→

(
Î1z+ Î2z

)
·

(
cosWt cos

3DII

4
t +

3DII
4W

sinWt sin
3DII

4
t

)
+

(
Î1y + Î2y

)
·
ω1I

W
sinWt cos

3DII

4
t

− 2
(
Î1x Î2z+ Î1zÎ2x

)
·
ω1I

W
sinWt cos

3DII

4
t

−2
(
Î1y Î2x + Î1x Î2y

)
·

(
cosWt sin

3DII

4
t −

3DII

4W
sinWt cos

3DII

4
t

)
, (64)

where W =
√
ω2

1I+
9
16D

2
II.

This propagation formula describes the effect of a
limited-power rf pulse on the equilibrium magnetiza-
tion. The time evolution of the prefactor of Î1y + Î2y is
shown in Fig. 4.

Comments on Eq. (64):

- As the coupling frequency increases, so does the
nutation frequency W . However, this oscillation is
modulated by half of the dipolar frequency (Fig. 4).

- As a consequence, the π and π/2 conditions for
achieving maximum and zero y magnetization are
modified with respect to the coupling-free case.
Similar to Eq. (48), this results in

τπ/2 =
π

2
√
ω2

1I+
9

16D
2
II

,

τπ =
π√

ω2
1I+

9
16D

2
II

. (65)

– Nutation under quadrupolar interaction, spin 1:

Îz

(
ĤQ+ĤIx

)
t

−→

Îz ·

(
cos

Wt

2
cos

ωQt

2
+
ωQt

W
sin
Wt

2
sin
ωQt

2

)
+ Îy ·

2ω1

W
sin
Wt

2
sin
ωQt

2
−

(
Îx Îz+ ÎzÎx

)
·

2ω1

W
sin
Wt

2
sin
ωQt

2
+

(
Îy Îx + Îx Îy

)
·

(
cos

Wt

2
sin
ωQt

2
+
ωQt

W
sin
Wt

2
cos

ωQt

2

)
, (66)

with W =
√

4ω2
1 +ω

2
Q. This is consistent with the find-

ings of Bloom et al. (1980), Barbara et al. (1986), and
Vega and Luz (1987). Again, the result is that nutation
occurs more quickly than ω1I if there is an additional
interaction.
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Figure 3. Connection between the two oscillation frequencies, the
positions, and the intensities of lines in the spectrum of an AB spin
system (example: 1ν = 3J ).

Figure 4. Nutation curves for different ratios of rf field
strength and coupling strength. For homonuclear dipolar coupling,
DII/ω1= (a) 0, (b) 0.15, (c) 0.3, (d) 0.45, (e) 0.6, and (f) 0.75.
For quadrupolar coupling, ωQ/ω1= (a) 0, (b) 0.2, (c) 0.4, (d) 0.6,
(e) 0.8, and (f) 1.

4.5 Example of a 5-D subspace

We consider cross-polarization under a finite rf power, as-
suming that the Hartmann–Hahn condition is satisfied: ω1I =

ω1S = : ω1. Other than in the corresponding 3-D examples
shown above, the initial state consists of a transversally po-
larized S spin and a depolarized I spin, i.e., ρ̂(0)= Ŝx :

Ŝx
(ĤIx+ĤSx+ĤIS)·t
−→

1
2

[(
cosDISt +

4ω2
1 +D

2
IS cosqt
q2

)
· Ŝx

−

(
DIS

q
sinqt + sinDISt

)
· 2ÎzŜy

+ 4
DISω1

q2 (1− cosqt)
(
ÎzŜz− Îy Ŝy

)
+

(
DIS

q
sinqt − sinDISt

)
· 2Îy Ŝz

+

(
−cosDISt +

4ω2
1 +D

2
IS cosqt
q2

)
· Îx

]
. (67)

Equation (67) describes the evolution of the magnetization of
the initially polarized spin. That of the other spin evolves as
given in Eq. (68):

Îx
(ĤIx+ĤSx+ĤIS)·t
−→

1
2

[
Ŝx ·

(
−cosDISt +

4ω2
1 +D

2
IS cosqt
q2

)

−

(
DIS

q
sinqt − sinDISt

)
· 2ÎzŜy

+ 4
DISω1

q2 (1− cosqt)
(
ÎzŜz− Îy Ŝy

)
−

(
DIS

q
sinqt + sinDISt

)
· 2Îy Ŝz

+

(
cosDISt +

4ω2
1 +D

2
IS cosqt
q2

)
· Îx

]
. (68)

4.6 Examples of a 6-D subspace

– In the Hartmann–Hahn cross-polarization experiment
with finite rf power and deviation from the Hartmann–
Hahn condition, the initial state consists of a transver-
sally polarized S spin and a depolarized I spin, i.e.,
ρ̂(0)= Ŝx . Using the variables defined in Sect. 4.3.5,
we obtain

Ŝx
(ĤIx+ĤSx+ĤIS)·t
−→

Ŝx ·
1
2

(
ω2
1+D

2
IS cosq1t

q2
1

+
4ω2

ø +D
2
IS cosqøt

q2
ø

)

− ÎzŜy ·DIS

(
sinq1t
q1

+
sinqøt

qø

)
+2ÎzŜzDIS

[
ω1

2q1
(1− cosq1t)+

ωø

qø
(1− cosqøt)

]
+2Îy ŜyDIS

[
ω1

2q1
(1− cosq1t)−

ωø

qø
(1− cosqøt)

]
+ Îy Ŝz ·DIS

(
sinq1t
q1

−
sinqøt

qø

)
+Îx ·

1
2

(
4ω2

ø +D
2
IS cosqøt

q2
ø

−
ω2
1+D

2
IS cosq1t

q2
1

)
. (69)

Figure 5 shows the buildup curve for the I magne-
tization for the case where it was initially unpolar-
ized and S was polarized. For zero deviation from the
Hartmann–Hahn condition, the curve still looks similar
to the squared sine derived for infinite rf power (Eq. 53).
Small deformations result from the fact that the rf power
is finite. An increasing deviation from the Hartmann–
Hahn condition leads to a strong loss of the polarization-
transfer efficiency, in addition to further deviation from
the ideal curve.

– Hartmann–Hahn cross-polarization of an I spin from
two S spins. The Hamiltonian is the same as in
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Figure 5. Examples of cross-polarization buildup curves for the I
spins in an ensemble of spin pairs I , S corresponding to Eq. (69)
with ωø = 3DIS. The deviation ω1 from the Hartmann–Hahn con-
dition is varied.

Sect. 4.3.4, and we consider the problem in the dou-
bly rotating frame. In this example, however, we want
to follow the time evolution of all three spins individu-
ally which could not be separated in the 3-D example.
The propagation rules for all three spins can be found
in the Supplement. Here is the propagation rule for the
case where the system starts with polarized S spins, i.e.,
Â= Ŝ1z+ Ŝ2z and Ĥ = ĤHH2:

Ŝ1z+ Ŝ2z
ĤHH2·t
−→ Îz · sin2 qt

2

+

(
Ŝ1z+ Ŝ2z

)
·

1+ cos2 qt
2

2

+

(
Ŝ1z− Ŝ2z

)
·
D2

2 −D
2
1

2q2 sin2 qt

2

+

(
Îx Ŝ1y− Îy Ŝ1x

)D1

q
sinqt

+

(
Îx Ŝ2y− Îy Ŝ2x

)D2

q
sinqt

− Îz

(
Ŝ1xŜ2x− Ŝ1yŜ2y

)
· 4
D1D2

q2 sin2 qt

2
, (70)

with q =
√
D2

1 +D
2
2 . This propagation rule describes

the oscillatory polarization exchange between the spin
polarizations and three unobservable states on the one
hand and the oscillatory polarization transfer between
the spins on the other hand, as may happen, for exam-
ple, in 13CH2 or 15NH2 groups.

5 Outlook: time-dependent Hamiltonians and
Liouvillians

In order to obtain the propagator matrices and the propaga-
tion formulae of the respective Liouvillians, it was assumed
in the above sections that the interactions and thus also the
Hamiltonian and Liouvillian are time-invariant. However, the
method can be extended to situations where the interaction
constants vary with time, fluctuating due to thermal mo-
tion or periodically due to sample spinning. The commutator
equations are also valid; i.e., steps (1) and (2) of the given
procedure can be performed to obtain the relevant subspace
and the Liouvillian matrix associated with that subspace. In
other words, the Liouvillian matrices obtained for the above
examples (see the Supplement) can also be used in the time-
dependent situations. The Liouville–von Neumann equation
now belongs to a system of linear differential equations but
with time-dependent coefficients. There is no general scheme
for their integration. The propagator matrix is no longer the
matrix exponential of −iLt .

However, in some cases solutions are possible in the fol-
lowing ways: (i) use of the time-averaged Liouvillian for an
exact solution when L depends linearly on a single time-
dependent parameter and (ii) use of the Shirley method,
based on the Floquet theorem, also for an analytical solution.

The first way can be justified as follows: for the Liouville–
von Neumann equation in matrix form, one can try to find an
effective Liouvillian matrix Leff(t), which is defined as that
matrix which is constant in the interval (0, t) and which has
the same effect as the actual L, i.e., U(t)= exp(−iLefft) in
matrix notation. This can be done using the Magnus expan-
sion (Magnus, 1954):

Leff =

t∫
0

L(t1) dt1+
1
2

t∫
0

[L(t1),L(t2)]dt1dt2+O(L3). (71)

Although the convergence radius of this series is rather
small (Maricq, 1982), it can nevertheless be used to check
whether the effective Liouvillian can be replaced with the
time-averaged Liouvillian (first term on the right-hand side
of Eq. 71). If the Liouvillian commutes at all times with it-
self, all higher-order terms vanish and only the zeroth-order
term survives. In this case, the effective Liouvillian is equal
to the time-averaged Liouvillian. This happens in addition to
the case of a constant Liouvillian (see above) if the Liouvil-
lian matrix can be written as a product of a scalar function
λ(t) with a constant matrix:

L(t)= λ(t) A → Leff = A
t∫

0

λ(t1) dt1. (72)

https://doi.org/10.5194/mr-6-77-2025 Magn. Reson., 6, 77–92, 2025



90 G. Hempel: Analytical expressions for time evolution

In this case, the propagator matrix is exactly the matrix ex-
ponential

U(t)= exp

−iA t∫
0

λ(t1) dt1

 . (73)

This concerns all 2-D cases. Equation (31) becomes

L2D = λ(t)
(

0 −i

i 0

)
,

U2D = exp

−i t∫
0

L2D(t1) dt1


=

(
cos

∫ t
0λ(t1) dt1 −sin

∫ t
0λ(t1) dt1

sin
∫ t

0λ(t1) dt1 cos
∫ t

0λ(t1) dt1

)
.

(74)

The transformation to propagation formulae gives

Â
Ĥ t
−→ Âcos

t∫
0
λ(t1) dt1+ B̂ sin

t∫
0
λ(t1) dt1,

B̂
Ĥ t
−→ B̂ cos

t∫
0
λ(t1) dt1− Âsin

t∫
0
λ(t1) dt1.

(75)

Equation (75) can be regarded as a rigorous extension of
the POF to time-dependent systems, such as those caused by
thermal motion or sample spinning. For higher-dimensional
cases, Eq. (72) can only be satisfied if the two parameters
a and b are equal. While for the 4-D, 5-D, and 6-D cases
this would mean very special situations, the 3-D case in-
cludes with a = b the important case of cross-polarization.
Then Eq. (38) changes to

L3D = a(t)

0 −i 0
i 0 −i

0 i 0

 (76)

if b is replaced with a. In the subsequent propagation for-
mulae, we have to substitute qt with

∫ t
0q(t1) dt1, with q(t)=

a(t)
√

2. This means that we obtain an exact solution if we
replace the arguments of the trigonometric functions with in-
tegrals in the following examples from above:

– For Eqs. (32), (35), and (52), replace DIIt with∫ t
0DII(t1) dt1.

– For Eqs. (33), (36), and (53), replace DISt with∫ t
0DIS(t1) dt1.

– For Eq. (34), replace ωQt with
∫ t

0ωQ(t1) dt1.

However, there is no general recipe for all the other cases. In
some of the cases, the Shirley method using the Floquet theo-
rem, which is applied, e.g., for numerical calculations of spin
systems under MAS, may also be successful in obtaining an-
alytical expressions. This will be the subject of a forthcoming
paper.

6 Conclusions

Repeated application of the commutator of the Hamiltonian
with the initial density operator gives a system of opera-
tor equations, the coefficient matrix of which can be used
to establish a propagation rule for the spin system. This
has been demonstrated in this paper with some examples.
A more detailed analysis shows that the commutator rela-
tions define subspaces which are both Liouvillian-invariant
and superpropagator-invariant. Therefore, the density opera-
tor propagates in such a subspace without leaving it. If its di-
mension is small enough, analytical expressions for the prop-
agation law can be obtained.

The relevant subspace for a given problem is determined
by the Hamiltonian and by the initial state. If the operator
characterizing the initial state changes, then the new sub-
space is the same as the previous one if and only if the new
initial state operator is an element of the previous subspace.
Otherwise, the two subspaces have no intersection.

The set of problems can be divided into classes with re-
spect to the dimension of the subspaces. Problems of the 2-D
class can be treated easily by propagation formulae similar
to those of the well-known product–operator formalism. The
propagation formulae for the 3-D and 4-D classes are given in
this paper, and an example is given for the 5-D and 6-D cases.
If necessary, the method introduced and explained here can
also be applied to cases with higher dimensions. The applica-
tion examples demonstrate the same mathematical structure
as some physically different problems.

In addition, this treatment can be applied to pulse se-
quences in a manner similar to the POF. In some cases, an
algebraic language program may be helpful. Even numerical
computations can use this framework by starting the numeri-
cal computations on the basis of existing analytical relations.
In the N -dimensional wave-function space, the Liouville–
von Neumann equation corresponds to a system of N2 dif-
ferential equations, which is significantly larger than that ob-
tained by the dimension reduction with the method presented
here. It may be advantageous to first apply this method on
an analytical basis before starting the numerical implemen-
tation.

If the strength of any of the considered interactions de-
pends on time, the first two steps of this method can
be applied likewise. The third step (matrix exponentializa-
tion), however, has to be modified because there is no gen-
eral recipe for solving a system of differential equations
with time-dependent coefficients. In some cases, the time-
averaged Liouvillian is suitable for getting an exact solution
to the problem. Even for numerical calculations it can be
helpful to start with systems of differential equations con-
taining a reduced number of equations.
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Appendix A: Norms of spin operators

Consider a system of N spins 1/2. As proven in the Sup-
plement (Sect. S1.3), the norm of a product of the Cartesian
components of n spins from this N -spin system (one oper-
ator for each spin) amounts to 2(N/2)−n. Furthermore, for
the sum of two orthogonal operators Â and B̂, ‖ Â+ B̂ ‖=√
‖ Â‖2+ ‖ B̂‖2. From this, we can derive the following

rules (α, β, γ , and δ ∈ {x,y,z}):

– For single spins I = 1
2 :

‖ Îα ‖=
1
√

2
.

– For spin pairs I = 1
2 , S = 1

2 :
‖ Îα ‖=‖ Ŝα ‖= 1, ‖ ÎαŜβ ‖= 1

2 ,‖ ÎαŜβ ± Îγ Ŝδ ‖=
1
√

2
.

– For spin triples I = 1
2 , J = 1

2 , S = 1
2 :

‖ Îα ‖=‖ Ĵα ‖=‖ Ŝα ‖=
√

2, ‖ Îα Ŝβ ‖= 1
√

2
,

‖ Îα Ŝβ ± Îγ Ŝδ ‖= 1, ‖ Îα Ĵβ Ŝγ ‖= 1
2
√

2
.

Similarly, for a single spin, I = 1 can be obtained:

‖ Îα ‖=
√

2, ‖ Îα Îβ + Îβ Îα ‖=
√

2.

Appendix B: Hamiltonians used in the main part and
in the Supplement

– Interaction of the I and S spins with the rf field, i.e.,
strengths ω1I and ω1S, respectively, assumed to be con-
stant and parallel to the x axis in the rotating frame:

ĤIx =−ω1I Îx; ĤSx =−ω1S Ŝx . (B1)

Unless indicated otherwise, the irradiation occurs at the
Larmor frequencies of the respective spins. The rf phase
is always such that B1 is parallel to the x axis of the ro-
tating frame, but the calculations can easily be modified
to include other directions of the rf field.

– Homonuclear dipolar interaction between spin I 1 and
spin I 2 (secular part):

ĤII =DII

(
Î 1Î 2− 3Î1zÎ2z

)
, (B2)

where DII =
(
µ0γ

2
I }/

(
4πr3

II
))(

3cos2θII− 1
)
, rII is the

length of the vector connecting both spins, θII is the an-
gle of this vector with the external magnetic field, γI
is the gyromagnetic ratio of the I spins, and µ0 is the
permeability of the vacuum.

– Heteronuclear dipolar interaction between spin I and
spin S (secular part):

ĤIS =−DIS · 2ÎzŜz, (B3)

where DIS =
µ0
4π

}γI γS
r3
IS

(
3cos2θIS− 1

)
, rIS is the length

of the vector connecting both spins, θIS is the angle of
this vector with the external magnetic field, and γS is
the gyromagnetic ratio of the S spins. The case of J cou-
pling between nonequal spins is mathematically equiva-
lent to this; the corresponding formulae can be obtained
by replacing DIS with −πJ .

– Matched Hartmann–Hahn cross-polarization between
spin I and spin S in the doubly rotating frame (Hart-
mann and Hahn, 1962),

ĤHH =−DIS ·
(
Îx Ŝx + Îy Ŝy

)
, (B4)

assuming DIS� ω1I and ω1S so that rapidly oscillating
terms can be neglected.

– First-order interaction of the nuclear quadrupole mo-
ment with the electric field gradient (secular part):

ĤQ = ωQ ·

(
Î 2
z −

I (I + 1)
3

)
, (B5)

where ωQ is the quadrupolar frequency.

– Resonance offset 1ω in the rotating frame:

Ĥ1 =−1ω Îz. (B6)

The coupling frequencies are assumed to be unique, i.e., with
no powder-averaging unless otherwise stated.
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