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1 Details of the Model for ESEEM of Bi:Si

In this Section, we give the details of the Si:Bi Hamiltonian, as a supplementary note to Section III B of the main text.

The Hamiltonian of the bismuth donor spins and the 29Si nuclear spins is

H =HBi +HSi +Hhf , (S1) 20

where HBi is the Hamiltonian for the Bismuth electron and nuclear spin, HSi is the Zeeman energy and the dipole-dipole
interaction of the 29Si nuclear spins, and Hhf is the hyperfine interaction between the Bismuth electron spin and the 29Si
nuclear spins.

The Hamiltonian of the Bi center spins is (Ma et al., 2015)

HBi = geβeS0,z +ABiS0 · I0, (S2) 25

where the notations are the same as in main text. The electron gyromagnetic ratio geβe = 1.76× 1011 S−1T−1 and the Fermi
contact hyperfine coupling ABi/2π = 1.4754GHz. Note that the Zeeman energy of the nuclear spin is neglected (as explained
in the main text).

The internal Hamiltonian of the 29Si nuclear spin bath is

HSi = ωI
∑
j

Ij,z +
∑
i<j

Ii ·
µ0g

2
nβ

2
n

4πr3
ij

(
1− 3rijrij

r2
ij

)
· Ij ,

where ωI = gnβnB0 denotes the Larmor frequency of the 29Si nuclear spin with the gyromagnetic ratio gnβn =−5.319×
107s−1T−1, the spin operator Ij denotes the nuclear spin at position rj , and rij = ri− rj . 30
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The hyperfine interaction between the electron spin and the 29Si nuclear spins is

Hhf =
∑
j

S0 · Āj · Ij ≡
∑
j

Hhf,j , (S3)

where the hyperfine coupling tensor includes both the Fermi contact term Acf,j (a scalar) and the dipolar interaction Ādd,j ,
i.e., Āj =Acf,j1+ Ādd,j . The dipolar hyperfine coupling tensor is

Ādd,j =
µ0geβegnβn

4πr3
j

(
1− 3rjrj

r2
j

)
≡Add,j

(
1− 3rjrj

r2
j

)
,

decaying with a cubic power of the distance. The Fermi contact interaction is proportional to the electron density |ψ(rj)|2 of
the Bismuth donor at the nuclear spin position rj (Feher, 1959; Kohn, 1957; de Sousa and Sarma, 2003),

Acf,j =
2

3
µ0geβegnβn|ψ(rj)|2.

The electron density

|ψ(rj)|2 =
2

3
η|f(rj)|2 [cos(k0xj) + cos(k0yj) + cos(k0zj)]

2
,

where k0 = 0.85 2π
aSi

(with aSi = 0.543nm) is the wavenumber of the conduction band minimum, η ≈ 180 is the charge density5

on each site, and the envelope function is taken as the Kohn-Luttinger wave function form (de Sousa and Sarma, 2003)

fj(r) =
1√

π(sa)2(sb)
exp

(
−

√
z2

(sb)2
+
x2 + y2

(sa)2

)
,

with a= 2.51nm and b= 1.44nm being the characteristic lengths for hydrogenic impurities in Si and the scaling factor
s= 0.64 for bismuth (Hale and Mieher, 1969). The hyperfine coupling strength |Āj | is mostly << MHz.

2 Applying the fictitious spin-1/2 model to Bi:Si coupled to 29Si spins10

In this section, we provide detailed justifications for applying the fictitious model in Section II D of main text to Bi:Si coupled
to 29Si spins.

The eigenstates |±,m〉 of the Bismuth Hamiltonian HBi in Eq. (S2) are

|±,m〉= cos
θm
2
| ± 1

2
,m∓ 1

2
〉± sin

θm
2
| ∓ 1

2
,m± 1

2
〉, (S4)15

with tanθm =
√

25−m2

m+(1+δ)geβeB0/ABi
, and the corresponding eigenenergies are

E±m =− ABi

4
± ABi

2

√(
m+

geβeB0

ABi

)2

+ 25−m2. (S5)

For the experimental condition |geβeB0| � |ABi|, the eigenenergies in Eq. (S5) can be approximated as

E±m ≈−
ABi

2
± 5ABi

2
± mgeβeB0

10
,

and the level splitting

E±m−E±m−1 ≈±
geβeB0

10
.

For a field about 1 Gauss (a typical value in our experiments), (2π)−1geβeB0/10∼ 300 kHz.
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The hyperfine coupling to the 29Si nuclear spins can be written in the basis of the eigenstates of HBi. The non-vanishing
matrix elements of the electron spin operators are

〈±,m |S0,z|±,m〉=±1

2
cosθm ≡±

1

2
αm, (S6a)

〈+,m |S0,x|+,m− 1〉= +
1

2
cos

θm
2

sin
θm−1

2
, (S6b)

〈−,m |S0,x|−,m− 1〉=−1

2
sin

θm
2

cos
θm−1

2
. (S6c) 5

The diagonal matrix elements cause the frequency shift due to the coupling to the nuclear spins,which is ∼ |Āj |/2, and the
off-diagonal elements cause the coupling between neighboring energy levels∼ |Āj |/4. For a nuclear spin with relatively weak
hyperfine coupling, namely,

|Āj |/2� |geβeB0|/10, (S7)

the hyperfine-induced mixing between different energy levels of the Bismuth center can be neglected. Then the interaction 10

Hamiltonian becomes

Hhf ≈
∑
η=±

∑
m

ηαm|η,m〉〈η,m| ⊗
∑
j

ez · Āj · Ij , (S8)

where

αm =
geβeB0 +mABi√

A2
Bi(25−m2) + (geβeB0 +mABi)2

, (S9)

as defined in Eq. (S6a). This Hamiltonian is diagonal in the Bismuth center eigenstates, corresponding to the pure dephasing 15

model (or secular approximation).
As will be demonstrated in Sec. 5, the contribution of a relatively strongly coupled 29Si nuclear spin (|Āj |/2 & |geβeB0|/10)

to the ESEEM signal in our experiments is negligible. Thus the pure dephasing model in Eq. (S8) is justified.
The microwave pulses in general can induce many transitions in the Bi center as along as the transitions are within the

bandwidth of the microwave cavity (164 kHz for the high-Q resonator). Since the interference between the transitions whose 20

frequencies are not near-degenerate would cause oscillation much faster than the time resolution of the experiments and the
transitions with near-degenerate frequencies do not share an eigenstate of the Bi center (and therefore has no interference), we
can reduce the Bi center to independent two-level systems (“fictitious spin-1/2”) coupled to the Si spin bath.

The “fictitious spin-1/2” for the transition |+,m〉 ↔ |−,m− 1〉 has the Hamiltonian

Hm ≡ |+,m〉〈+,m| ⊗H+
m + |−,m− 1〉〈−,m− 1| ⊗H−m, (S10) 25

with

H+
m = E+

m +
1

2
αmhz +HSi, (S11a)

H−m = E−m−1−
1

2
αm−1hz +HSi, (S11b)

where the Overhauser field along the z direction is

hz ≡
∑
j

ez · Āj · Ij .

The transition frequency or effective Larmor frequency of the fictitious spin-1/2

ωS = E+
m−E−m−1 ≈ 5ABi +

(2m− 1)geβeB0

10
.

Using a fictitious spin-1/2 to represent the transition |−,m− 1〉 ↔ |+,m〉 and define δm ≡ (αm−αm−1)/2 and ᾱm ≡
(αm +αm−1)/2, we obtain the Hamiltonian 30

Hm = ωSSz + ᾱmSzhz +

(
δm
2
hz +HSi

)
, (S12)
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which becomes Eq. 2 of main text if the bath has only one nuclear spin.

For a single nuclear spin (denoted as spin-j), the conditional Hamiltonian is

H±m = (ωI +
δm
2
Aj,zz)Ij,z +

δm
2
Aj,zxIj,x±

ᾱm
2

(Aj,zzIj,z +Aj,zxIj,x)≡ H̄m±Vm. (S13)

Note that we have dropped the ωS-term (by working in the rotating reference frame) and for convenience chosen the coordinate5

system such that Aj,zy = 0. In the basis of the eigenstates of H̄m, the effective Hamiltonian can be written as

H±m = ω̃IIj,z ±
1

2
(AIj,z +BIj,x), (S14)

where

ω̃I =
√

(ωI + δmAj,zz/2)2 + (δmAj,zx/2)2,

A= ᾱm(Aj,zz cosθ+Aj,zx sinθ),10

B = ᾱm(Aj,zx cosθ−Aj,zz sinθ),

with θ = arcsin(δmAj,zx/2ω̃I).

3 Anlytical solutions of ESEEM envelopes for the fictitious spin-1/2 model

In this Section, we provide details on the analytical solutions for the 2p-, 3p- and 5p-ESEEM (Kasumaj and Stoll, 2008), as a
supplementary note on how the curves in Figs. 9-11 of Sec. VB in main text are calculated.15

3.1 Formula

In the n-pulse ESEEM experiment, a sequence of n pulses Rj ∈ {Rxπ/2,R
y
π/2,R

x
π,R

y
π} are applied at tj (j = 1,2, . . .n), and

then the signal Vnp is measured at the echo time t. In this Section, we take the pulses as ideal, i.e.,

R
x/y
θ = exp

(
−iθSx/y

)
.

With the pulse sequences described in Sec. VB of main text, the evolution for the 2p-, 3p-, and 5p-ESEEM is in turn

U2p = e−iHmτRyπe
−iHmτRxπ/2, (S15a)

U3p = e−iHmτRxπ/2e
−iHmTRxπ/2e

−iHmτRxπ/2, (S15b)

U5p = e−iHmτ2Ryπe
−iHmτ2Ryπ/2e

−iHmTRyπ/2e
−iHmτ1Rxπ/2e

−iHmτ1Rxπ/2. (S15c)20

We assume the Bi center is initially in the state ρS = |−,m−1〉〈−,m−1| and the nuclear spin bath is in the maximally mixed
state ρB. The spin coherence at the echo time is

V2p/3p/5p = 2Tr
[
S0,xU2p/3p/5p (ρS ⊗ ρB)U†2p/3p/5p

]
. (S16)

3.2 Exact formula for a single nuclear spin

For 2p-ESEEM, the modulation amplitude due to the j-th 29Si spin is25

V2p,j(τ) = 1− kj
4

[2− 2cos(ω↑τ)− 2cos(ω↓τ) + cos(ω↑τ −ω↓τ) + cos(ω↑τ +ω↓τ)] , (S17)

where kj =
(
Bω̃I

ω↑ω↓

)2

, and (the same as Eq. 6 of main text)

ω↑ ≡
√

(ω̃I +
A

2
)2 +

B2

4
, ω↓ ≡

√
(ω̃I −

A

2
)2 +

B2

4
.
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For the 3p-ESEEM, the modulation amplitude is given by

V3p,j(τ,T ) =
1

2

[
V ↑3p,j(τ,T ) +V ↓3p,j(τ,T )

]
= 1−

{
kj
4

[1− cos(ω↓τ)] [1− cos(ω↑T +ω↑τ)] + [ω↑↔ ω↓]

}
. (S18) 5

where

V ↑3p,j(τ,T ) = 1− kj
2

[1− cos(ω↓τ)] [1− cos(ω↑T +ω↑τ)]

and V ↓3p,j(τ,T ) is obtained by exchanging ↑ and ↓.

For the 5p-ESEEM, the modulation amplitude is

V5p,j(τ1, τ2,T ) =
1

4

(
V ↑,+5p,j −V

↑,−
5p,j +V ↓,+5p,j −V

↓,−
5p,j

)
, (S19)

where 10

V ↑,±5p,j =V2p,j (τ1)V2p,j (τ2)± b5p,j

[
4k2
jC
↑
j − 2k2

j cosφ↓,− cos(Tω↑+φ↑,+)

−4kj cos4 ηj cos(Tω↑+φ↑,+ +φ↓,+)− 4kj sin4 ηj cos(Tω↑+φ↑,+−φ↓,+)
]
, (S20)

and V ↓,±5p,j is obtained from the expression above by exchanging ↑ and ↓, with

φ↑/↓,± = (τ1± τ2)ω↑/↓/2,

cos2 ηj =

[
ω̃2
I −

1

4
(ω↑−ω↓)2

]
/(ω↑ω↓) , 15

sin2 ηj =

[
1

4
(ω↑+ω↓)

2− ω̃2
I

]
/(ω↑ω↓) ,

C↑j = cos
(τ1ω↑

2

)
cos
(τ2ω↑

2

)
sin
(τ1ω↓

2

)
sin
(τ2ω↓

2

)
,

b5p,j = sin
(τ1ω↑

2

)
sin
(τ2ω↑

2

)
sin
(τ1ω↓

2

)
sin
(τ2ω↓

2

)
.

3.3 Contributions of multiple nuclear spins

For multiple nuclear spins, if they are taken as independent (with interactions between the nuclear spins neglected), the ESEEM 20

signal is obtained by applying the product rule for each pathway followed by average over different pathways ((Kasumaj and
Stoll, 2008)). For the 2p/3p/5p-ESEEM signals are in turn

V2p =
∏
j

V2p,j , (S21a)

V3p =
1

2

∏
j

V ↑3p,j +
∏
j

V ↓3p,j

 , (S21b)

V5p =
1

4

∏
j

V ↑,+5p,j −
∏
j

V ↑,−5p,j +
∏
j

V ↓,+5p,j −
∏
j

V ↓,−5p,j

 . (S21c) 25

Above we have considered the ESEEM signal due to the transition |−,m−1〉 ↔ |+,m〉. The transitions |−,m〉 ↔ |+,m−1〉
can be considered similarly. We use V (m,±)

2p/3p/5p to denote the contribution to the 2p/3p/5p-ESEEM signal by the transition
|−,m〉 ↔ |+,m± 1〉 [with a superscript index (m,±) attached to the signals in Eq. (S21)].
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Figure S1. Inhomogeneous coupling strength. (a) The normalized density of spins ρ(g) versus the spin-photon coupling strength for the
transition |−,4〉 → |+,5〉. (b) Inversion recovery of spin polarization measured (in symbols) at a repetition rate of 0.2 Hz. The fit yields a
T1 ≈ 120 ms. The simulation incorporating 18 transitions and ρ(g) is consistent with the data for only a suitable pulse amplitude.

3.4 Weighting factors of different Bi spin transitions

To take into account the contributions of all possible transitions, we assume the Bi center spin is initially randomly populated
in the lower manifold of the eigenstates, i.e.,

ρBi =

+4∑
m=−4

Pm|−,m〉〈−,m|,

with the probabilities
∑
mPm = 1. The coherence of different transitions is summed up as

V2p/3p/5p =
∑
m,±

Wm,±V
(m,±)
2p/3p/5p, (S22)

with the weighting factorWm,± accounting for the initial probabilities Pm and the different amplitudes for different transitions
given the microwave pulse spectra and the distribution of the hyperfine coupling ABi due to the strain in the Si layer.5

To determine the relative transition weights, we resort to a complete model of the experiment, based on the physical pa-
rameters, namely the control pulse amplitude and temporal profile, the Rabi frequencies distribution, and the repetition time
Γ−1

rep. We use a simulation code that was purposely written. For each class of fictitious spin-1/2’s with given Larmor frequency
ωS and Rabi frequency ΩR, the program integrates the Bloch equations to compute the time dependence of the spin density
matrix ρ(t). The initial conditions take into account the Rabi-frequency-dependent spin relaxation T1 because of the Purcell10

effect, by taking ρ(0) = |x〉〈x| (the spin polarized along the x-axis). The simulation results are furthermore averaged over the
strain-induced distribution of the 209Bi hyperfine coupling σA(ABi), which results in the distribution of the transition frequency
σS(ωS), and over the distribution of the Rabi frequency σR(ΩR). The Bi hyperfine coupling distribution σA(ABi) is taken to be
flat since the inhomogeneous broadening (∼50 MHz) is two orders of magnitude larger than the cavity bandwidth (∼160 kHz).
The Rabi frequency distribution σR(ΩR) is computed using finite-element modelling of the AC field spatial profile generated15

by running a constant current through the resonator inductance wire. The AC field map and the resulting distribution σR(ΩR)
are shown in Fig. S1. To calibrate the AC pulse amplitude, we rely on the fact that due to the AC field inhomogeneity and to
the Purcell spin relaxation, the measured T1 in an inversion recovery sequence is in fact amplitude-dependent. We then adjust
the pulse amplitude in the simulation so that the simulated inversion recovery sequence reproduces the same relaxation curve
as measured. The weighting factors thus derived from simulating the experimental data are given in Table. S1.20
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Table S1. The relative transition weights Wm,± from the simulation.

m 4 3 2 1 0 -1 -2 -3 -4
|−,m〉 ↔ |+,m+1〉 0.1075 0.0977 0.0909 0.0766 0.0586 0.0326 0.0204 0.0086 0.007
|−,m〉 ↔ |+,m− 1〉 0.007 0.0086 0.0204 0.0326 0.0586 0.0766 0.0909 0.0977 0.1075

3.5 Comparison with experiments

For comparison with experimental data, the curves in Figs. 9-11 of main text are obtained by first calculating V2p/3p/5p using
Eq. (S22) for each nuclear spin configuration (with random positions of the 29Si nuclei) and then averaging over different
nuclear spin spatial configurations.

4 Justification of independent bath spin approximation 5

In the calculations above, the nuclear spins in the bath are taken as independent, i.e., the interactions between the 29Si spins are
neglected. In this Section, we will provide a justification of the approximation by calculating the Bi spin coherence with the
cluster correlation expansion (CCE) (Yang and Liu, 2008, 2009; Zhao et al., 2012). The leading order of expansion (CCE-1)
corresponds to the independent bath spin approximation used in the previous Section. The numerical calculation shows that
the CCE-1 is a good approximation for the timescale relevant to the experimental studies of the ESEEM. 10

We check the contributions of various orders of the nuclear spin correlations to the ESEEM signals using the fictitious spin-
1/2 model in Eq. (S10) and the CCE method (Yang and Liu, 2008, 2009; Zhao et al., 2012). The interactions between the 29Si
nuclear spins are included in HSi. The CCE method allows us to consider in a recursive way the dynamics of the nuclear spin
bath due to correlations of different sizes (CCE-n for n-spin irreducible correlation).

Considering the 2p-ESEEM for example, the spin coherence is expanded as 15

V2p =
∏
C

Ṽ C2p, (S23)

with Ṽ C2p defined as the irreduible correlation of cluster C excluding the irreducible correlations of all sub-clusters, i.e.,

Ṽ C2p ≡
V C2p∏

C′⊂C Ṽ
C′
2p

, (S24)

where V C2p is the center spin coherence under coupling to the cluster C in the spin bath (the bath spins outside the cluster
dropped). 20

As shown in Fig. S2, in the timescale relevant to the ESEEM signals in the experiments, the echo is affected mainly by the
single-spin dynamics (CCE-1) and the contributions from pair dynamics (CCE-2) and higher order correlations in the bath are
negligible. The decoherence due to CCE-2 and CCE-3 occurs at timescales of ∼ 100 ms [Fig. S2(a)], which are much longer
than the experimental time regime (∼ 1 ms).

Thus it is well justified to take the nuclear spins in the bath as independent of each other. 25

5 Effect of a strongly coupled Si-29 nuclear spin

In this Section, we show that the strongly coupled 29Si nuclear spins have negligible contributions to the ESEEM signals.
Therefore the calculated ESEEM signals presented in Figs. 9-11 in the main text are those from 29Si with hyperfine couplings
< 20 kHz.

In the calculations, we have assumed the pure dephasing model (the secular approximation) in which the transitions between 30

different eigenstates of the Bi center spin due to the hyperfine coupling to the 29 nuclear spins are taken as negligible. This
approximation is well justified if the hyperfine coupling is much less than the energy splitting between different Bi center spin
states [Eq. (S7)]. When the coupling is strong the secular and the CCE-1 approximation become invalid. Using simulations that
take into account exactly the effect of the strongly coupled nuclear spin, we show that a strongly coupled spin has negligible
effects on the ESEEM signal in the timescale considered in the experiments. A strongly coupled spin contributes only fast 35

oscillations in the signal, which would vanish if we take into account the inhomogeneous broadening effects. In addition, the
influence of the strongly coupled spins on the distant weakly coupled spins are also negligible.
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For a 29Si with hyperfine coupling & 200 kHz, the state mixing due to the hyperfine coupling enables many transitions and
the interference between these transitions will cause rather complicated and fast oscillations in the spin echo signal. This is
seen in Figs. S7. However, in such a strong coupling case, the ESEEM frequencies depend sensitively on the local Overhauser
field on the Bi electron spin. Since the Overhauser field has a large inhomogeneous broadening (∼ 0.5 MHz), the ensemble
average over the nuclear spin state thermal distribution leads to a rapid decay of the signal (decay in < 1 µs). We estimate that5

about 10% Bi centers have one or more 29Si with coupling > 200 kHz in the proximity, which would contribute to a fast initial
decay of the total echo signal in < 1 µs by about 10%. In the experiments, the echo signal is measured at times much greater
than µs (the first time point is ∼ 1ms). As shown in Figs. S5 and S7, the ESEEM amplitude of a nuclear spin with coupling
strength between 20 kHz and 200 kHz is much less than 1%. And for nuclear spins with the relatively weak hyperfine coupling
(2π)−1|Āj |< 100 kHz, the pure dephasing model produces results with negligible errors of the modulation frequencies from10

the exact solution (Figs. S5-S6). Furthermore, the systematic numerical studies (Fig. S9) show that a nearby Si nuclear spin
with coupling < 200 kHz has negligible effects on the ESEEM due to other distant nuclear spins.

Considering these different contributions of Si nuclear spins of different hyperfine couplings, it is justified to assume the
pure-dephasing model and consider only the contributions of those Si nuclear spins that have couplings weaker than a certain
cut-off (chosen as |Āj | ≤ 20 kHz).15

5.1 CCE-1 for the multi-level central system

Strong hyperfine interaction would cause the mixing between the Bismuth center eigenstates. To consider the effect of a
strongly coupled 29Si nuclear spin, we take the electron spin S0, the 209Bi nuclear spin I0, and the j0 “strongly coupled” 29Si
nuclear spins (denoted as Ij for 1≤ j ≤ j0) as a hybrid center spin system. The hybrid center system can be diagonalized,
with 2×10×2j0 eigenstates, separated into two manifold {|±,m〉}. The corresponding eigenenergies of the hybrid center spin20

system is denoted as E±m. See Fig. S3 for an example of the eigenenergies of a hybrid spin system with one strongly coupled
29Si nuclear spin.

The Hamiltonian of the hybrid center system plus the rest N − j0 weakly coupled 29Si nuclear spins can be written as

H =
∑
η=±

∑
m

Eηm|η,m〉〈η,m|+
N∑

j=j0+1

(
S0 · Āj · Ij + gnβnB0 · Ij

)
, (S25)

where the dipole-dipole interaction between the nuclear spins in the bath is neglected because it is weak and would have25

effects only on higher order CCE. By assumption, the hyperfine couplings |Āj | (for j > j0) are much smaller than the energy
differences among the eigenstates of the central system (otherwise they would have been absorbed into the hybrid central
system). Therefore, we have the pure dephasing model with the bath Hamiltonians conditioned on the states of the central
system (for the conciseness, we label (η,m) as k)

H(k) ≡H ′Si + 〈k|Hhf |k〉=H ′Si + ηαm
∑
j

Aj · Ij , (S26)30

where the Si nuclear spin bath Hamiltonian H ′Si excludes the strongly coupled 29Si nuclear spins Ij (for j ≤ j0) and neglects
the dipolar interactions between the Si nuclear spins.

In the echo experiment, a sequence of n pulses

Rj ∈ {Rxπ/2,R
x
π,R

y
π/2,R

y
π}

are applied at tj (j = 1,2, . . .n), and then the signal V3p is measured at time t. The π/2 and π control pulses are taken as
R
x/y
π/2 ≡ e

−i(ΩRS0,x/y+HBi)τp/2 and Rx/yπ = e−i(2ΩRS0,x/y+HBi)τp/2, where τp is the duration of a π pulse and ΩR the Rabi
frequency. Note that the pulse durations are assumed much shorter than the timescales of dynamics of the 29Si bath spins and
thus the rotation transform does not include H ′Si. If the system starts with a certain state |k0〉⊗ |J〉 at t= 0 (in which |k0〉
denotes a certain eigenstate |−,m〉 and |J〉 a certain bath state), the state at time t is∑

k1,k2,...,kn

Ck0,k1,...kne
−iφk1,k2,...kn |kn〉 |Jk1,k2,...kn〉 ,

where |kj〉 denotes an eigenstate |±,m〉, the phase

φk = Ek1t1 +Ek2(t2− t1) + · · ·+Ekn(t− tn),
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Table S2. Absolute values of the matrix elements of S0,x in the basis {|η,m〉} for B0 = 1 G.

|−,4〉 0 0.14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0.47
|−,3〉 0.14 0 0.19 0 0 0 0 0 0 0 0 0 0 0 0 0 0.12 0 0.42 0
|−,2〉 0 0.19 0 0.21 0 0 0 0 0 0 0 0 0 0 0 0.17 0 0.37 0 0
|−,1〉 0 0 0.21 0 0.22 0 0 0 0 0 0 0 0 0 0.22 0 0.32 0 0 0
|−,0〉 0 0 0 0.22 0 0.22 0 0 0 0 0 0 0 0.27 0 0.27 0 0 0 0
|−,−1〉 0 0 0 0 0.22 0 0.21 0 0 0 0 0 0.32 0 0.22 0 0 0 0 0
|−,−2〉 0 0 0 0 0 0.21 0 0.19 0 0 0 0.37 0 0.17 0 0 0 0 0 0
|−,−3〉 0 0 0 0 0 0 0.19 0 0.14 0 0.42 0 0.12 0 0 0 0 0 0 0
|−,−4〉 0 0 0 0 0 0 0 0.14 0 0.47 0 0.07 0 0 0 0 0 0 0 0
|+,−5〉 0 0 0 0 0 0 0 0 0.47 0 0.16 0 0 0 0 0 0 0 0 0
|+,−4〉 0 0 0 0 0 0 0 0.42 0 0.16 0 0.21 0 0 0 0 0 0 0 0
|+,−3〉 0 0 0 0 0 0 0.37 0 0.07 0 0.21 0 0.24 0 0 0 0 0 0 0
|+,−2〉 0 0 0 0 0 0.32 0 0.12 0 0 0 0.24 0 0.26 0 0 0 0 0 0
|+,−1〉 0 0 0 0 0.27 0 0.17 0 0 0 0 0 0.26 0 0.27 0 0 0 0 0
|+,0〉 0 0 0 0.22 0 0.22 0 0 0 0 0 0 0 0.27 0 0.27 0 0 0 0
|+,1〉 0 0 0.17 0 0.27 0 0 0 0 0 0 0 0 0 0.27 0 0.26 0 0 0
|+,2〉 0 0.12 0 0.32 0 0 0 0 0 0 0 0 0 0 0 0.26 0 0.24 0 0
|+,3〉 0.07 0 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0 0.24 0 0.21 0
|+,4〉 0 0.42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.21 0 0.16
|+,5〉 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.16 0

the coefficients of the eigenstates
Ck0,k ≡ 〈kn|Rn|kn−1〉 · · · 〈k2|R2|k1〉〈k1|R1|k0〉,

and the bath state
|Jk〉 ≡ e−iH

(kn)(t−tn) · · ·e−iH
(k2)(t2−t1)e−iH

(k1)t1 |J〉,

with the shorthand notation k = (k1,k2, . . . ,kn). The echo signal is

V2p/3p/5p ≡ 〈S0,x(t)〉=
∑
k,k′

C∗k0,k′Ck0,ke
iφk′−iφk〈k′n|S0,x|kn〉〈Jk′ |Jk〉 . (S27)

In general, the nuclear spin state overlap 〈Jk′ |Jk〉 is computed using the CCE (Yang and Liu, 2008, 2009; Zhao et al., 2012),
and in our current case for the Hamiltonian in Eq. (S25), CCE-1 gives the exact solution. The result of V2p/3p/5p is further
averaged over different initial states |k0〉 and |J〉 in the thermal distribution. 5

Without loss of generality we consider the 3p-ESEEM experiment with the magnetic field B0 = 1 G. For the 3p-ESEEM,
the CCE-1 result is

V3p =
∑

k1,k2,k3,k′1,k
′
2,k

′
3

C∗k0,k′1,k′2,k′3Ck0,k1,k2,k3 exp
(
i(φ(k′1,k

′
2,k

′
3)−φ(k1,k2,k3))

)

〈k′3|S0,x|k3〉

∣∣∣∣∣∣
N∏

j=j0+1

Tr

[
1

2
U

(k′1,k
′
2,k

′
3)†

j U
(k1,k2,k3)
j

]∣∣∣∣∣∣ , (S28)

where U (k1,k2,k3)
j is the evolution operator of the spin Ij for the center spin pathway k0→ k1→ k2→ k3. 10

For the hybrid center that contains only the Bi electron and nuclear spins (no 29Si spins), the nonzero elements of the S0,x

operator are

〈+,m |S0,x|−,m− 1〉= +
1

2
cos

θm
2

cos
θm−1

2
,

〈−,m |S0,x|+,m− 1〉=−1

2
sin

θm
2

sin
θm−1

2
,

〈+,m |S0,x|+,m− 1〉= +
1

2
cos

θm
2

sin
θm−1

2
,

〈−,m |S0,x|−,m− 1〉=−1

2
sin

θm
2

cos
θm−1

2
.

See numerical values in Table. S2.
Not all of the pathways have contributions to the ESEEM signal because of the inhomogeneous broadening and selection 15

rules. For instance, considering a hybrid center spin system that contains only the Bi electron and nuclear spins, the phase
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difference accumulated for kj = (+,m) and k′j = (+,m′) during time from tj−1 to tj is

φk′j −φkj = (E+
m′ −E+

m) · (tj − tj−1)≈ m′−m
10

(geβeB0 +hz) · (tj − tj−1), (S29)

where hz is the Overhauser field from the bath spins. For the relevant timescales (∼ 1 ms) and inhomogeneous broadening
of hz (which is ∼ 0.5 MHz), the ensemble averaged phase factor would vanish unless kj = k′j . In the numerical simulation, a
pathway (k′,k) is dropped if (1) the echo condition5

φk−φk′ = 0, (S30)

is not satisfied, or (2) the amplitude is too small, e.g., |C∗k′Ck|< 10−4 (see Fig. S4).

5.2 Exact simulation for one 29Si spin

Taking the special case of Eq. (S28) for j0 = 1 and N = 1, we can obtain the exact solution of the ESEEM due to a single 29Si
spin. The result for a certain initial state |k0〉 is10

V3p =
∑

k1,k2,k3,k′1,k
′
2,k

′
3

C∗k′0,k′1,k′2,k3Ck0,k1,k2,k3〈k
′
3|S0,x|k3〉exp

(
iφ(k′1,k

′
2,k

′
3)− iφ(k1,k2,k3)

)
, (S31)

where φ(k1,k2,k3) ≡ (Ek1 +Ek3)τ +Ek2T is the phase accumulated for the pathway k0→ k1→ k2→ k3.
In numerical simulations we neglect the pathways that have negligible probabilities C∗k′0,k′1,k′2,k3Ck0,k1,k2,k3 |. For instance,

Fig. S4 compares the results with pathways neglected when |C∗k′Ck|< 10−5 or 10−4. Actually, for these two cases shown in
the figure, there are only 4 main contributing pathways, since most pathways have no contributions in the ESEEM signal after15

taking into account of the inhomogeneous broadening effects (see Eq. S29).

5.3 Justification of CCE-1 approximation for weakly coupled bath spins

Now we compare the exact solution and CCE-1 approximation for a single 29Si bath spins (N = 1). We use Eq. (S31) for the
exact solution and Eq. (S28) with j0 = 0 and N = 1 for the CCE-1 approximation. The pathways of the Bi spin that do not
satisfy the echo condition [Eq. (S30)] are not included in the simulation.20

We expect that when the hyperfine coupling is comparable to the level splitting of the Bismuth donor spin within each
manifold, the secular and the CCE-1 approximation become invalid (Eq. S7). Figure S5 compares the exact solution and the
CCE-1 approximation for various hyperfine coupling strengths. As expected, the CCE-1 agrees well with the exact solution
for relatively weak coupling. The deviation of the ESEEM frequency calculated by the CCE-1 from the exact solution is
shown in Fig. S6 as a function of the hyperfine coupling strength. For coupling weaker than 20 kHz, the error is less than 5%.25

Furthermore, the ESEEM depth (shown in Fig. S6) becomes negligible for coupling greater than 20 kHz for the field. (It should
be noted that if the echo condition in Eq. (S30) is applied, strong hyperfine coupling would lead to mixing between Bi spin
states, causing fast oscillations with amplitude increasing with the coupling strength. Such fast oscillations, however, decay
rapidly to zero due to inhomogeneous broadening. See Sec. 5.4 below for more discussions.)

Considering both the ESEEM frequency calculation precision and the modulation depth, a nuclear spin with hyperfine30

coupling weaker than 20 kHz can be well approximated by the CCE-1.

5.4 ESEEM due to a strongly coupled 29Si spin

Figure. S7 show the exact simulation of the 3p-ESEEM due to a strongly coupled 29Si spin. Two coupling strengths (∼
100 kHz and ∼ 200 kHz) are considered. The strong hyperfine coupling induces mixing between the Bi spin states (violating
the pure dephasing approximation). To show the effect of state mixing, we do not impose the echo condition Eq. (S30), and35

therefore need to include about 100 pathways to produce converged results. The interference between different pathways (due
to the mixing among Bi spin states) induce fast and complicated modulations. The Fourier transform shows that the ESEEM
frequencies are spread around 280 kHz, which is approximately the splitting between Bi levels in absence of Si spins. The fact
that modulation frequency is near 280 kHz confirms that the ESEEM is mostly due to the mixing of the Bi spin states. On the
contrary, in the case of weakly coupled 29Si spins where the mixing between different Bi levels is negligible, the ESEEM is40

due to the mixing between different 29Si nuclear spin states, so there the ESEEM has frequencies essentially determined by
the 29Si nuclear spin Larmor frequency (see Fig. S5).
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The rapid oscillations due to interference between different Bi spin states, however, have their frequencies sensitively de-
pending on the external field and the Overhauser field due to the random configurations of the nuclear spin baths (the inhomo-
geneous broadening). Therefore, the ensemble average over the distribution of the Overhauser field hz (which has a broadening
of about 0.5 MHz) would lead to rapid decay of the modulation (in µs timescales). This is indeed shown in Fig. S8. Thus, the
contributions of the strongly coupled nuclear spins are not observable in the timescales relevant in the experiments (∼ms). 5

5.5 Influence of a strongly coupled 29Si spin on weakly coupled 29Si spins

In general, a strongly coupled nuclear spin may affect the ESEEM due to a weakly coupled nuclear spin. This is because the
Bi spin states can be mixed by the strong coupling. The state mixing renormalizes the effective couplings between the weakly
coupled nuclear spin and the “ficticious” spin-1/2 of the Bi donor [in particular, αm and αm−1 in Eq. (S13)] and hence affects
the ESEEM. To exam such an effect, we calculate the ESEEM due to a weakly coupled nuclear spin I2 in the presence or in the 10

absence of a strongly coupled nuclear spin I1. The weakly coupled nuclear spin is considered using the CCE-1 and the strongly
coupled one, if taken into account, is exactly considered by absorbing it into the hybrid center spin system [corresponding to
Eq. (S28) with j0 = 1 and N = 2].

Figure S9 shows that while the strongly coupled spin causes some fast, small-amplitude modulations, it has negligible effect
on the ESEEM due to the weakly coupled nuclear spin. The weak effect is understandable considering that the matrix elements 15

αm and αm−1 in Eq. (S13) are only slightly (< 1/10) modified by the hyperfine coupling to the spin I1 even when Afc,1 is as
large as 200 kHz.

6 Phase cycling scheme

In the tables below is provided the phase cycling scheme for the 3- and 5-pulse ESEEM measurements.

3 pulse ESEEM CPMG
π/2 π/2 π/2 Det. π Det.
+x +x +x +y +y +y
-x +x +x -y +y -y
-x -x +x +y +y +y
+x -x +x -y +y -y

Table S3. Phase cycling table for 3 pulse ESEEM with CPMG and offset removal.

5 pulse ESEEM CPMG
π/2 π π/2 π/2 π Det. π Det.
+x +x +y +y +y +y +y +y
-x -x -y +y +y +y +y +y
-x -x -y -y -y -y +y -y
+x +x +y -y -y -y +y -y
+x -x -y -y +y +y +y +y
-x +x +y -y +y +y +y +y
-x +x +y +y -y -y +y -y
+x -x -y +y -y -y +y -y

Table S4. Phase cycling table for 5 pulse ESEEM with CPMG and offset removal.
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Figure S2. CCE calculation of the Hahn echo signal of a Bi donor spin coupled to a 29Si nuclear spin bath. The CCE-2 and CCE-3 results
have excluded the CCE-1 effects. (a) Decoherence for two different random bath configurations (denoted as “A” and “B”), calculated up
to CCE-2 or CCE-3 (both with CCE-1 contributions excluded). B0 = 1 G. The number of bath spins N = 2000. The negligible difference
between CCE-2 and CCE-3 indicates that the CCE-2 has already converged. (b) Comparison of the CCE results with the experimental
ESEEM signal for B = 1 G. For the “CCE-1 w/ decay”, an overall exponential decay is included as explained in the main text.
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Figure S3. Eigenenergies of a hybrid spin system composed of the Bi donor electron spin S0, the 209Bi nuclear spin I0, and a “strongly cou-
pled” 29Si nuclear spin at position r1 = (1.8,0.4,−0.9) nm. The Fermi-contact hyperfine coupling to the Si spin is Afc,1/(2π)≈ 250 kHz.
The magnetic field along the z-axis B0 = 1 G. The x axis denotes the state label for the upper and lower eigenstates (the ± manifolds).
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Figure S4. Exact solution of the 3p-ESEEM of a Bi donor spin coupled to only one 29Si nuclear spin. The Fermi contact and dipolar hyperfine
couplings areAcf,1 = 2.4 kHz andAdd,1 = 0.6 kHz in the first case (labeled as I1), andAcf,2 = 0.8 kHz andAdd,2 = 0.5 kHz in the second
case (labeled as I2). The external field B0 = 1 G. The left panel shows the ESEEM, and the right panel shows the Fourier transform of the
ESEEM. The cutoff thresholds |C∗

k′Ck|< 10−5 and 10−4 for a pathway to be dropped are indicated in the left panel. The two choices of
cutoff thresholds produce nearly identical results.
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Figure S5. Comparison between exact solution [Eq. (S31)] and the CCE-1 approximation [Eq. (S28) with j0 = 0 and N = 1] of the ESEEM
of a Bi donor spin coupled to one single 29Si spin with various hyperfine coupling strength. (a,c,e) are the ESEEM and (b,d,f) are the Fourier
transform (the ESEEM spectra). The hyperfine coupling is about 2.4 kHz, 13.4 kHz, and 45.5 kHz corresponding to (a/b), (c/d), and (e/f).
The external field B0 = 1 G. The microwave pulse is chosen resonant with the transition 6↔ 13 and of duration 1 µs for the π-pulse.
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Figure S6. Left axis: The relative frequency deviation (δfp = |fCCE− fExact|/fExact) of the CCE-1 approximation from the exact results for
as a function of the hyperfine coupling A1 (which refers to Fermi contact coupling in this figure). For CCE-1 to be a good approximation,
we can set the cutoff to be 20 kHz, for an error up to 5%. Right axis: The dependence of the modulation depth on A1. The microwave pulse
is chosen resonant with the transition 6↔ 13 and of duration 1 µs for the π-pulse. The external field is B0 = 1 G.
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Figure S7. Exact simulation of the 3p-ESEEM due to a strongly coupled 29Si. (a) and (c) are the ESEEM and (b) and (d) are the Fourier
transform. The locations and the hyperfine couplings are r1 = (13,6,−7)× aSi/4, A,cf,1 ≈ 101.8 kHz, and Add,1 ≈ 1.6 kHz for (a) and
(b), and r1 = (8,5,−9)× aSi/4, Acf,1 ≈ 207.1 kHz, and Add,1 ≈ 2.8 kHz for (c) and (d). The external field B0 = 1 G. All pathways with∣∣C∗

k0,k′Ck0,k

∣∣> 10−4 are taken into account, without imposing the echo condition Eq. (S30).
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Figure S8. Ensemble average of (a) 3p-ESEEM over 100 samples of nuclear spin states in a thermal distribution and (b) the spectrum. The
locations and the hyperfine couplings are r1 = (8,5,−9)× aSi/4, Acf,1 ≈ 207.1 kHz, and Add,1 ≈ 2.8 kHz. The external field B0 = 1 G.
All pathways with

∣∣C∗
k0,k′Ck0,k

∣∣> 10−4 are taken into account.
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Figure S9. The ESEEM of a weakly coupled 29Si nuclear spin with or without another nuclear spin strongly coupled to the Bi donor spin.
The Fermi contact hyperfine coupling Afc,2 ≈ 2.4 kHz for the weakly coupled nuclear spin, and Afc,1 ≈ 45.5 or 207.1 kHz for the strongly
coupled nuclear spin. The external field B0 = 1 G.


