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Abstract. Using pulsed EPR techniques, the low temperature magnetic properties of the NO radical being confined in a C60

derived cage are determined. It is found that the smallest principal g value g3, being assigned to the axis of the radical, deviates

strongly from the free electron value. This behavior results from partial compensation of the spin and orbital contributions to the

g3 value. The measured value g3 = 0.77(5) yields information about the deviation of the locking potential from axial symmetry.

This 17 meV asymmetry is found to be quite small compared to the situation found for the same radical in polycrystalline5

or amorphous matrices ranging from 300 to 500 meV. The analysis of the temperature dependence of spin relaxation times

resulted in a critical temperature of about 3.5 K, assigned to temperature activated motion of the radical with coupled rotational

and translational degrees of freedom in the complicated 3-dimensional potential.

1 Introduction10

In a series of recent publications, the Kyoto group has shown that it is possible to encapsulate small and even reactive molecules

in a modified C60 cage with tailored entrance and exit holes (Hasegawa et al., 2018a; Futagoishi et al., 2017; Hashikawa

et al., 2018). Using such designer type open cages instead of closed structures creates a new route for the preparation of in-

teresting compounds. The family of endohedral fullerenes having closed carbon cages like N@C60 (Murphy et al., 1996),

He@C60 (Saunders et al., 1994), and H2@C60 (Komatsu et al., 2005), as well as C82 (Stevenson et al., 1999) based metallo-15

endohedrals can thus be expanded significantly. It has been shown that these new compounds can be stable under ambient

conditions, allowing easy handling. If encapsulated molecules are paramagnetic, as in case of 3O2 or 2NO, EPR is the method

of choice for elucidating their properties. This allows determining not only the stationary spin Hamilton parameters but fur-

thermore allows detecting of dynamic properties arising from internal dynamics or motion of the compound as a whole. In case

of La@C82 for instance it was possible to conclude from an analysis of 2D EXCSY spectra that the metal ion is rigidly locked20

to the inside surface of the carbon cage (Rübsam et al., 1996). In the present case of encapsulated NO radical it was concluded

from the broad variance of its principal g matrix values (Hasegawa et al., 2018a) that even at low temperatures the radical is not

fixed to a particular site. It was remarkable that the very small value quoted for the axial component (Hasegawa et al., 2018a) of
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0.225 deviates significantly from the value determined for NO radicals trapped in a single crystal host (Ryzhkov and Toscano,

2005), or NO radicals adsorbed in zeolites (Poeppl et al., 2000). This very small value of g3 = 0.225, deduced by an analysis of25

a CW measurement, necessitated confirmation by pulse ESR experiments, better suited for the study of very broad spectra. So

far, no nitrogen hyperfine data were reported, which might be important for a full characterization of the compound. It was the

aim of the present study to obtain by multi-frequency EPR and ENDOR techniques a complete spin Hamiltonian parameter set

for the encapsulated radical. Furthermore the anticipated effects of a non-spherical cage potential on the radical are explored.

In addition, the effects of structural modification of the cage are studied.30

2 Experimental Part

2.1 Sample Preparation

NO radicals trapped in two slightly different modified C60 cages were studied, in the following abbreviated by NO@C60-OH1

and NO@C60-OH3, see Fig. 1. The notation indicates the modified exit ridge. NO@C60-OH1 (Hasegawa et al., 2018a) and

NO@C60-OH3 were prepared by following the literature (Hasegawa et al., 2018a) and the modified procedures are described35

in references (Hasegawa et al., 2018a; Hashikawa et al., 2018)].

Figure 1. DFT optimized structures of a) NO@C60-OH1, and b) NO@C60-OH3. Oxygen (red) and hydrogen (white) atoms of the cage rim

as well as nitrogen (blue) and oxygen (red) of the radical are indicated with van-der-Waals sized balls.

2.2 EPR Spectroscopy

For pulsed EPR and ENDOR measurements at different mw frequencies (3.4, 9.8, and 34 GHz), various setups were employed.

Echo-detected 9.8 GHz EPR measurements at low temperatures were conducted with a Bruker ElexSys E680 setup equipped

with an Oxford CF930 helium cryostat using a Bruker MD4 Flexline ENDOR probe head. Field swept Echo-detected EPR40
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spectra (FSE) at 9.8 GHz were recorded using a two pulse “Hahn-echo” sequence (20-300-40 ns) at a temperature of 3.5 to

12 K, yielding absorption type spectra. FSE data at a microwave frequency of 3.4 GHz (S band) were obtained again using

a Bruker ElexSys E680 system with additional S band accessory including a Bruker Flexline probe head with a split-ring

resonator employing a pulse timing of 32-500-64 ns. Transient nutation measurements at 9.8 GHz were conducted applying

a PEANUT pulse mw sequence with a π/2 pulse length of 8 ns, a delay time τ of 130 ns and a high turning angle (HTAx)45

pulse of 4096 ns. Phase inversion time within the high turning angle (HTAx) pulse was incremented by 2 ns starting with an

initial inversion after 16 ns (Stoll et al., 1998). For 9.8 GHz HYSCORE measurements (Dinse et al., 2013), a π/2 pulse length

of 16 ns and a delay time τ of 150 ns were used. ENDOR spectra were recorded applying either a Mims pulse sequence with

π/2 pulses of 20 ns, delay time τ of 200 ns and a rf π pulse length of 15 µs, or a Davies pulse sequence with pulse settings

40-30000-20-200 ns and a RF pulse length of 25 µs.50

2.3 Quantum chemical calculations

Optimization of the structure of the compounds NO@C60-OH1 and NO@C60-OH3 has been performed using Gaussian

(g16-A03) at the HPC center of FU Berlin. DFT calculations were performed using the 6-311++ basis set with UB3LYP

exchange. Structures derived for the "up" orientation are depicted in Fig. 1. The difference in total energies for " up" and "down"

orientations of the trapped radical was 22.6 meV for NO@C60-OH1 , somewhat larger than the value (8 meV) published55

earlier (Hasegawa et al., 2018a), which might be caused by use of a different basis set. For NO@C60-OH3 we calculated 40.2

meV.

3 Results and Discussion

3.1 Multi-Frequency EPR Data

EPR data published previously by Hasegawa et al. for NO@C60-OH1 were obtained in continuous wave (cw) mode at a60

microwave frequency of 9.56 GHz (Hasegawa et al., 2018a). The published g matrix parameter set (see Table 1) obtained by

spectral simulation of the cw spectrum is characterized by an extreme g anisotropy. Values determined by FSE confirm the two

larger g matrix parameters, deviating however significantly with respect to the pseudo-axial g3 parameter. Spectra measured at

3.45 and 9.76 GHz are depicted in Figs. 2 and 3, respectively.
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Figure 2. S-band (3.5 GHz) FSE spectrum of NO@C60-OH1 (10 mM / CS2, 5 K) with best fit. For fitting a set of nitrogen hyperfine tensor

parameters was used, determined by ENDOR.

Figure 3. X-band (9.7 GHz) FSE spectrum of NO@C60-OH1 with best fit. For fitting a set of nitrogen hyperfine tensor parameters was used,

determined by ENDOR.
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Table 1. Fit-determined g matrix data of both compounds (gStrain fit data are listed in brackets). Previously published values (Hasegawa

et al., 2018a) are shown for comparison. Level splittings deduced from the deviation of the pseudo-axial g3 parameter from ge are also shown.

sample ν (GHz) cw/FSE g1 g2 g3 ∆ (meV)

NO@C60−OH1 3.45 FSE 1.438(0.007) 1.225(0.399) 0.646(0.134) 15.9

NO@C60−OH1 9.76 FSE 1.482(0.002) 1.350(0.275) 0.679(0.182) 16.9

NO@C60−OH3 3.45 FSE 1.480(0.012) 1.212(0.602) 0.725(0.129) 17.8

NO@C60−OH3 9.76 FSE 1.527(0.002) 1.422(0.287) 0.767(0.173) 19.7

NO@C60−OH1 9.57 cw 1.488 1.320 0.225

We quote no error margins, because a large g strain value is obtained for the g3 value using the fit routine (EasySpin (Stoll65

and Schweiger, 2006)). The pseudo-axial principal parameters g3 = 0.631 and 0.679, respectively, are still found to be very

small for the same compound, but rendering the g matrix less anisotropic compared to the data in ref. (Hasegawa et al., 2018a).

This discrepancy might be caused by the differing detection methods used. The FSE technique, displaying the EPR absorption

directly, being best suited for recording broad unstructured spectra. For further confirmation of the g matrix parameter set

determined by fitting the FSE spectra, we also performed a PEANUT experiment, probing the Rabi nutation frequency as70

function of B0.

Because of the rather large deviation of the gi parameters from the free electron value and the large anisotropy of g, a

significant variation of the nutation frequency was expected as function of orientation. If by orientation selection a particular g

principal position is chosen, the two remaining g parameters in average determine the nutation frequency. As shown in Fig. 4,

all Rabi frequencies are smaller than the reference value determined by a standard coal sample and increase towards the high75

field spectral range. In the figure nutation frequencies are indicated, calculated using the values in Table 1. The agreement is

quite convincing, and a very small g3 parameter as deduced earlier can be excluded, since it would lead to a much smaller

frequency in the perpendicular orientation of the radical. The small value of g3 = 0.225 (Hasegawa et al., 2018a) is probably

caused by overestimating the flat high field part of the cw spectrum in the simulation.
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Figure 4. PEANUT spectrum of NO@C60-OH3 measured at 3.6 K. The red line indicates the reference frequency measured for a coal

sample with isotropic g = 2.

Parameters determined for the NO@C60-OH3 compound are also listed in Table 1. Spectra are shown as Figs. A1 and80

A2 in appendix A. Also for this compound with slightly modified cage a similar set is observed, the fit parameters changing

slightly towards larger values compared with those found for the OH1 compound. Even the slight difference in cage structure

apparently is influencing the g matrix values. However, no prominent features of anticipated magnetic interaction between

encapsulated NO radicals within the intermolecular hydrogen-bonded dimeric triply hydroxylated C60 cages was observed.

It should be noted that g matrix parameters of the encapsulated NO radical deviate much more from the free electron85

value ge = 2.0023 value, comparing with data reported for situations when the radical is either trapped in a crystal (g =

(1.9740 (7), 1.9766 (7), 1.7175 (4))) (Ryzhkov and Toscano, 2005), adsorbed at the surface of metal oxides (g = 1.97, 1.97,

1.91) (Lunsford, 1968), or incorporated in a zeolite (g = 2.001, 1.996, 1.888)) (Poeppl et al., 2000). This clearly indicates

that the orbital momentum of the radical is not fully quenched in the rather spherical capsule. Following the idea that partial

quenching of the orbital angular momentum is accompanied by lifting of the degeneracy between the antibonding 2πx and 2πy90

orbitals, the energy splitting ∆ between these orbitals can be estimated by the pseudo-axial value of the NO g matrix (Ryzhkov

and Toscano, 2005; Lunsford, 1968):

g3 = ge− 2λL/(λ2 + ∆2)1/2 (1)

Here, ge is the free-electron g value, λ is the spin-orbit coupling constant for NO (123.16 cm−1), ∆ defines the crystal-field

splitting of the 2πx and 2πy orbitals, and L is a correction to the angular momentum along z caused by the crystal field. L is95

equal to 1 for a free molecule. A change in L represents a modification of the molecular wave function by the crystal field. It

should be noted, however, that in previous studies (Zeller and Känzig, 1967; Shuey and Zeller, 1967) no significant deviations

from 1 were observed. The highly nonlinear dependence of g3 on ∆ is depicted in Fig. A3 (appendix A). Using Eq. (1), a

level spitting of approximately 17 meV (200 K) is determined, The lifting of degeneracy leads to a deviation of the orbitals
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from two fully circular symmetric angular momentum eigenstates with opposite momentum to two orthogonal elliptic orbitals100

not being angular momentum eigenstates, but with non-vanishing angular momentum expectation values. With a 200 K level

splitting only one of the orbitals is occupied at 5 K and rotation of the molecule corresponds to transitions from one to the

other eigenstate, which should be impossible due to the large level splitting. Nevertheless, the remaining angular momentum

expectation value gives rise to very small g3 value. The splitting is much less than values found for 2NO and 2O−
2 trapped in

crystals, on surfaces or in zeolites, which are ranging from 300 to 500 meV.105

The 2πx and 2πy level splitting is of the same order of magnitude as the energy difference for the “up” and “down” orientation

of the NO radical with respect to the cage opening calculated earlier (Hasegawa et al., 2018a) and also found in this study.

For "up" / "down" axis reorientation a factor ten larger barrier was found. Considering the additional degree of freedom of

hindered rotation about the axis of the radical with unknown transition barrier, this gives rise to a complicated 3-dimensional

orthorhombic potential energy surface. It is not surprising that under these conditions the EPR signal can be detected only110

at very low temperatures. Measuring the temperature dependence of the FSE signal (X-band) with respect to the decrease of

a “standard” Boltzmann signal decrease of a stable S = 1/2 species in the sample, the apparent signal decay constant was

determined as 3 K, shown in Fig. 5.

Figure 5. FSE-detected signal of the encapsulated NO radical (9.7 GHz, pulse distance 200 ns) as function of temperature. The signal

intensity is scaled by the field separated signal of an unknown S = 1/2 radical, showing the regular Boltzmann dependence of signal

intensity.

The dramatic loss of signal intensity by a factor 50 in the narrow temperature range of 5 to 12 K is indicative for a decrease

of T2. This was confirmed by measuring the 2-pulse echo decay constant T ∗2 at the peak signal position. Its temperature115

dependence could be fitted assuming exponential temperature dependence with a characteristic temperature of 3.9 K as shown

in Fig. 6.
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Figure 6. Temperature dependence of the spin echo decay constant measured at the FSE signal peak position (470 mT) of NO@C60-OH3

(2.5 mM in CS2). Fitting assuming exponential temperature dependence, the characteristic temperature is determined as 3.9 K.

Measuring the field dependence of T ∗2 at different temperatures, support the simple model of a restricted rotation. As shown

in Fig. 7, at 5 K the T ∗2 values increase from 300 ns to 700 ns, when probing radicals changing from perpendicular to parallel

orientation. This can be taken as evidence that small angle librations around the long axis are activated at this temperature,120

whereas long axis reorientations are still prevented at this temperature. In contrast, at 12.5 K this restriction is no longer valid,

shortening the echo decay accordingly for the full field range.
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Figure 7. Field and temperature dependence of 2-pulse echo decay of NO@C60-OH3. The 5 K data set could be accurately fitted assuming

single exponential decay; the 12.5 K data required a bi-exponential fit. Both components were of similar amplitude.

This hypothesis is also supported by the observation that T1, determined by inversion recovery, also increases significantly

when selecting radicals in parallel orientation (see Fig.8). This field dependence of T1 leads even at 3.6 K to a noticeable

change in the FSE pattern, if the pulse repetition time is not sufficiently long (see Fig. A4, appendix A).125

Figure 8. Field dependence of T1 of NO@C60-OH3, measured using an inversion recovery pulse sequence at 3.6 K.
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Loss of the cw EPR signal intensity at temperatures above 80 K was also reported in ref. (Hasegawa et al., 2018b). Since

the cw signal intensity is not affected by T ∗2 , the NO signal could be detected in cw mode up to 80 K (Hasegawa et al.,

2018b) with a much smaller decrease from 5 K to 20 K than observed in our pulsed EPR study probing the echo signal with

a 2-pulse sequence. The low critical temperature of 3.5 K (0.3 meV) (average value) has to compared to much larger values

found in the case of N@C60, and P@C60, in which a well-defined potential of spherical or axial symmetry leads to degenerate130

vibrational levels of the translational degree of freedom of encapsulated atoms in the range of 8 to 16 meV (Pietzak et al.,

2002), respectively. The partially opened cage resembles the situation in the C70 cage by providing a nearly axial potential.

Assuming that vibration along this preferred axis is lowest in energy and taking into account the larger mass of the radical,

a vibrational eigenfrequency of about 5 meV for the center of mass (CM) of the radical would be expected, which is still

more than one order of magnitude larger than the experimental value. In contrast to encapsulated atoms, we have also to135

consider for the NO case a librational mode of the radical with respect to the cage axis. In a study of H2 encapsulated in

C60 or C70, the eigenstates of H2 were determined numerically by invoking the appropriate 5-dimensional potential surface,

describing translational and rotational degrees of freedom (Xu et al., 2009; Mamone et al., 2013). Lacking numerical values

for the potential surface in our more complicated case, it is only possible to estimate typical values for the librational mode by

approximating the interconversion between up/down (its z axis) of the radical axis in a potential well of 80 meV (645 cm−1).140

According to Eq. (2), this gives rise to a characteristic energy of 1.8 meV (14.6 cm−1), when approximating the potential by

a harmonic function of amplitude A=40 meV/πrad. When including transverse degrees of freedom for axis reorientation, it is

not unlikely that the characteristic mode energies might further be reduced thus matching the experimental value.

ω = (A/2Θ)1/2 (2)

Here the moment of inertia of the radical is denoted by Θ, and the energy difference for reorientation by π radians is denoted145

by A.

3.2 ENDOR spectra

Orientation selective ENDOR spectra of NO@C60-OH1 were measured at 9.7 GHz. As depicted in Fig. 9, the center of lines

shifts towards higher frequency, when changing the observation field position from lowest to highest edges of the absorption

pattern. A shift of the center of gravity of the ENDOR pattern is indicative for a dominant dipolar hfi, allowing simple deter-150

mination of Ai for the extreme field positions. For a determination of dipolar and quadrupolar hfi parameters observation field

values at the low and high ends of the FSE spectrum were chosen, anticipating that g matrix and hfi tensor axes are collinear.

Best ENDOR resolution is obtained at the low field edge, allowing determination of some hfi parameters by fitting, as shown

in Fig. 10.
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Figure 9. Davies ENDOR spectra of NO@C60-OH1 (10 mM in CS2) measured at 5 K as function of B0. Spectra are corrected with respect

to different accumulation times for better comparison of spectral pattern. Pulse sequence used (40-30000-20-200-40 ns, 25 µs rf pulse) was

identical for all spectra.

Figure 10. ENDOR spectrum of NO@C60-OH1 measured at 440 mT (T=5 K) using a Davies pulse sequence.
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At this field position a consistent fit is obtained, by only fixing the nuclear Larmor frequency to its field-determined value. At155

the high field edge no line quartet is observed for this compound. The broad pattern, however, is consistent with the result of a

spectral simulation, shown in Fig. 11, using a parameter set completed with the nqi parameter of NO@C60-OH3, being better

resolved at the high edge of the ENDOR pattern. It should be noted that no simple pattern is expected for the intermediate

field range because of significant g strain. For this reason fit values are only quoted assigned to g1 and g3 axes directions. No

information about the signs of hfi parameters can be deduced from the experimental spectra. The assignments given in Table 2160

are tentatively made by invoking the calculated hfi constants (see Table 3). Although not being in very good quantitative

agreement with the experiment, the calculated small isotropic hfi (+15 MHz) necessitates assignment of a negative sign to

A1. Lacking spectral resolution when probing at the high field edge due to the large g3 strain, the center of gravity still gives

a reliable value for the large dipolar hfi for both compounds. The absent spectral resolution, even when observing at the van

Hove singularities of the FSE spectrum, could result from a simultaneous presence of “up/down” configurations as observed165

in X-ray crystallography, with slightly different hfi parameters.

Table 2. Hyperfine parameters determined by fitting Davies ENDOR spectra measured under orientation selection conditions providing best

resolution. For an assignment of signs see text.

sample A1 (MHz) A2 (MHz) A3 (MHz) Q1 (MHz) Q2 (MHz) Q3 (MHz)

NO@C60−OH1 -55.3 N/A +122.6 2.47 N/A N/A

NO@C60−OH3 N/A N/A +124.1 N/A N/A 1.1

Table 3. Hyperfine parameters calculated for NO@C60-OH1 and NO@C60-OH3 in their "up" configuration using Gaussian G16/A03

(G16/A03, B3LYP, 6-311++). The calculated values for the "down" orientation differ by less than 3%.

sample A1 (MHz) A2 (MHz) A3 (MHz) Q1 (MHz) Q2 (MHz) Q3 (MHz)

NO@C60−OH1 -25.5 -23.5 +90.2 -1.48 +0.22 +1.26

NO@C60−OH3 -25.4 -23.1 +90.5 -1.48 +0.22 +1.26
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Figure 11. Simulated ENDOR spectra of NO@C60-OH1, using parameters listed in Table 2.

4 Conclusions

Using various EPR techniques, the spin Hamiltonian parameters for the encapsulated NO radical are determined. The radical,

being confined in a C60 derived cage, exemplifies the transition between a free molecule in isotropic potential and being fixed

by a rigid confinement. The NO radical is particularly suited for such an investigation, since the g factor of the free molecule170

in its 2Π1/2 rotational ground state will change between zero (Mendt and Pöppl, 2015) to a g matrix, in with all parameters

are close to the free electron value for the rigidly localized radical (Chiesa et al., 2010). In case the axial molecular symmetry

is maintained by the environment allowing free rotation about its axis, the g parameterg3, being assigned to the NO bond axis

is predicted to vanish. The measured value g3 = 0.77(5) is indicative for an intermediate situation of the radical and yields

information about the locking potential’s deviation from axial symmetry. This 17 meV asymmetry as found here is quite small175

compared to the situation in polycrystalline or amorphous matrices ranging from 300 to 500 meV. The analysis of the spin

relaxation times resulted in a critical temperature of about 3.5 K, assigned to temperature activated motion of the radical with

coupled rotational and translational degrees of freedom in the complicated 3-dimensional potential provided by the cage.

Performing ENDOR the 14N hyperfine coupling parameters were determined. The experimental values are in fair agreement

with predictions from a DFT calculation. The spectral resolution was not sufficient to discriminate between parameter sets180

expected for the Xray crystallography confirmed “up/down” configurations of the radical with respect to the hole of the cage.
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Hfi as well as g matrix parameters did not show any temperature dependence in the range of 3.5 to 12 K, in which a dramatic

decrease of T ∗2 is observed. This indicates that the radical is localized, not allowing for excitation of rotational modes round

its axis, which would modify the g3 value. Apparently only low energy modes with small amplitude around its equilibrium

orientation are excited at these temperatures. It should be noted, however, that the accuracy of the data analysis is high enough185

to detect a small difference in g parameters using cages with slightly modified openings. It will be interesting to see in the

future, if advanced computational methods will be able to simulate g matrix and hfi tensor data for this radical in such a

complicated potential.

Code and data availability. Experimental data, processing information, and EasySpin simulations scripts will be made available upon re-

quest for reviewing and uploaded to the refubium.fu-berlin.de institutional repository prior to publication.190

Appendix A: Supplementary Figures

Figure A1. S-band (3.5 GHz) FSE spectrum of NO@C60-OH3 (T = 5K, 10mM/CS2) with best fit.
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Figure A2. X-band (9.7 GHz) FSE spectrum of NO@C60-OH3 (T = 5 K, 2.5 mM/CS2) with best fit.

Figure A3. Dependence of the pseudo-axial g3 matrix element of the NO radical as function of 2π∗x and 2π∗y level spitting.

15

https://doi.org/10.5194/mr-2020-11

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 25 May 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure A4. 9.7 GHz FSE spectra of NO@C60-OH3 measured at 3.6, 4.1, and 5 K. Using a rather short pulse repetition time (1 ms), the high

field part of the spectrum is partially saturated. (For fit parameters see Table B1.)

Appendix B: Supplementary Table

Table B1. Best fit parameters for the NO@C60-OH3 spectra measured at different temperatures (see Fig. A4).

g1 g2 g3 g1strain g2strain g3strain linewidth (mT)

5 K, 120 ns 1.525 1.425 0.744 0.001 0.294 0.171 17.4

10 K, 120 ns 1.521 1.420 0.717 0.001 0.348 0.131 12.6

10 K,300 ns 1.505 1.419 0.699 0.001 0.432 0.139 13.2

Author contributions. Compounds were synthesized by SH, YH, and YM. EPR experiments were performed by KPD, TK, and RB. Data

analysis was performed by KPD and RB, and the manuscript written by KPD with input from all authors.
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