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Abstract. We report three-dimensional spin noise imaging (SNI) of nuclear spin density from spin noise data acquired by 

Faraday detection. Our approach substantially extends and improves the two-dimensional SNI method for excitation-less 10 

magnetic resonance tomography reported earlier. (Müller, N. and Jerschow, A.: Nuclear spin noise imaging, Proc. Natl. Acad. 

Sci. U.S.A., 103(18), 6790–6792, doi:10.1073/pnas.0601743103, 2006.) This proof of principle was achieved by taking 

advantage of the particular continuous nature of spin noise acquired in the presence of constant magnitude magnetic field 

gradients and recent advances in nuclear spin noise spectroscopy acquisition as well as novel processing techniques. In this 

type of projection-reconstruction based spin noise imaging the trade-off between signal-to-noise ratio (or image contrast) and 15 

resolution can be adjusted a posteriori during processing of the original time domain data by iterative image reconstruction in 

a unique way not possible in conventional rf-pulse dependent MRI. The 3D SNI is demonstrated as a proof of concept on a 

commercial 700 MHz high resolution NMR spectrometer, using a 3D-printed polymeric phantom immersed in water. 

1 Introduction 

The phenomenon of nuclear spin noise, first predicted by Felix Bloch in 1946 (Bloch, 1946), can be ascribed to the incomplete 20 

cancellation of the fluctuating spin magnetic moments in a specimen. Owed to the extremely low amplitudes of these residual 

fluctuations of the bulk magnetic moment very low-noise rf (radio-frequency) circuitry is required to separate nuclear spin 

noise signals from background noise (Müller et al., 2013) (Ferrand et al., 2015) (Pöschko et al., 2017). Therefore, experimental 

detection of nuclear spin noise succeeded only in 1985 (Sleator et al., 1985). Today readily available low-noise rf-electronics 

enable one to observe nuclear spin noise in reasonable amounts of time, in particular if a cryogenically-cooled probe circuit is 25 

used (Kovacs et al., 2005) (Müller and Jerschow, 2006). In spite of low intrinsic sensitivity, nuclear spin noise based 

spectroscopy and imaging techniques have an intriguing potential, mainly for three reasons: (1) The spin noise signal 

magnitude exceeds the thermal polarization derived signal for very low numbers (<~108) of nuclear spins as it scales with the 

square root of the number of spins and not linearly. (2) The observation of undisturbed spin systems becomes possible. (3) 

Signals acquired in absence of rf-pulses are devoid of limitations imposed by pulse imperfections and bandwidth. The 30 
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theoretical and technical aspects of nuclear spin noise detected by Faraday induction have been studied extensively in recent 

years (Marion and Desvaux, 2008) (Nausner et al., 2009) (Desvaux et al., 2009) (Müller et al., 2013) (Chandra et al., 2013) 

(Ferrand et al., 2015) (Pöschko et al., 2017) (Ginthör et al., 2018). In the research we report here, a major sensitivity and image 

quality improvement in the case of spin noise imaging (SNI) (Müller and Jerschow, 2006) is achieved by exploiting the tuning 

dependence of the spin noise line shape (Pöschko et al., 2014). 35 

1.1 Magnetic resonance imaging 

Spatial resolution in magnetic resonance imaging (MRI) relies on frequency encoding the positions in magnetic field gradients 

(Kumar et al., 1975). Thus, spectra recorded in presence of magnetic field gradients can be interpreted as the result of a forward 

Radon transformation applied to the spin density function of the sample along the gradient direction (Deans, 2007).  

Most of today’s MRI approaches are based on the idea of Fourier imaging originally introduced by Richard R. Ernst (Kumar 40 

et al., 1975) and use rf-pulses preceding excitation and evolution periods, in which phase encoding via field gradients is 

attained, followed by a two-dimensional (2D) Fourier transformation (FT) (Wright, 1997) (Brown et al., 2014). The resolution 

in the third dimension is commonly obtained using slice-selection, i.e. by applying rf-pulses simultaneously with magnetic 

field gradients (Garroway et al., 1974). A multi-dimensional Fourier transform approach could, in principle, also work for 

noise data. However, it would suffer from even lower sensitivity due to transverse relaxation, in particular if no refocusing rf-45 

pulses are applied, which would counteract the goal of imaging without rf-pulses. It should be noted here, that when detecting 

noise from very low numbers of spins refocusing pulses are a viable option, in particular if indirect detection by optical means 

is used (Meriles et al., 2010). 

1.2 Projection reconstruction 

Alternatively, multi-dimensional MRI can be based on the principle of reconstruction from projected data in the direct 50 

(frequency or spatial) observation dimension (Chetih and Messali, 2015), which closely corresponds to the only approach 

available in radiation-based computer tomography (CT). In the case of MRI, projections are provided through acquisition of 

free induction decays while different magnetic field gradients spanning the entire directional space are applied sequentially. 

An intrinsic problem of the inverse Radon transform is that it almost always produces artefacts if the projections contain 

substantial noise contributions or if the imaged distribution function is not smooth (Kabanikhin, 2008). In particular the latter 55 

is a relevant restriction in most practical applications, as hard edges are very common features (e.g. bones in the human body). 

Therefore, alternatives to the inverse Radon transform are required. The processing protocol presented here aims to minimize 

these artefacts while maintaining resolution limited by transverse relaxation and maximizing the spin-noise to random-noise 

contrast. 

Different from spectroscopic applications of magnetic resonance, where the chemical shift is of main interest, for imaging 60 

purposes one often assumes that all spins inside the imaged object have indistinguishable chemical shifts. We are going to use 

that assumption here, being aware that methods to cope with imaging artefacts caused by non-uniform chemical shifts (e.g. 
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water and fat) within a specimen exist (Dietrich et al., 2008) but may not applicable straightforwardly in the case of spin noise 

detection. 

2. Results and Discussion 65 

In order to optimize the spin noise detection, we take advantage of the progress in nuclear spin noise spectroscopy that has 

been achieved since the introduction of 2D nuclear spin noise imaging (Müller and Jerschow, 2006). In order to obtain 

symmetrical line shapes and optimize receiver sensitivity the cryogenically cooled NMR-probe is tuned to the SNTO (spin 

noise tuning optimum) (Marion and Desvaux, 2008) (Nausner et al., 2009) (Pöschko et al., 2014). As residual static field 

gradients can lead to spectral artefacts under conditions where radiation damping occurs (Pöschko et al., 2017) careful 70 

optimization of the basic magnetic field homogeneity (achieved by shimming) and sufficiently strong gradients, so that 𝑇"∗
$% 

exceeds the broadening caused by the radiation damping rate 𝜆'() , are prerequisites for obtaining accurate nuclear spin noise 

images. While the sensitivity of spin noise acquisition depends in a highly non-linear way on the radiation damping rate 𝜆'( 

(McCoy and Ernst, 1989) (Nausner et al., 2009) (Bechmann and Müller, 2017) (Pöschko et al., 2017), it is proportional to the 

radiation damping rate at equilibrium in this imaging regime. 75 

 

𝜆'() = +,
"
𝜂𝑄𝛾𝑀)	       (1) 

 

Here, the only variables which depend on the instrumental setup are the filling factor η, and the probe quality factor Q, while 

the gyromagnetic ratio γ and µ0, the permeability of vacuum are immutable. Note that apart from maximizing the coupling 80 

between the spins and the rf-circuit by increasing η and Q the SNR (signal-to-noise ratio) of spin-noise-detected experiments 

can be improved by reducing the noise from all other sources.  

We demonstrate nuclear spin noise 3D tomography on the phantom shown and described in Fig. 1 using the acquisition and 

processing procedures outlined in Sect. 3. 

 85 
Figure 1: Phantom used for the spin noise imaging experiments. (a) Rendered image of the phantom from a front perspective. (b) 
Rendered image of the phantom from a front/top perspective. (c) Typical cross section, which is a star-shaped octagon (white). This 
shape was rotated around and translated along the Z axis simultaneously to form the 3D phantom object. (d) The 3D printed 
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phantom from polylactide (PLA) polymer inserted into a standard 5 mm NMR tube filled with H2O/D2O (9:1). The black frame in 
(a) indicates the sensitive area within the NMR spectrometer’s probe. 90 

The detected noise voltage was digitized quasi-continuously for each of 900 gradient directions uniformly distributed in 3D 

space. Each of the raw noise time domain data blocks was divided into overlapping windows, which were Fourier transformed 

and the resulting power spectral data added up to yield individual projections for each gradient setting. Our newly developed 

iterative projection-reconstruction protocol combines projections obtained by Fourier transform of the time domain noise data 

with different sliding window sizes (Desvaux et al., 2009) to obtain a 3D tomogram. This approach affords superior image 95 

quality with respect to resolution and contrast as compared to using a single fixed sliding window size only. A final 

reconstructed image of the phantom obtained from the projections of spin noise with different gradients by the optimized 

iterative reconstruction based on the simultaneous algebraic reconstruction technique (SART) introduced by Andersen and 

Kak (Andersen and Kak, 1984) can be seen in Fig. 2a and d. 

In Fig. 2b and e we show the corresponding views, obtained using a fixed sliding window size of 1024 data points 100 

(corresponding to 103 ms).  
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Figure 2: Comparison of reconstructed 1H-NMR spin noise tomograms of the phantom immersed in H2O/D2O (9:1) recorded at 700 
MHz obtained with three different processing procedures from the same raw data. The acquired signal originates from the water 
protons around the solid phantom, which is not observable due to the extremely broad lines of the polymer. Total noise data 105 
recording time was 40 h. (a-c): Four different views for each processing procedure visualized as iso-surfaces representing the 
boundary between liquid and solid. (d-f): Comparison of density plots of (X-Y) 2D cross-section extracted from the centre (along the 
Z direction) of the corresponding 3D image of the 1H noise magnitude signal (white representing zero amplitude and black the 
maximum magnitude). Panels (d), (e) and (f) display 2D cross-section of the 3D images shown in in (a), (b) and (c), respectively. (a), 
(d): Images obtained by our new iterative reconstruction processing using combinations of different time-domain sliding window 110 
sizes (as described in the main text). (b), (e): Images processed with the standard projection reconstruction algorithm (Andersen and 
Kak, 1984), using a time domain sliding window size of 1024 data points (corresponding to 103 ms), resulting in high resolution but 
low signal-to-noise ratio (contrast). (c), (f): Images processed with standard projection reconstruction using a time domain sliding 
window size of 128 data points (corresponding to 13 ms), resulting in low resolution and higher signal-to-noise ratio (contrast). 

This resolution is less than the maximum obtainable one based on the experimentally determined water proton transverse 115 

relaxation time (T2 = 380 ms) in a reference sample. But increasing the window size beyond 1024 data points reduces the SNR 

too much. The same raw data processed with a small window size (128 data points) results in a correspondingly higher SNR 

but achieves an overly smoothed representation of the phantom a shown in Fig. 2c and f. The window length of the smaller 
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blocks was chosen empirically by halving the length of the longer windows until the SNR was acceptable, while still being 

able to resolve courser details in the image. 120 

In Fig. 2d-f images of cross sections of the phantom obtained by the different processing schemes are compared, demonstrating 

the flexibility of adjusting the contrast/resolution trade-off a posteriori from the same raw data. The high-resolution image 

(Fig. 2c and f) obtained by the conventional SART method might accurately represent the phantom, but the low SNR makes 

it difficult to draw a clear separation line between the phantom and the surrounding water in the cross-section in Fig. 2f.  

The low-resolution image in Fig. 2b and e, also obtained by SART, shows this boundary more clearly, but the resolution is too 125 

low to make out the correct shape of the phantom in the cross-section in Fig. 2e. Only the image calculated with the iterative 

reconstruction method (Fig. 2a and d) shows a phantom with clear boundaries and a non-circular shape in the cross-section in 

Fig. 2d, where the four “pockets” of water formed by the phantom can be resolved. 

In Sect. 3 we describe the new processing procedure yielding the images in Fig. 2a and d, which, to our knowledge, is the most 

efficient way to obtain 3D images from spin noise data, currently. Most notably the continuous nature of spin noise time 130 

domain data allows one to decide the resolution vs. contrast trade-off by reprocessing the raw data. 

For completeness, we discuss the concept of indirect detection of the spatial dimension in Fourier imaging with spin noise. 

Even though spin noise has random phase, one can devise a way to encode spatial information in the indirect dimension similar 

to the way used for 2D spin-noise-detected spectroscopy (Chandra et al., 2013) (Ginthör et al., 2018). This would require a 

location-encoding gradient sandwiched between two acquisition blocks and incremented in the usual way to yield the indirect 135 

k-space dimension. This phase-encoding gradient modulates the relative phase of the signal, which could be resolved by cross-

correlation of two subsequent acquisition blocks. However, this theoretical scheme suffers from excessive relaxation losses 

occurring during this gradient and the two acquisition periods involved. We have so far not succeeded in obtaining sufficient 

image contrast using this scheme. Notably, with this indirect time domain (k-space) approach one cannot take advantage of 

the sliding window processing and a posteriori optimisation as this acquisition scheme only affords discrete short data blocks. 140 

3. Materials and Methods 

The experiments were carried out on a high-resolution NMR spectrometer equipped with a Bruker Avance III console 

connected to a Bruker Ascend 700 MHz magnet and a TCI cryoprobe (manufactured in 2011). The phantom is a 3D-printed 

helix made of PLA (polylactic acid) fitting tightly inside a standard 5 mm NMR tube (Wilmad 535-PP). The tube is filled with 

a mixture of H2O:D2O (9:1) and the filling height made equal to the height of the phantom (50 mm). The rf-probe is tuned to 145 

the SNTO (spin noise tuning optimum) (Marion and Desvaux, 2008) (Nausner et al., 2009) (Pöschko et al., 2014) and 3D 

shimming (using Bruker’s TopShim) is performed on a sample (henceforth referred to as “shim sample”) which is prepared in 

the same type of 5 mm tube (Wilmad 535-PP) as the phantom but filled with the same mixture of H2O:D2O (9:1) to the same 

filling height without the phantom. The radiation damping rate of this phantom in the probe used was determined as 𝜆'() =

611.4	rad/s under the conditions of the imaging experiment while the transverse relaxation rate in the absence of radiation 150 

damping was 1/T2 = 2.632 rad/s. 
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A one-dimensional (1D) 1H spin noise spectrum was acquired to verify the correctness of the setup and the shim. For this 

imaging experiment the magnetic field gradients generated by the X, Y, and Z field correction (shim) coils are used as the 

imaging gradients, after calibration for the purpose of imaging. The gradient amplitude is measured by the broadening of the 

peak in a spectrum of the test sample. For each projection direction the magnitude of the applied magnetic field gradient must 155 

be the same, independent of the direction set according to the φ and θ values. (The definitions of the coordinate system and 

angles are given in the Supplementary Information.) This is achieved by calculating the individual shim values via the 

trigonometric laws. A few compound gradient settings (involving multiple individual gradients) are checked to verify 

orthogonality of the Cartesian field gradient components, that are used to calculate the gradient directions. After setup and 

calibration, the actual phantom is inserted into the magnet without further shimming. A script controls the setting of the 160 

gradients via the digital-to-analogue converters of the shim system and initiates the acquisition. For each angle φ and θ 30 

projections were recorded, yielding 900 projections in total at a gradient amplitude of 78 mT/m. The values are sampled 

uniformly per angle in the range of 0 to 180°. The projections were recorded with the following settings: For each projection 

angle two noise blocks were recorded (time domain points: 1024 k, spectral width: 5 kHz, spectral centre: 4.670 ppm). The 

individual projections are recorded like standard 1D spin-noise-detected spectra (Müller and Jerschow, 2006) (Nausner et al., 165 

2009). The acquisition sequence is illustrated and compared to conventional pulsed NMR in Fig. 3. 

 
Figure 3: Basic acquisition sequences. (a) Acquisition sequence of the simplest 1D pulsed experiment. (b) The corresponding spin-
noise-detected NMR acquisition sequence. The arrows in (a) and (b) represent the loops for recording all the scans. (c) The 
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frequency-encoding gradient for (a) and (b) if used as an imaging experiment. (d) Same as (b), but all data blocks are recorded 170 
continuously in one long acquisition period. (e) The frequency-encoding gradient for (d) if used as an imaging experiment. tAQ and 
tR denote the acquisition time and recycle delay, respectively. 

 

As in a conventional single pulse NMR experiment (Fig. 3a), the direction of the projection is determined by the magnetic 

field gradient active during acquisition. Gradients for different projection directions are set to the same magnitude and thus 175 

only differ in their direction. The angles are laid out in the following way: V angles for φ (angle between X-axis and XY-

projection of direction vector) are chosen uniformly. For each angle φ we again sample U angles for θ (angle between Z-axis 

and direction vector) uniformly. A reference coordinate system is shown in the Supplementary Information. The θ angles have 

the same set of values for all φ angles. 

Due to the random phase of spin noise, direct accumulation of raw phase sensitive data in the time-domain (as it is usually 180 

done for pulsed experiments) leads to signal cancellation. Instead, all acquired noise blocks (the spin noise equivalent of 

“FIDs”) are stored and Fourier-transformed individually. After calculating the power or magnitude spectra their addition yields 

the final projection (McCoy and Ernst, 1989) (Müller and Jerschow, 2006) (Nausner et al., 2009).  

Longitudinal relaxation not being an issue in the absence of rf-pulses any recycling delay can be omitted. That allows one to 

record all blocks for one gradient in a single very long acquisition block, as indicated in Fig. 3d. During processing the data is 185 

split into adjustable smaller blocks which can be processed as described above for individually acquired ones. The acquisition 

of a single large noise block also allows one to take advantage of “sliding window processing”, which was introduced by 

Desvaux et al. (Desvaux et al., 2009). By slicing a long acquisition block recorded into overlapping sub-blocks one gains the 

option to compromise a posteriori (i.e. after acquisition of the raw data) between resolution and sensitivity, by adjusting the 

size of the smaller sub blocks. The optimum overlap of the blocks or “selection windows” has been shown to be approximately 190 

1/7 of the windows’ size (Desvaux et al., 2009). Due to this overlap seven times more blocks are used in the summation 

process, which improves the SNR by a factor of about √2, owed to the different accumulation behaviour of correlated (spin) 

noise and uncorrelated (instrument and circuit) noise. After the sliding window splitting, the individual blocks are processed 

in the same way as individually acquired ones. The processing schemes from time-domain noise data to the final projection 

with and without the sliding window processing are compared in Fig. 4. 195 

 

The processing was achieved by a custom Python script (available in the Supplementary Material), using the library numpy 

(Oliphant, 2006) for general numerical calculations and for the FFT routine as well as scikit-image (Walt et al., 2014) for 

implementing the 2D SART reconstruction algorithm (see below). The iterative reconstruction method was used with two 

different resolutions. The lower resolution images were processed with a sliding window length of 128 and an overlap of 110 200 

data points, the higher resolution ones with a length of 1024 and an overlap of 878 data points. The resulting three-dimensional 

(3D) images were visualized with ParaView (Ahrens et al., 2005). 
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Figure 4: Comparison of sliding window processing schemes for spin noise data without (a) and with (b) overlapping windows. The 
acquisition sequence (including the frequency-encoding gradient magnetic field BG) for recording one long noise block is shown on 205 
top. In the second step this block is cut up into multiple smaller noise blocks. After the fast Fourier-transformation (FFT) and 
calculating the power spectra (PS), the sum of all individual spectra yields the final projection. In (b) the long noise block is cut up 
into overlapping sub-blocks, yielding a higher number of smaller noise blocks. 

 

We found the simultaneous algebraic reconstruction technique (SART) introduced by Andersen and Kak (Andersen and Kak, 210 

1984) to be most suitable as an alternative to the inverse Radon transform for the spin noise imaging data. This algorithm sets 

up a set of linear equations (see Eq. (2)) that describe the dependency of the projected values on the distribution function D(r) 

of the original sample (Andersen and Kak, 1984). 

 

℘<,> = ∫ D(𝑟)d𝑟D       (2) 215 

 

Integration occurs over the area A, ℘β,i denotes the data point i in the projection ℘ at the angle β. The vector r encodes the 

position of a point inside the sample. In our case, A is an area along the projection direction through the sample with the width 

of one data point. No exact solution of this system is possible because it is usually underdetermined (owed to a finite number 

of projection values ℘ compared to a continuous distribution function). Therefore D(r), the solution of this system of linear 220 

equations is approximated by an appropriate method, e.g. the Kaczmarz method (Kaczmarz, 1937). For two dimensions the 

equations can be generated in the following way: Given V data points for each projection, an image matrix ℑ of V x V pixels 

is created, representing the reconstructed image. The image matrix ℑ is a discrete approximation of the continuous distribution 
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function D(r). There are multiple ways to formulate the forward projection process, but here a bilinear model is chosen in Eq. 

3, as it is the basis for the SART reconstruction method (Andersen and Kak, 1984). 225 

 

℘<,> = ∑ ∑ 𝑤ℒI,J𝕴ℒI,J
L
JM%

N
OM%      (3) 

 

℘β,i denotes the data point i in the projection ℘ at the angle β. The image matrix ℑ is sampled j times along the projection 

direction for each point i in the projection ℘β.  230 

The resulting value for the sampling location is the weighted sum of the four closest pixels (index k) in the image matrix, 

where w denotes the weighting factor for the individual pixel. This also shows the underdetermination of the system. There 

are N2 variables (pixels in image matrix) but only x * V equations (x represents the number of projection angles). The 

projections can be conceptually arranged around the matrix ℑ at their respective projection angles. The reconstruction works 

in the following way: From each projection ℘β (corresponding to angle β) an updated image is calculated according to Eq. (4) 235 

(Andersen and Kak, 1984). 

 

𝕴PQ% = 	𝕴P + uT𝕴P,℘<U ∗ 𝑟     (4) 

 

Here u denotes the update function, ℘β the projection at angle β and the image reconstruction relaxation factor r (with no 240 

relation to spin relaxation). z indicates the evolution of the image matrix after an update has been applied. All projections ℘ 

are processed sequentially in an order that maximizes the difference in angles between two successive projections. The 

reconstruction is complete when all the projections ℘ have been considered. The goal is to approximate D(r) with ℑ. The 

update function u performs three steps for each projection pixel ℘β,i. First, from each projection pixel ℘β,i a ray is cast into ℑ, 

along the projection direction. S intermediate values of the matrix ℑ are taken on that ray at equidistant locations ℒj. At each 245 

location the values of the four closest matrix ℑ pixels, weighted by their distance to the sampling point are summed to give the 

value assigned to the sampling location ℒj. In Fig. 5 this process is illustrated. 

The sum of all sampling points along the projection ray yields a new value for each projection pixel ℘β,i , named ℘calc β,i 

according to Eq. (5).  

 250 

℘VWXV	<,> = ∑ ∑ 𝑤ℒI,J𝕴ℒI,J
L
JM%

N
OM%      (5) 

 

The index variable j spans all sampling locations ℒj along the ray, k is used to indicate the four surrounding pixels of a single 

sampling location ℒj; w is the weight used to calculate the contribution of the neighbouring pixel in question. This is repeated 

for all projection pixels ℘β,i of a given projection ℘β. The difference in value of the actual projection pixel ℘β,i and the 255 

calculated projection pixel ℘calc β,i is given in Eq. (6). 
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℘(>YY	<,> = ℘Z,> − ℘VWXV	<,>     (6) 

 

 260 
Figure 5: Scheme of our implementation of the SART algorithm (Andersen and Kak, 1984). A ray is cast from every data point of 
the projection ℘ into the image matrix ℑ. Along this ray S values of the matrix elements (pixels) are sampled from ℑ at locations ℒj 
(j = 1..S). Each point ℒj is computed as the weighted sum of the four closest points (pixels) of ℑ. 

 

This difference is then distributed back to the individual sampling locations and in turn to their surrounding pixels, weighted 265 

by the respective distance from the sampling location to the neighbouring pixel, in a new previously empty image matrix ℑupdate 

as seen in Eq. (7). 

 

𝕴\](W^_	ℒI,J = 	℘(>YY	<,> ∗ 	𝑤ℒI,J     (7) 

 270 

This matrix ℑupdate is the result of the update function u and used to update the image matrix in Eq. (4). 

The algorithm can be initiated with a first guess of the image matrix ℑz=0. Starting with a reasonable guess as the initial matrix 

instead of a zero matrix improves the reconstruction, provided the guess is not too far off, in our case we use a low-resolution 

image. 
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The reconstruction is iterated a pre-determined number of times (in our case 2) with the same projections, but always using 275 

the result from the previous step as the next initial guess. In each step the weight of narrow contributions increases (e.g. better-

defined edges or increased contrast), while at the same time the noise level is rising. The number of iterations depends on the 

quality of the original projections and is, for actual data, best determined by visual inspection of the image improvement during 

the iteration process. The relaxation factor r in Eq. (4) was set to 0.05 for all reconstructions. 

The projections are grouped by the values of the angle φ, yielding V groups with U projections each. For each of these groups 280 

a SART image reconstruction (Andersen and Kak, 1984) is performed, yielding V 2D images. The rows (with respect to the 

Z-axis) with the same index from all the images are grouped again. Every first row in a group, every second in a group and so 

on. Again, for each of these groups an image reconstruction is performed. This results in the final 3D image of the phantom. 

Figure 6 illustrates this procedure. 

 285 
Figure 6: 3D SART reconstruction process. The 3D SART reconstruction algorithm is realized as a two-step process via two 
successive two-dimensional SART reconstructions. M*N 1D projections are grouped by same φ angle (V groups in total). Each of 
the V groups contains U projections with different angles q. The first SART reconstruction yields V 2D images. Those images 
represent two-dimensional projections of the sample, all perpendicular to the XY plane. The individual angle between each 2D image 
and the x-axis corresponds to the φ angle of the projections the image was created from. Every row (along the Z axis) of every 2D 290 
image then represents a 1D projection of a XY slice of the sample (at the same height as the row) around the Z axis. The final 3D 
image can be reconstructed by using a 2D SART reconstruction on each of those rows individually. 

 

In conjunction with the SART image reconstruction the flexibility of large noise block acquisition and the sliding window 

processing turns out to be particularly advantageous. Shorter windows yield a higher number of blocks with fewer data points 295 

and hence lower resolution. The summation over a larger number of noise blocks, however, improves the SNR of the resulting 

projection. Larger windows have the opposite effect and improve the resolution while losing SNR. This fact is exemplified in 

Fig. 7. The initial image reconstruction (via SART, see above) is carried out with a zero seed matrix using projections computed 

from short sliding windows (e.g. 128 complex data points). 
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 300 
Figure 7: Qualitative comparison of resolution and signal-to-noise ratio for different sliding window sizes using a 1D image of the 
phantom. (a) shows the result of the sliding window algorithm with a small windows size, yielding a low-resolution image with a high 
signal-to-noise ratio. (b) shows the result of the same process with a longer sliding window, resulting in a spectrum with higher 
resolution but lower signal-to-noise ratio as compared to (a). 

 305 

The reconstructed image from these low-resolution projections then serves as the starting image matrix for the second 

reconstruction using projections calculated with a longer sliding window. A schematic overview of the procedure can be seen 

in Fig. 8. 

 
Figure 8: Iterative 3D SART reconstruction. The first 3D SART reconstruction uses no initial guess and reconstructs a low-resolution 310 
image with a high signal-to-noise ratio. This intermediate result is used as the initial guess for the second 3D SART reconstruction, 
yielding the final reconstructed image. Each 3D SART reconstruction is repeated multiple times with the same projections. 

 

For additional clarity, we summarize the iterative reconstruction process: The recorded noise blocks corresponding to different 

projection angles are processed with different increasing sliding window sizes. This procedure yields multiple sets of 315 

projections, that differ in their resolution and SNR. Then a first 2D SART image reconstruction step is done separately for 

each set of 1D projections corresponding to a particular angle φ. The first reconstruction uses no initial guess (i.e. a zero image 

matrix) and is reconstructed using the set of projections with the lowest resolution and correspondingly highest SNR. The 

obtained 2D image is used as initial guess for another reconstruction, which is improved by the next set of projections with 

higher resolution but lower SNR. Continuing this series, the obtained 2D images now form a sequence ranging from low 320 

resolution, high SNR images to the inverse high resolution, low SNR case. In order to use the lower resolution images in the 

higher resolution reconstructions, the image matrices need to be interpolated to match the required number of data points. The 
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sliding windows sizes are doubled on each incrementation such that the resolution always increases by a factor of 2. This 

procedure is used analogously in the second reconstruction step to obtain the final 3D image. We note that the SART algorithm 

can also applied to all three dimensions in a single step without intermediate 2D data (Mueller et al. 1999), but this has not 325 

been done here due to higher computational demands and the easy availability of well-tested open-source 2D SART variants. 

4. Conclusion 

We have improved spin-noise-detected NMR imaging and extended it to three dimensions from the original 2D SNI technique 

published in 2006 (Müller and Jerschow, 2006). The unique properties of spin noise, in particular its average power being 

constant, while phase memory is lost with the usual time constant T2*, and the absence of a defined starting point in time 330 

together with spin noise tuning optimization (Nausner 2009) (Pöschko 2014) make it possible to use a quasi-continuous 

acquisition technique. Thus, one can obtain raw noise data of arbitrary duration while applying constant magnitude magnetic 

field gradients in different directions. The data can be processed in a unique way using dynamically adapted sliding windows 

to define fractionally overlapping data blocks, which are Fourier transformed and co-added after power spectrum computation. 

Based on these fundamental steps, we have introduced a new kind of SART-based iterative image reconstruction technique, 335 

which yields 3D images that are superior in visual quality improving SNR and resolution at the same time without introduction 

of artefacts. In this type of spin noise imaging the well-known trade-off between SNR (or image contrast) and resolution can 

be adjusted a posteriori during processing of the same original data by iterative image reconstruction, which is not applicable 

in conventional rf-pulse dependent MRI. 

Team list 340 

Stephan J. Ginthör, Judith Schlagnitweit, Matthias Bechmann, Norbert Müller 

Author contribution 

N.M. planned and supervised the research; S.J.G. performed all experiments, programmed the processing algorithms and 

processed the data; J.S. devised the time domain spin noise imaging experiment and contributed to the manuscript; M.B. and 

S.J.G. programmed the spectrometer; N.M. and S.J.G wrote the manuscript. 345 

Competing interest 

The authors declare no competing interest. 



15 
 

Acknowledgments 

This work has been supported by the European Union through the ERDF INTERREG IV (RU2-EU-124/100--2010) program 

(ETC Austria-Czech Republic 2007-2013, project M00146, "RERI-uasb" for N.M.). 350 

References 

Ahrens, J., Geveci, B. and Law, C.: ParaView: An End-User Tool for Large Data Visualization, Elsevier., 2005. 

Andersen, A. H. and Kak, A. C.: Simultaneous Algebraic Reconstruction Technique (SART): A superior implementation of 

the ART algorithm, Ultrasonic Imaging, 6(1), 81–94, doi:10.1016/0161-7346(84)90008-7, 1984. 

Bechmann, M. and Müller N.: Nonlinear Effects in NMR, Ann. Rep. NMR Spectrosc., 92, 199–226, doi: 355 

10.1016/bs.arnmr.2017.04.005, 2017.  

Bloch, F.: Nuclear Induction, Phys. Rev., 70(7–8), 460–474, doi:10.1103/PhysRev.70.460, 1946. 

Brown, R. W., Cheng, Y.-C. N., Haacke, E. M., Thompson, M. R. and Venkatesan, R., Eds.: Magnetic Resonance Imaging: 

Physical Principles and Sequence Design, John Wiley & Sons Ltd, Chichester, UK., 2014. 

Chandra, K., Schlagnitweit, J., Wohlschlager, C., Jerschow, A. and Müller, N.: Spin-Noise-Detected Two-Dimensional 360 

Fourier-Transform NMR Spectroscopy, J. Phys. Chem. Lett., 4(22), 3853–3856, doi:10.1021/jz402100g, 2013. 

Chetih, N. and Messali, Z.: Tomographic image reconstruction using filtered back projection (FBP) and algebraic 

reconstruction technique (ART), in 2015 3rd International Conference on Control, Engineering Information Technology 

(CEIT), pp. 1–6., 2015. 

Deans, S. R.: The Radon Transform and Some of Its Applications, Courier Corporation., 2007. 365 

Desvaux, H., Marion, D. J. Y., Huber, G. and Berthault, P.: Nuclear Spin-Noise Spectra of Hyperpolarized Systems, Angew. 

Chem. Int. Edit., 48(24), 4341–4343, doi:10.1002/anie.200901034, 2009. 

Dietrich, O., Reiser, M. F. and Schoenberg, S. O.: Artifacts in 3-T MRI: Physical background and reduction strategies, Eur. J. 

Radiol., 65(1), 29–35, doi:10.1016/j.ejrad.2007.11.005, 2008. 

Ferrand, G., Huber, G., Luong, M. and Desvaux, H.: Nuclear spin noise in NMR revisited, J. Chem. Phys., 143(9), 094201, 370 

doi:10.1063/1.4929783, 2015. 

Garroway, A. N., Grannell, P. K. and Mansfield, P.: Image formation in NMR by a selective irradiative process, J. Phys. C: 

Solid State Phys., 7(24), L457–L462, doi:10.1088/0022-3719/7/24/006, 1974. 

Ginthör, S. J., Chandra, K., Bechmann, M., Rodin, V. V. and Müller, N.: Spin-Noise-Detected Two-Dimensional Nuclear 

Magnetic Resonance at Triple Sensitivity, ChemPhysChem, 19(8), 907–912, doi:10.1002/cphc.201800008, 2018. 375 

Kabanikhin, S. I.: Definitions and examples of inverse and ill-posed problems, J. Inverse. Ill-Pose. P., 16(4), 317–357, 

doi:10.1515/JIIP.2008.019, 2008. 

Kaczmarz, S.: Angenäherte Auflösung von Systemen linearer Gleichungen, Bulletin International de l’Académie Polonaise 

des Sciences et des Lettres, 355–357, 1937. 



16 
 

Kovacs, H., Moskau, D. and Spraul, M.: Cryogenically cooled probes—a leap in NMR technology, Prog. Nucl. Magn. Reson. 380 

Spectrosc., 46(2), 131–155, doi:10.1016/j.pnmrs.2005.03.001, 2005. 

Kumar, A., Welti, D. and Ernst, R. R.: NMR Fourier zeugmatography, J. Magn. Reson., 18(1), 69–83, doi:10.1016/0022-

2364(75)90224-3, 1975. 

Marion, D. J.-Y. and Desvaux, H.: An alternative tuning approach to enhance NMR signals, J. Magn. Reson., 193(1), 153–

157, doi:10.1016/j.jmr.2008.04.026, 2008. 385 

McCoy, M. A. and Ernst, R. R.: Nuclear spin noise at room temperature, Chem. Phys. Lett., 159(5), 587–593, 

doi:10.1016/0009-2614(89)87537-2, 1989. 

Meriles, C. A., Jiang, L., Goldstein, G., Hodges, J. S., Maze, J., Lukin, M. D. and Cappellaro, P.: Imaging mesoscopic nuclear 

spin noise with a diamond magnetometer, J. Chem. Phys., 133(12), 124105, doi:10.1063/1.3483676, 2010. 

Mueller, K., Yagel, R. and Wheller, J. J.: Fast implementations of algebraic methods for three-dimensional reconstruction from 390 

cone-beam data, IEEE Transactions on Medical Imaging, 18(6), 538–548, doi:10.1109/42.781018, 1999. 

Müller, N. and Jerschow, A.: Nuclear spin noise imaging, Proc. Natl. Acad. Sci. U.S.A., 103(18), 6790–6792, 

doi:10.1073/pnas.0601743103, 2006. 

Müller, N., Jerschow, A. and Schlagnitweit, J.: Nuclear Spin Noise, eMagRes, 2(2), 237–243, 

doi:10.1002/9780470034590.emrstm1314, 2013. 395 

Nausner, M., Schlagnitweit, J., Smrečki, V., Yang, X., Jerschow, A. and Müller, N.: Non-linearity and frequency shifts of 

nuclear magnetic spin-noise, J. Magn. Reson., 198(1), 73–79, doi:10.1016/j.jmr.2009.01.019, 2009. 

Oliphant, T. E.: A guide to NumPy, Trelgol Publishing, USA., 2006. 

Pöschko, M. T., Schlagnitweit, J., Huber, G., Nausner, M., Horničáková, M., Desvaux, H. and Müller, N.: On the Tuning of 

High-Resolution NMR Probes, ChemPhysChem, 15(16), 3639–3645, doi:10.1002/cphc.201402236, 2014. 400 

Pöschko, M. T., Rodin, V. V., Schlagnitweit, J., Müller, N. and Desvaux, H.: Nonlinear detection of secondary isotopic 

chemical shifts in NMR through spin noise, Nat. Commun., 8, 13914, doi:10.1038/ncomms13914, 2017. 

Sleator, T., Hahn, E. L., Hilbert, C. and Clarke, J.: Nuclear-spin noise, Phys. Rev. Lett., 55(17), 1742–1745, 

doi:10.1103/PhysRevLett.55.1742, 1985. 

Walt, S. van der, Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E. and Yu, T.: scikit-405 

image: image processing in Python, PeerJ, 2, e453, doi:10.7717/peerj.453, 2014. 

Wright, G. A.: Magnetic resonance imaging, IEEE Signal Process. Mag., 14(1), 56–66, doi:10.1109/79.560324, 1997. 

 


