
DeerLab: A comprehensive toolbox for analyzing dipolar EPR
spectroscopy data
Luis Fábregas Ibáñez1, Gunnar Jeschke1, and Stefan Stoll2

1ETH Zurich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
2University of Washington, Department of Chemistry, Seattle, WA 98195, USA

Correspondence: Stefan Stoll (stst@uw.edu)

Abstract. Dipolar EPR spectroscopy (DEER and other techniques) enables the structural characterization of macromolecular

and biological systems by measurement of distance distributions between unpaired electrons on a nanometer scale. The infer-

ence of these distributions from the measured signals is challenging due to the ill-posed nature of the inverse problem. Existing

analysis tools are scattered over several applications with specialized graphical user interfaces. This renders comparison, repro-

ducibility, and method development difficult. To remedy this situation, we present DeerLab, an open-source MATLAB toolbox5

for analyzing dipolar EPR data that is modular and implements a wide range of methods. We show that DeerLab can perform

one-step analysis based on separable non-linear least squares, fit dipolar multi-pathway models to multi-pulse DEER data, and

run global analysis with parameter-free distributions. Important aspects of uncertainty analysis are discussed as well.

1 Introduction

Dipolar electron paramagnetic resonance (EPR) spectroscopy encompasses a growing family of techniques for determining10

distributions of nanometer-scale distances between unpaired electrons. These distance distributions provide valuable informa-

tion for the structural characterization of macromolecular or biological systems that is complementary to information obtained

by other techniques. For structurally disordered or highly complex systems, where established techniques may fail, such dis-

tance distributions provide unique information. The family of dipolar EPR spectroscopy techniques includes double electron–

electron resonance (DEER) (Milov et al., 1981, 1984; Pannier et al., 2000b), double quantum coherence (DQC) (Saxena and15

Freed, 1996, 1997; Borbat et al., 2013), relaxation-induced dipolar modulation enhancement (RIDME) (Kulik et al., 2001;

Milikisyants et al., 2009), single-frequency technique for refocusing (SIFTER) (Jeschke et al., 2000), and several other related

techniques (Borbat et al., 2013; Di Valentin et al., 2014; Hintze et al., 2016; Pribitzer et al., 2017; Borbat and Freed, 2017; Doll

and Jeschke, 2017; Milikisiyants et al., 2018). All of them provide a time-domain signal that depends on the dipolar interaction

between pairs of electrons. From this time-domain signal, the distance distribution is inferred.20

Due to its mathematical nature, the robust inference of distance distributions from noisy dipolar EPR spectroscopy data is

not straightforward. Many approaches have been proposed to tackle this problem (Pannier et al., 2000a; Jeschke et al., 2002;

Bowman et al., 2004; Jeschke et al., 2004; Chiang et al., 2005b, a; Jeschke et al., 2006; Sen et al., 2007; Brandon et al., 2012;

Stein et al., 2015; Dzuba, 2016; Matveeva et al., 2017; Srivastava and Freed, 2017; Edwards and Stoll, 2016; Rein et al., 2018;
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Timofeev et al., 2018; Worswick et al., 2018; Hustedt et al., 2018; Edwards and Stoll, 2018; Fábregas Ibáñez and Jeschke,25

2019, 2020), each with its pros and cons. Some of these methods have found widespread use, via software packages such as

DeerAnalysis (Jeschke et al., 2006), GLADD/DD (Brandon et al., 2012), and LongDistances (Altenbach, 2019).

However, there are several major challenges with the current situation. (i) A comparative assessment of the relative merits

of various methods is missing. (ii) Many methods have been argued based on anecdotal evidence from small datasets, and their

performance has not been assessed comprehensively. (iii) Reproducibility of analysis results is very limited due to the lack of30

common platforms for data sharing and data analysis.

To remedy this situation, we introduce DeerLab. It is an open-source software for data analysis in dipolar EPR. It is based on

MATLAB (MathWorks, 2020) and consists of a collection of modular functions, analogous to EasySpin (Stoll and Schweiger,

2006) and Spinach (Hogben et al., 2011). This has several distinct advantages over a graphical user interface (GUI). (i) It allows

for very flexible workflow designs, easily adapting to different experimental situations. (ii) All existing methods can be directly35

compared on a single platform. (iii) Automation and processing of large datasets becomes straightforward. (iv) Scripted data

analysis improves reproducibility and collaboration. (v) It provides a foundation for implementing new methodologies. (vi) It

can be embedded into other software, such as tools for protein structure modelling based on distance distributions (Jeschke,

2018). The disadvantage is an accessibility barrier for potential users without programming skills. This disadvantage can be

remedied by building a dedicated GUI for standard workflows as an additional software layer.40

This paper is structured as follows. We start by summarizing the theoretical basics of dipolar EPR spectroscopy. Then,

we illustrate the functionality of DeerLab through a series of examples. First, we show how to reproduce well-established

workflows such as Tikhonov regularization and multi-Gauss fits. We then demonstrate how DeerLab can perform one-step

analysis based on separable non-linear least-squares optimization, fit dipolar multi-pathway models to multi-pulse DEER

data, and run global analysis with parameter-free distributions. Finally, several sections are dedicated to important aspects of45

uncertainty analysis. The DeerLab scripts for all figures are available in the Supporting Information.

2 Theoretical basics

This section summarizes the central theoretical concepts of dipolar EPR spectroscopy that DeerLab is based on. For more

details, see (Jeschke, 2012) and (Jeschke, 2016). The theory is limited to S = 1/2 spins with isotropic g values, without any

orientation selection, at most two spins per protein, no exchange coupling, weak dipolar coupling, and no conformer-dependent50

relaxation rates.

Dipolar EPR spectroscopy techniques measure the dipole-dipole couplings between spins via the modulation of the ampli-

tude V (t) of a spin echo as a function of the position t of one or more pump pulses. The echo amplitude is modeled as (Milov

et al., 1981)

V (t) = V0 ·Vintra(t) ·Vinter(t) (1)55

where V0 is the echo amplitude in the absence of any pump pulses, Vintra describes the pump-pulse-induced modulation

due intra-molecular dipolar couplings, and Vinter describes the modulation due to intermolecular couplings. V0 is a constant
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prefactor that we set to one from now on in order not to complicate the notation unnecessarily. DeerLab takes V0 into account

as a fitting parameter.

The product of intra- and inter-molecular dipolar modulations can be written in a general form as60

V (t) =

∞∫

0

K(t,r)P (r)dr (2)

P (r) is the distribution of intra-molecular spin-spin distances r on the protein or other complex, normalized such that
∫∞

0
P (r)dr =

1.

K(t,r) is the kernel that captures how the complete dipolar modulation is determined by the distance distribution. It includes

the inter-molecular modulation (Fábregas Ibáñez and Jeschke, 2020). For standard 4-pulse DEER it is65

K(t,r) = [(1−λ) +λK0(t,r)]B(t,λ) (3)

Here, λ is the modulation depth. K0 is the elementary kernel

K0(t,r) =

1∫

0

cos
[
(1− 3cos2 θ)Dr−3t

]
dcosθ (4)

with the dipolar coupling constant

D =
µ0

4π
g2

eµ
2
B

~
(5)70

where ge is the g-value of the free electron, µB the Bohr magneton, µ0 the magnetic constant, and ~ is the reduced Planck con-

stant. K0 assumes full orientation averaging and unlimited excitation bandwidth. The subscript 0 distinguishes this elementary

kernel from more general kernels such as Eq. (3).

B(t,λ) represents the inter-molecular modulation and is commonly called the background. It can be modeled as a stretched-

exponential function75

B(t,λ) = exp
(
−κdλ|t|d/3

)
(6)

where κd is a decay rate constant and d is the dimensionality (Kutsovsky et al., 1990; Milov et al., 1998; Jeschke et al., 2002).

Other background models are possible (Kattnig et al., 2013).

Experimentally, the echo amplitude is measured only for a discrete set of usually equally spaced time points ti, yielding a

dipolar signal vector V with n elements V (ti). For numerical analysis, P (r) is represented as a discrete distance distribution80

vector P with m elements P (rj) at equally spaced rj . With this, Eq. (2) reads

V =KP (7)

whereK is the n×m kernel matrix with elements (K)ij =K(ti, rj)∆r, and ∆r is the increment in the distance domain.
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Experimental data V exp deviate from in Eq. (1) due to presence of noise. From experiments, it was found that the noise

distribution in DEER signals is well approximated by an uncorrelated Gaussian distribution with zero mean and constant85

variance (Edwards and Stoll, 2016):

V exp = V +N (0,σ2I) (8)

Inferring the distance distribution from the dipolar signal formally requires inversion of the kernel matrix

P =K−1V exp (9)

However, K is generally badly ill-conditioned (it has an extremely large condition number). This renders the inverse problem90

ill-posed, and the results obtained by Eq. (9) are highly unstable, erratic, and unreliable, especially in the presence of noise.

Because of the ill-posedness, inferring distance distributions from the dipolar signals poses a major challenge in dipolar EPR

spectroscopy data analysis.

3 Current approaches

Currently, two families of methods are commonly used in dipolar EPR spectroscopy data analysis. They differ in whether the95

distance distribution is represented as a parametric model or as a parameter-free model. Both methods stabilize the solution

and are widely used since they are simple and often effective.

The use of these established methods is very easy with DeerLab. Fig. 1 shows a short DeerLab script that performs a full

comparative analysis of experimental data using parameter-free distributions (Tikhonov regularization) and parametric models

(Gauss and worm-like chain). In the following, we discuss these two families of methods from the perspective of DeerLab.100

3.1 Parameter-free distributions

If P is represented as a parameter-free vector, regularization methods are used to determine the solution. If background and

modulation depth are known and fixed, the associated regularized optimization problem has the form

P fit = argmin
P≥0

(
‖V exp−KP ‖2 +α2R(LP )

)
(10)

The first term represents the sum of squared residuals, i.e. χ2 without normalization by the noise variance, which we assume105

constant across the signal (see Eq. (8)). It quantifies quality of the fit of the model to the data. The second term is an additional

penalty term that, together with the non-negativity constraint P ≥ 0, stabilizes the solution. The smoothing regularization

matrix L is a numerical approximation of a differential operator to impose smoothness, and α is the regularization parameter,

which controls the balance between data agreement and regularization.

Regularization methods differ in the choice of the penalty norm R. Tikhonov regularization (Tikhonov, 1963) was the first110

regularization approach introduced for dipolar data analysis (Bowman et al., 2004; Chiang et al., 2005a; Jeschke et al., 2004).
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% Load experimental dataset
[t,V] = deerload('experiment.DTA');

% Pre-processing
V = correctphase(V);
t = correctzerotime(V,t);
r = linspace(1,7,400);

% Fit with Tikhonov regularization
[Vfit1,Pfit1] = fitsignal(V,t,r,'P',@bg_exp,@ex_4pdeer);

% Fit a Gaussian parametric model
[Vfit2,Pfit2] = fitsignal(V,t,r,@dd_gauss2,@bg_exp,@ex_4pdeer);

% Fit a parametric chain model
[Vfit3,Pfit3] = fitsignal(V,t,r,@dd_wormchain,@bg_exp,@ex_4pdeer);

% Compare the fits
plot(r,Pfit1,r,Pfit2,r,Pfit3)

1
2
3 
4
5
6
7
8 
9 
10
11
12 
13 
14
15
16 
17 
18 
19

Figure 1. Basic DeerLab script for processing experimental data. The data is first pre-processed, and then distance distributions are fitted

using three different approaches: Tikhonov regularization, a two-Gaussian model, and a worm-like chain model.

Other approaches such as total variation (TV), Huber regularization, and Osher’s Bregman-iterated regularization are beneficial

in certain cases (Fábregas Ibáñez and Jeschke, 2019).

In the absence of the non-negativity constraint, the problem in Eq. (10) could be solved directly by P fit = K̄V exp, with the

α-dependent regularized pseudoinverse of the kernel matrix,115

K̄ = (KTK +α2LTL)−1KT (11)

in the case of Tikhonov regularization. However, due to the non-negativity constraint, this is not possible, and Eq. (10) is

solved using non-negative least-squares optimization algorithms (Lawson and Hanson, 1974; Bro and Jong, 1997; Chen and

Plemmons, 2009). K̄ will be useful for uncertainty analysis (see Section 9).

The selection of α has been optimized for a large testset in previous work (Edwards and Stoll, 2018) and replicated (Fábre-120

gas Ibáñez and Jeschke, 2019), revealing that selection methods such as the Akaike information criterion (AIC) (Akaike, 1974)

or general cross validation (GCV) (Golub et al., 1979) can be superior to L-curve criteria (Hansen, 2000; Chiang et al., 2005a;

Jeschke et al., 2006) if Gaussian white noise is the only source of error.

DeerLab provides a flexible regularization framework including all the aforementioned α-selection, non-iterated and iterated

regularization methods, as well as a wide selection of solvers. In particular, implementation of Huber and TV regularization125

is much improved compared to our original study (Fábregas Ibáñez and Jeschke, 2019), such that these now perform similarly

to Tikhonov regularization, invalidating the conclusions on the under-performance of Huber and TV regularization from that

initial work.

Fig. 2 shows how regularization approaches can be compared using DeerLab. Fig. 2a presents an example of low-noise

dipolar signal processed via Tikhonov, TV and Osher’s Bregman (Tikhonov) iterated regularization. All methods yield similar130
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results. Fig. 2b illustrates how regularization methods perform in the presence of strong noise. In such cases more differences

arise between the different methods.
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Figure 2. Analysis of background-free dipolar signals with regularization. A distance distribution is fitted to a low-noise (a) and a high-noise

(b) signal using Tikhonov regularization (blue), TV regularization (orange), and Osher’s Bregman iterated (OBIR) regularization (red). In all

cases, the AIC was used for the selection of the regularization parameter. The input data (simulated) are shown as grey dots and the ground

truth distance distribution is shown as grey shaded areas.

The outcomes of regularization analysis depend strongly on the choice of penalty norm, regularization operator, and α.

For the remainder of this work, if not specified otherwise, we will use the Tikhonov penalty equipped with the second-order

difference operator L2 and the AIC for α-selection.135

3.2 Parametric models

In an alternative representation, P is described as a parametric model P [θ] with (P [θ])i = P (ti,θ), where θ is a vector of a

small number of parameters. This is fitted to the data using

θfit = argmin
θ
‖V exp−KP [θ]‖2 (12)

The reduced dimensionality of the θ-space compared to P -space often stabilizes the solution of the ill-posed inverse problem140

to a sufficient extent, without the need of regularization.
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While bimodal Gaussian distributions were the first parametric models (Pannier et al., 2000a), the idea was generalized to a

linear combination of N Gaussian distributions (Sen et al., 2007) (which we will refer to as multi-Gauss model)

P [θ] =
N∑

i=1

aipi[ri,σi] (13)

where ai are the amplitudes and pi are the normalized Gaussian basis functions parameterized by their center distances ri and145

widths σi. Other parametrizations of the amplitudes can be used (Brandon et al., 2012; Stein et al., 2015).

To determine the optimal number N of Gaussians in the multi-Gauss model, Sen et al. proposed a statistical F-test (Sen

et al., 2007), while Hustedt and coworkers (Stein et al., 2015; Hustedt et al., 2018) introduced the corrected Akaike information

criterion (AICc) (Sugiura, 1978; Hurvich and Tsai, 1989) and the Bayesian information criterion (BIC) (Schwarz, 1978). Two

more recent approaches utilize Monte-Carlo simulations to determine the optimal multi-Gauss model (Dzuba, 2016; Timofeev150

et al., 2018). Parametric models are not limited to Gaussian basis functions. Many other basis function types (or mixtures

thereof) can be employed, e.g. 3D-Rice distributions (Domingo Köhler et al., 2011), spherical distributions (Ionita et al., 2008;

Kattnig and Hinderberger, 2013), random-coil models (Fitzkee and Rose, 2004), or worm-like chain models (Wilhelm and

Frey, 1996).

In a milestone for parametric modelling, Brandon et al. expanded the use of parametric models to include the modulation155

depth and a stretched-exponential background into the analysis of the signal in their software GLADD/DD (Brandon et al.,

2012; Stein et al., 2015). This results in a time-domain parametric model

V [θ] = V [λ,θP ,θB ] =K[λ,θB ]P [θP ] (14)

In this, the parameter vector θ not only includes the distance distribution parameters θP , but also the modulation depth λ and

the background parameters θB . In general, a parametric time-domain model can be fitted to the experimental data by solving160

θfit = argmin
θ
‖V exp−V [θ]‖2 (15)

DeerLab expands upon this, allowing the design and fitting of any kind of time-domain or distance distribution parametric

model. Automated multi-Gauss fitting and model selection using AIC, BIC, and other metrics are provided as well. In Fig. 3

we provide such an example of multi-Gauss fitting with DeerLab. The signal is fitted using the time-domain model Eq. (14)

and a varying number of Gaussians as the distance distribution model. Model selection based on the AIC optimizes the number165

of Gaussians, with a decent fit of the distance distribution.

It is, however, crucially important to keep in mind that approaches based on parametric models may suffer from selection

bias, i.e. the bias introduced by limiting the analysis to a specific family of models and by using a particular criterion for model

selection within that family (Freedman, 1983; Lukacs et al., 2009). Parametric model fits may also be affected by confirmation

bias, i.e. the tendency to process data in a way that matches one’s preconceptions and avoids contradiction of prior belief170

(Nickerson, 1998). In contrast, regularization approaches use parameter-free distributions and are less affected by these biases.

Therefore, it is recommended to use parametric models only when there are strong reasons to prefer them over parameter-free

models. Even then, the results should always be contrasted, and presented along with a parameter-free analysis.
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Figure 3. Time-domain multi-Gauss fitting of a simulated 4-pulse DEER signal. (a) The data are given as grey dots, the ground truth distance

distribution as a shaded area, and the corresponding fits of a 3-Gauss model as blue lines. The background fit is given as dashed orange line.

(b) The difference in AIC values as a function of the number of Gaussians is shown in blue, and the corresponding fits are given in the insets.

The differences ∆AIC are relative to the model with the lowest AIC value. The corresponding Akaike weights (see Section 10) are given

next to each model. The model with the lowest AIC value (i.e. largest Akaike weight) is selected as the optimal model.

4 One-step analysis

Neither parametric model fitting nor regularization are ideal. Parametric models can be fit directly to the full time-domain sig-175

nal, but are strongly limited by how well they can approximate the distribution ground truth. On the other hand, regularization

yields parameter-free distance distributions that accommodate a much larger range of ground truths, but regularization cannot

directly include time-domain parameters such as the background and the modulation depth.

With regularization methods, it is therefore common practice to use a two-step approach: (1) fit a parametric background

model to the time-domain signal and correct the signal by the fitted background (either by division or subtraction), and (2)180

apply regularization to the background-corrected signal. Software based on this approach includes DeerAnalysis (Jeschke

et al., 2006), LongDistances (Altenbach, 2019). Including the fitted background into the kernel for step (2), as in Eq. (3), does

also not eliminate the need for the two-step approach (Fábregas Ibáñez and Jeschke, 2020).
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The two-step analysis is sub-optimal, because the background fit in step (1) relies on the assumption that the oscillation

periods in the time-domain signal are much shorter than the overall signal length. Many experimentally observed signals do185

not satisfy this assumption. Therefore, the two-step analysis cannot robustly process these types of signals.

The most desirable approach is to simultaneously fit both the time-domain parameters θ and a parameter-free distance

distribution P to the time-domain signal V exp in one step, i.e.

(θfit,P fit) = argmin
θ,P≥0

F (θ,P ) (16)

with the regularized objective function190

F (θ,P ) = ‖V exp−K[θ]P ‖2 +α2R(LP ) (17)

Eq. (16) can be solved using a variety of constrainable non-linear optimization algorithms by combining θ and P into

a single parameter vector and applying all the constraints for θ and P (Altenbach, 2019). However, this does not take full

advantage of the special structure of the problem, i.e. that it is a penalized least-squares problem with a model for V that is

linear in P and non-linear in θ.195

To take advantage of this structure, DeerLab implements a nested subspace optimization algorithm based on separable non-

linear least-squares (Budil et al., 1996; Golub and Pereyra, 2003; Sima and Van Huffel, 2007). It separates the θ and P spaces

and uses a non-linear least-squares algorithm to solve

θfit = argmin
θ

F (θ,P [θ]) (18)

where P [θ] is the optimal parameter-free distance distribution for a given θ, determined via regularization200

P [θ] = argmin
P ′≥0

F (θ,P ′) (19)

as in Eq. (10), using a dedicated non-negative linear least-squares algorithm. (Note that P is now a parametric model since it

depends on θ, although this includes only modulation depth and background parameters.) For solving Eq. (18), the regulariza-

tion term in F is neglected. Once θfit is obtained, P fit is calculated as P [θfit]. The algorithm is iterative and is illustrated in

Fig. 4. It starts with an initial guess for θ and determines the associated P from Eq. (19). This P is then used by the algorithm205

of Eq. (18) to determine the next θ, which is then used again by the algorithm in Eq. (19) to get the next P [θ], and so on

until convergence is reached. The optimization in Eq. (19) can utilize any form of regularization, and it can be run with a fixed

regularization parameter α or optimize it each time.

Fig. 5 shows an example that compares this one-step approach to the traditional two-step analysis, using progressively more

truncated dipolar signals. For a sufficiently long signal (Fig. 5a) both approaches yield similar results, as the signal is long210

enough for the oscillations to average out and decay, facilitating the separate fit of the background in the two-step analysis. If

the signal is truncated as in Fig. 5b-d, the two-step analysis cannot properly fit the background anymore. In the most truncated

case (Fig. 5d), the two-step analysis does not even identify any major modulated component (a fitted λ≈ 0) fitting the data
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...θ1 θ2 θfit

P1 P2 Pfit

θ-space

P-space

Figure 4. One-step analsyis of dipolar signals using separable non-linear least-squares optimization. On the upper level (blue), a set of

parameters θn are computed by optimization of Eq. (18). For each θn, a corresponding distance distributionP n is computed by optimization

of Eq. (19). This procedure is repeated until a minimum of the objective function is found for an optimal parameter set θfit and leading to

the corresponding optimal distribution P fit.

mostly as a background signal, and cannot fit any reasonable distribution to it. In contrast, one-step analysis correctly identifies

the background in all cases and recovers the underlying distance distribution with reasonable fidelity.215

This shows that DeerLab’s ability to simultaneously fit the background and a parameter-free distribution opens up the

possibility of fitting parameter-free distance distributions to signals which might have been deemed unanalyzable in the past.

5 Multi-pathway models

Dipolar EPR spectroscopy found widespread use with 4-pulse DEER. Since then, experimental dipolar EPR spectroscopy has

developed into a set of diverse techniques, with signals exhibiting a variety of features. However, the data processing has not220

evolved much from its 4-pulse DEER origins.

The key operator in the analysis is the dipolar kernel K(t,r) (see Eq. 2). It represents the experiment, i.e. it describes how

the time-domain signal is obtained from a given distance distribution. If the kernel cannot account for a feature in the signal, it

is because the kernel model is incomplete. In these cases, it is preferable to improve the kernel rather than to tweak the signal

into an artificial 4-pulse DEER signal.225

One example of this is RIDME, where it is known that the measured signals in S > 1/2 systems contain overtones not

present in 4-pulse DEER (Razzaghi et al., 2014). If disregarded, these overtones cause distortions in the distance distribution

if the 4-pulse DEER kernel is used to analyze the data. This can be avoided by including the overtones into the model (Keller
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Figure 5. Comparison of one-step and two-step analysis. A stretched-exponential background and a parameter-free distance distribution were

fitted to a simulated 4-pulse DEER signal. The analysis was done by either fitting both simultaneously (blue) or by fitting the background

followed by the distribution (two-step analysis, orange). The analysis was repeated on the same signal with increasing truncation (a-d).

The two-step analysis fails in case (d). The data is given as grey dots, and the fitted signal and background are given as solid and dashed

lines, respectively. The true background is given as a grey dashed line for reference. The parameter-free distance distributions obtained via

Tikhonov regularization are given as respectively colored lines and the ground truth as a shaded area.

et al., 2017). In DeerLab, one can include a set of overtones with a background into the kernel model, which can be used to

directly fit primary RIDME data via, e.g. regularization.230

Other examples are multi-pulse DEER sequences, which generally are not fully modeled. All multi-pulse DEER experiments

feature modulations in addition to the basic modulation of Eq. (3). Despite their clear dipolar origin, these are regarded as

undesirable "artifacts": the "2+1 artifact" in 4-pulse DEER (Jeschke, 2012; Teucher and Bordignon, 2018), and "artifacts" or

"residues" in 5-pulse and 7-pulse DEER (Borbat et al., 2013; Spindler et al., 2015; Breitgoff et al., 2017b, a; Doll and Jeschke,

2017; Milikisiyants et al., 2018). Several experimental and processing approaches have been published that aim to remove235

these contributions from the total signal to recover the idealized dipolar evolution function (Borbat et al., 2013; Spindler et al.,

2015; Teucher and Bordignon, 2018; Breitgoff et al., 2017b, a). These approaches introduce further experimental or theoretical

complexity.

However, these additional contributions are actual dipolar signals. They may even provide strong oscillations at times when

the oscillations from the main signal have decayed, thus contributing to the signal-to-noise ratio of the experiment. Instead of240

removing these contributions due to the lack of a proper model, it is advantageous to extend the model to explicitly include

these contributions.
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Figure 6. Schematic representation of a dipolar multi-pathway DEER signal. (a) Background decays (orange dashed lines) and dipolar

evolution functions (blue solid lines) are shown for two different dipolar pathways. The unmodulated component Λ0 is given as a solid grey

line. (b) The overall signal (black) is given by the sum over all pathway dipolar evolution functions (blue) times the product over all pathway

background decays (orange).

DeerLab includes such an extended model for multi-pulse DEER, derivable from spin density matrix dynamics. In this

model, which we call the dipolar multi-pathway model, the overall signal is a combination of several dipolar signals arising

from dipolar pathways of varying amplitudes and refocusing times (Salikhov et al., 1981; Kutsovsky et al., 1990; Kattnig et al.,245

2013; Borbat et al., 2013; Spindler et al., 2015). The total signal is given by Eq. (2) with the general kernel

K(t,r) =

[
Λ0 +

N∑

p=1

λpK0(np(t−Tp), r)
]
·
N∏

p=1

B(np(t−Tp),λp) (20)

where Λ0 is the total contribution of the unmodulated dipolar pathways, the index p runs over all N modulating dipolar

pathways, Tp are the refocusing times of the individual modulated dipolar pathways, λp are the amplitudes of the modulated

dipolar pathways, np are the harmonics of the individual modulated pathways, and the background function is as in Eq. (6). A250

schematic representation is shown in Fig. 6. The kernel for standard 4-pulse DEER from Eq. (3) is a special case of Eq. (20)

with N = 1, T1 = 0, n1 = 1 Λ0 = 1−λ, and λ1 = λ.

Discretization of the kernel in Eq. (20) gives the same expression as in Eq. (7),

V =K[θ]P (21)

with the parameter set θ comprising Λ0, all λp, np, Tp, as well as κd, and d.255

Fig. 7 shows examples of how DeerLab can analyze multi-pulse DEER data in terms of a multi-pathway model, thus allevi-

ating the need for experimental correction protocols or signal pre-processing (beyond phase correction). Note that experimental

schemes which generate multiple datasets with some pathways shifted with respect to each other (Breitgoff et al., 2017a) can

profit from global analysis (vide infra) to stabilize the accurate estimation of pathway parameters.
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Figure 7. One-step analysis of multi-pulse DEER signals with the dipolar multi-pathway model for (a) 4-pulse DEER with the "2+1 artifact"

and (b) 5-pulse DEER with its 4-pulse "artifact". All data were normalized to the zero-time of the maximal contribution and fitted with two

modulated dipolar pathways. The data are given as grey dots, the signal and distribution fits are given as solid blue lines, the background fit

is given as an orange dashed line, and the ground truth is given as a shaded area.

This analysis of multi-pulse DEER signals shows the benefits of using full models for dipolar signals instead of removing260

or avoiding "artifacts" to try to match partial models. DeerLab provides a compact framework for testing, developing, and

applying more complete models.

6 Global analysis

Global analysis denotes the situation where a single model is fit simultaneously to multiple data sets. In dipolar EPR, this

was first used for fitting a multi-Gauss distribution model to several DEER datasets (Brandon et al., 2012). Later, Tikhonov265

regularization was employed to fit a short and a long DEER trace simultaneously (Rein et al., 2018).

Global analysis is implemented in DeerLab for both parametric and non-parametric distance distribution models, and for

an arbitrary number of dipolar signals. The global optimization problem of a set of M dipolar signals V exp,i using a model
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depending on parameters θ and on N parameter-free distance distributions P j is

(θfit,{P fit}) = argmin
θ,{P }≥0

[F (θ,{P }) +G({P })] (22)270

with {P }= {P 1, . . . ,PN} and

F (θ,{P }) =
M∑

i=1

wi
‖V exp,i−V i[θ,{P }]‖2

σ2
i

(23)

G({P }) = α2
N∑

j=1

R(LP j) (24)

with a similar expression without {P } and G({P }) for a fully parametric model. σi are the noise levels of the individual

signals. The parameter vector θ includes the parameters needed to generate all signals V i, where each V i typically depends275

only on a subset of the parameters.

The quantities wi in Eq. (23) are the weights that determine the contribution of each signal to the objective function. The

default is wi = 1, meaning that each data point from each signal contributes equally, given its noise level, to the objective

function. Different values of wi can be used to indicate preferential weighing.

If all signals V i derive from a single distance distribution, then we can use Eq. (22) together with280

V i[θ,P ] =Ki[θ]P or V i[θ] =Ki[θ]P [θ] (25)

Here, eachKi describes a different experiment (different pulse sequence, different trace length, etc.) and depends on a subset of

the parameters in θ. The distance distributionP can be either parametric (in which case θ includes the distribution parameters),

or it can be parameter-free. In the latter case, Eq. (22) is solved using separable non-linear least squares. As an example, in

Fig. 8 we simultaneously fit a 4-pulse DEER signal and a 5-pulse DEER signal with its secondary 4-pulse pathway contribution,285

using a model with a single parameter-free distribution, but separate backgrounds and modulation depths for the two signals.

The distance distribution underlying both signals is nicely recovered.

Note, however, that the analysis of dipolar signals of different length or obtained under different dynamical decoupling

conditions may be inconsistent if different conformers have different dephasing rates (Baber et al., 2015).

Another common global analysis situation is when the measured signals stem from several samples containing a mixture of290

chemical or structural components, each with its own distinct distribution, and related to each other via additional conditions

such as a chemical equilibrium. The simplest case is a system equilibrated between two forms A and B (A 
 B), e.g. a

protein–ligand binding equilibrium or a monomer–dimer equilibrium. In this case, the total distributions are

P i = xA,iPA +xB,iPB (26)

with the component distributions PA and PB. The mole fractions xA,i and xB,i depend on the location of the equilibrium,295

which might vary among the samples via ligand concentration, matrix composition, and other effectors. Either the mole frac-

tions or the underlying equilibrium constant can be included among the fitting parameters.
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Figure 8. Global analysis of a 4-pulse DEER and a 5-pulse DEER signal with its secondary 4-pulse pathway contribution, both derived from

the same distance distribution. The simulated data are given as grey dots, the ground truth distribution is given as a shaded area, and the

signal and distribution fits are given as solid blue lines.

Such titration or dose–response datasets have been analyzed using multi-Gaussian distribution models for the component

distributions (Stein et al., 2015; Martens et al., 2016; Collauto et al., 2017; Barth et al., 2018; Jagessar et al., 2020). As

discussed above, however, parameter-free distributions may often be a preferable choice. DeerLab enables global fitting of an300

arbitrary number of data sets with regularization approaches and, thus, analysis of titration datasets in terms of parameter-free

distributions. As an example, Fig. 9 shows such an analysis of a protein–ligand binding assay, using signals with different

noise levels, trace lengths, backgrounds, and modulation depths (Fig. 9a) with a model that includes the bound-protein mole

fractions among the parameters. The global analysis gives good fits to the time-domain data and results in two parameter-

free distributions that capture the underlying ground truth well (Fig. 9b). The extracted mole fractions are consistent with305

the underlying binding equilibrium (Fig. 9c). Alternatively, one can skip the separate determination of the mole fractions and

include the dissociation constant directly as a parameter in the global analysis of the dipolar data. In summary, this example

shows that DeerLab allows global analysis of titration datasets using parameter-free distributions.

7 Global and local minima

Even when a fitted model agrees with the experimental data, and a minimum of the objective function has been located, it310

does not mean that the only or the best fit has been found. The objective function can have multiple minima, meaning that the

located minimum is not necessarily the global minimum (see Fig. 10). Which minimum is found depends mainly on where the

search is started. The boundaries set on the parameter space can also influence the outcome if a minimum is located outside

these boundaries. Other factors, e.g. the numerical algorithms and convergence parameters used for the optimization, can affect

this as well.315
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Figure 9. Global fitting of titration data of a protein–ligand binding equilibrium with parameter-free distributions. In (a) 4-pulse DEER traces

with different trace lengths, modulation depths, backgrounds, and noise levels were simulated for different ligand concentrations added to a

protein concentration of 1µM. These parameters as well as the mole fractions of bound/unbound protein for each trace and two parameter-

free distance distributions for the bound and unbound states (via Tikhonov regularization) were fitted simultaneously. The simulated data are

given as grey dots and the fitted signals and backgrounds are given as solid and dashed blue lines, respectively. In (b) the distance distribution

fits for the unbound (red) and bound (orange) states are given as well as the combined fitted distribution (black) for the different ligand

concentrations. The ground truth sum distributions are given as grey shaded areas. In (c) the fitted mole fractions of the unbound (blue) and

bound (orange) states are given as colored dots. The solid grey lines represent the ground truth for a dissociation constant ofKD = 5.65µM.

While there are dedicated global optimization algorithms, the simplest approach to find a global minimum is to repeat the

optimization process with different starting values in order to explore the parameter space more fully. After sampling enough

starting points, a set of minima is found and the one with the lowest objective function value is taken as the global minimum

(see Fig. 10).
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While these procedures can be costly, it is recommended to routinely check that variation of algorithmic parameters does320

not yield a lower minimum.

θstart,2
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tiv

e 
fu

nc
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θ

Figure 10. Global vs. local minima. During optimization of a parameter θ, by minimization of an objective function f(θ) (black line), several

local minima (blue) might be found instead of the global minimum (orange). The global minimum can be found by varying the starting point,

the lower/upper boundaries θupper and θlower (to find minima which might be outside the bounds, e.g. θlocal,3), or the convergence parameters

ε of the numerical solver such that some local minima might be ignored.

8 Goodness of fit

After obtaining a fitted model, an important step is to assess the goodness of the fit. If the fit is not good, either the optimization

failed to locate an appropriate minimum (see previous section), or the model is inapplicable (e.g. oversimplified) for the given

experimental data and a better model needs to be used.325

To assess the goodness of fit, several procedures can be utilized. A direct test is to compare the histogram of the normalized

residuals |Vexp,i−Vi[θ]|/σ to the standard Gaussian distribution N (0,1). Here, σ is the noise standard deviation estimated

either from a dataset with several, individually stored scans (Edwards and Stoll, 2016), from the standard deviation of the

(flat) imaginary part of the signal, or from the residuals of the signal minus the fitted model. Accuracy of the estimate of σ

decreases in the sequence indicated, due to a possible imbalance in quadrature channels and the slight model inadequacy that is330

unavoidable for ill-posed problems. An example of this is shown in Fig. 11b. If the histogram deviates strongly from a Gaussian

distribution, the fit is considered inadequate. Alternatively, the comparison can also be based on a statistical test.

Another method is to examine the reduced χ2 value

χ2
red =

1
Ndof

‖Vexp−V [θfit]‖2
σ2

(27)

Here,Ndof is the number of degrees of freedom, which can be taken as approximately equal to the number of data points minus335

the number of model parameters. A good fit is characterized by χ2
red ≈ 1. Note that the use of χ2

red for non-linear models is not

rigorous. Also, the notion of (effective) number of parameters for a parameter-free distribution model, estimated as tr(KK̄)

with K̄ defined in Eq. (11), is not straightforward (Edwards and Stoll, 2016).
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Additional methods for assessing goodness of fit are discussed in Budil et al. (1996) and (Hansen et al., 2012).

9 Uncertainty analysis340

Up to this point, we took advantage of knowing the ground truth when we assessed quality of the solutions. However, in

experimental work the ground truth is unknown. The presence of noise in experimental signals introduces uncertainty about the

underlying noise-free dipolar signal and results in uncertainty about the model parameters. This, in turn, affects the strength of

the conclusions that can safely be drawn. For example, r0 = (3.2±0.1) nm supports much more confident conclusions about r0

than r0 = (3.2±0.9) nm. It is therefore crucial to estimate and report parameter uncertainties. Reporting fitted parameters and345

distance distributions extracted from experimental data without accompanying uncertainty estimates is meaningless. Several

approaches have been proposed for uncertainty estimation, including validation of the regularization model (Jeschke et al.,

2006; Altenbach, 2019), curvature matrices (Stein et al., 2015), and Bayesian inference (Edwards and Stoll, 2016).

DeerLab provides two separate methods for uncertainty estimation, both for model parameters θi and for vector elements Pj

of parameter-free distance distributions.350

The first method estimates parameter uncertainties from the covariance matrix (Budil et al., 1996). For a fully parametric

model with parameter vector θ, this is well established (Hustedt et al., 2018). The covariance matrix for θ is

Σθ = σ2(JTJ)−1 (28)

where Jθ is the Jacobian matrix of derivatives with elements Jij = ∂Vj [θ]/∂θi evaluated at θ = θfit and is calculated using

numerical differentiation.355

There is also a simple way to obtain the covariance matrix ΣP for the elements of a parameter-free P determined via

regularization, but only if the non-negativity constraint for P is disregarded. It is obtained by propagating the time-domain

noise covariance matrix σ2I (see Eq. (8)) to the distance domain by (Weese, 1992; Kasper et al., 2002)

ΣP = σ2K̄K̄T (29)

with K̄ defined in Eq. (11). Note that this can be utilized even for models that depend on other parameters, since V always360

depends linearly on P , as shown above.

From the covariance matrices in Eqs. (28) and (29), the standard errors of a parameter θi or a distribution vector element Pi

are obtained as

σθi
=
√

(Σθ)ii and σPi
=
√

(ΣP )ii (30)

These are used to estimate symmetric confidence intervals (CIs) around the fitted parameter for a confidence level γ with365

boundaries

θfit,i± zγσθi
and Pfit,i± zγσPi

(31)
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where zγ is the γ-quantile of a standard Gaussian or Student’s t-distribution.

This method for estimating CIs is simple and stands on a sound theoretical basis. However, it has several limitations. (1) It

approximates the parameter likelihood by a Gaussian distribution centered around the fitted θfit and P fit. While this is often a370

reasonable approximation, it can still fail in many cases. (2) It assumes that the parameters are unbounded. This is not fulfilled

in the analysis of dipolar signals, as most parameters are constrained to a certain range, e.g. 0≤ λ≤ 1 and Pi ≥ 0. Although

the boundary conditions can be imposed by cropping the CIs in Eq. (31) to the parameter range (Wang, 2008), the calculation

of the CIs is still based on an unbounded assumption. Hence, the CIs do not include the additional information provided by the

constraints. (3) In the case of a model that depends on both parameters θ and a parameter-free distribution P , the covariances375

between θi and Pj are not accounted for, potentially leading to underestimation of uncertainties.
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Figure 11. Uncertainty analysis. In (a) a simulated noisy 4-pulse DEER signal with exponential background (grey dots) is fitted with a

parameter-free distance distribution (red line). In (b), the red bars show the histogram of normalized residual values and the reference

standard Gaussian distribution as a grey shaded area. In (c) and (d) the fitted distance distribution is given as blue/orange lines as well as

the 50% and 95% confidence intervals (shaded areas) obtained via the standard method (orange, top) and via bootstrapping (blue, bottom).

The ground truth distribution is shown as a shaded grey area for reference. The estimated distribution of the fitted modulation depth λ (e)

and background decay rate constant κ (f) obtained via the standard method are given as orange lines. The kernel density estimation obtained

via bootstrapping are given as blue lines. The true values of λ and κ are given as a dashed grey line for reference. All bootstrap results were

obtained from 1000 bootstrap samples and the regularization parameter was optimized using AIC for the original signal and fixed throughout

the analysis.

A more general and accurate method for the estimation of parameter uncertainty involves bootstrapping (Efron and Tibshi-

rani, 1986; Banks et al., 2010). This is a Monte Carlo resampling method based on generated synthetic signals with different

noise realizations. The variant implemented in DeerLab first generates N synthetic traces V k by adding N different noise
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realizations to the fitted model V [θfit,P fit]. The noise is drawn from a Gaussian distribution with standard deviation σ esti-380

mated from the experimental data. Then, the N bootstrap traces V k are analyzed in the same fashion as the original dataset

V exp, resulting in N + 1 fitted parameter vectors θfit,k and distance distributions P fit,k. The distributions of the parameter

values and the distance distribution vector elements are then taken as approximations of the underlying parameter uncertainty

distributions.

The bootstrap method, while costly, has several important advantages over the method based on covariance matrices. All385

information provided by parameter constraints is included in the estimation. Additionally, model-free estimations of parameter

distributions are obtained, without the need to assume a Gaussian distribution. These can be statistically analyzed in multiple

ways to quantify the parameter uncertainty. For example, in analogy to above, one can define the confidence interval for a

parameter θ with confidence level γ = 1−α as

(
θ1−α/2 , θα/2

)
(32)390

where θ1−α/2 and θα/2 are the (1−α/2)-th and (α/2)-th percentiles of the bootstrapped θ distribution.

Fig. 11 shows an example of parameter uncertainty estimation, both using the standard method and bootstrap. Although

both methods lead to similar confidence intervals, the bootstrapped solution provides narrower intervals thanks to the use of

the additional information provided by parameter boundaries and the non-negativity constraint P ≥ 0. While the standard

method provides an easily accessible uncertainty estimation, the use of bootstrapping is recommended for producing final395

results.

10 Model comparison

The above uncertainty analysis is performed under the assumption of a specific model for the distance distribution (parametric

or parameter-free), the background, and the experiment. All estimated uncertainties capture variability only within this assumed

model. The possibility that the data could be explained equally well, or better, by other models is not incorporated.400

Model selection approaches, as outlined above for parametrized and parameter-free distance distribution (selection of num-

ber of Gaussians, regularization parameter selection), provide convenient quantitative decision criteria for picking one distri-

bution model over another in a principled fashion. On the other hand, background models are often chosen ad hoc. Finally,

the choice of the standard DEER experiment model in Eq. (3) is based on physical assumptions (no orientation selection, no

bandwidth limitations, no conformer-dependent phase memory times, no exchange couplings, etc.) that might not all be fully405

valid for a given experimental situation. Whether principled or ad hoc, any model selection eliminates model uncertainty from

the analysis and leads to bias.

It is therefore preferable to compare and report the relative performance of a series of plausible models, without picking a

winner. This can be accomplished using Akaike weights, defined as (Burnham and Anderson, 2003)

wAIC,i =
e−∆AIC,i/2

∑M
k=1 e−∆AIC,k/2

(33)410
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where ∆AIC,i is the difference between the AIC value of model i and the lowest AIC value within the set of models. The

Akaike weights give the probability that model i is the best among the set of M candidate models, given the data. This can be

used to compare a set of different parametric models, or to compare a series of parameter-free distribution models differing in

the regularization parameter α.

Figure 12a illustrates this for a set of parametric models differing in complexity (number of components) and type of basis415

function. The analysis finds Akaike weights of about 25% for the 2-Gauss, 3-Gauss and 1-skewed Gauss models, indicating

that the data do not provide enough evidence to clearly identify a best model. Fig. 12b shows a comparison for parameter-free

distribution models obtained with different α values. It is apparent that models over a range of α values are similarly likely.

Therefore, in neither case is there a clear "winner" model. Note that uncertainty on the regularization parameter α could also

be propagated to the resulting distance distribution and thereby included in the confidence bands. In cases where this is not420

applicable and depending on the conclusions that one wants to draw, is may be prudent to list all models that fit the data

reasonably well, as opposed to picking the model with the highest wi.

Despite these simple numerical procedures for model comparison, researchers need to use careful judgment in which models

are included in a comparison and explicitly disclose the reasoning behind all model choices. Also, if the correct model is not

included, then even such model comparison will lead to biased or incorrect conclusions. This is our rational for recommending425

routine comparison of results obtained with parametrized models to those obtained by parameter-free analysis, as the latter

imposes the least constraints on the shape of the distribution.

11 Concluding remarks

Dipolar EPR spectroscopy requires reliable and robust data processing tools. The associated software should also be flexible

and adaptable to quickly incorporate new developments in the field. DeerLab collects many existing as well as several novel430

data analysis methods in a flexible, robust, and reliable manner.

By allowing analysis workflows to be shared, DeerLab provides a significant step towards solving reproducibility issues

plaguing dipolar EPR spectroscopy analysis. With DeerLab, the analysis scripts can be provided along with published data,

leading to improved reproducibility. Through an online repository (see Code Availability below), all DeerLab versions remain

available, further enhancing reproducibility.435

We showed how DeerLab can serve as a powerful method development tool. It allows the discovery and testing of new pro-

cessing techniques. We illustrated this by introducing several extensions: one-step analysis with parameter-free distributions,

the dipolar multi-pathway model, and uncertainty estimation using bootstrap. The discussion of new methods or comparisons

between established ones based on statistical arguments is also largely facilitated by such a scriptable tool.

Although DeerLab does not come with a GUI, it can serve as the data processing engine for intuitive and dedicated GUI-440

based data analysis tools. These are essential for the robust and successful application of routine dipolar EPR spectroscopy in

fields such as structural biology or materials science.
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Figure 12. Model comparison using Akaike weights. The Akaike weights (in percentages) are given for (a) a set of parametric distance

distribution models with varying number n of ordinary (G-n), skewed (sG-n) and generalized (gG-n) Gaussians, and (b) for parameter-free

distance distributions determined over a set of values for the regularization parameter α. For each model in (a) and (b), the corresponding

distance distribution is shown above the bar. (a) and (b) are based on different simulated DEER signals of different distributions.

In conclusion, DeerLab provides a unified and extensible platform for data analysis in dipolar EPR spectroscopy, opening

up a new world of data processing workflows.

12 Supporting information445

All DeerLab (version 0.9.0) scripts employed for generating the figures in this work are available in the Supporting Information.

Code availability. The DeerLab source code can be downloaded from the GitHub repository (www.github.com/JeschkeLab/DeerLab). Fur-

ther information, examples, and documentation can be found on the homepage.

Author contributions. L.F.I. and S.S. designed and implemented the software. All authors contributed to the manuscript.

22

https://doi.org/10.5194/mr-2020-13

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 9 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Competing interests. The authors declare that they have no conflict of interest.450

Acknowledgements. This work was supported by the ETH Zurich with grant ETH-35 18-2 (G.J., L.F.I.), by the National Institutes of Health

(grants GM125753 and GM127325, S.S.), and by the National Science Foundation (grant CHE-1452967, S.S.).

23

https://doi.org/10.5194/mr-2020-13

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 9 June 2020
c© Author(s) 2020. CC BY 4.0 License.



References

Akaike, H.: A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19, 716–723,

https://doi.org/10.1109/TAC.1974.1100705, 1974.455

Altenbach, C.: LongDistances, 2019.

Baber, J. L., Louis, J. M., and Clore, G. M.: Dependence of Distance Distributions Derived from Double Electron–Electron

Resonance Pulsed EPR Spectroscopy on Pulse-Sequence Time, Angewandte Chemie International Edition, 54, 5336–5339,

https://doi.org/10.1002/anie.201500640, 2015.

Banks, H. T., Holm, K., and Robbins, D.: Standard error computations for uncertainty quantification in inverse problems: Asymptotic theory460

vs. bootstrapping, Mathematical and Computer Modelling, 52, 1610–1625, https://doi.org/10.1016/j.mcm.2010.06.026, 2010.

Barth, K., Hank, S., Spindler, P. E., Prisner, T. F., Tampé, R., and Joseph, B.: Conformational Coupling and trans-Inhibition in the Human

Antigen Transporter Ortholog TmrAB Resolved with Dipolar EPR Spectroscopy, Journal of the American Chemical Society, 140, 4527–

4533, https://doi.org/10.1021/jacs.7b12409, 2018.

Borbat, P. P. and Freed, J. H.: Dipolar Spectroscopy – Single-Resonance Methods, in: eMagRes, pp. 465–494, 2017.465

Borbat, P. P., Georgieva, E. R., and Freed, J. H.: Improved Sensitivity for Long-Distance Measurements in Biomolecules: Five-Pulse Double

Electron–Electron Resonance, The Journal of Physical Chemistry Letters, 4, 170–175, https://doi.org/10.1021/jz301788n, 2013.

Bowman, M. K., Maryasov, A. G., Kim, N., and DeRose, V. J.: Visualization of distance distribution from pulsed double electron–electron

resonance data, Applied Magnetic Resonance, 26, 23–39, https://doi.org/10.1007/BF03166560, 2004.

Brandon, S., Beth, A. H., and Hustedt, E. J.: The global analysis of DEER data, Journal of Magnetic Resonance, 218, 93–104,470

https://doi.org/10.1016/j.jmr.2012.03.006, 2012.

Breitgoff, F. D., Polyhach, Y. O., and Jeschke, G.: Reliable nanometre-range distance distributions from 5-pulse double electron electron

resonance, Physical Chemistry Chemical Physics, 19, 15 754–15 765, https://doi.org/10.1039/C7CP01487B, 2017a.

Breitgoff, F. D., Soetbeer, J., Doll, A., Jeschke, G., and Polyhach, Y. O.: Artefact suppression in 5-pulse double electron electron resonance

for distance distribution measurements, Physical Chemistry Chemical Physics, 19, 15 766–15 779, https://doi.org/10.1039/C7CP01488K,475

2017b.

Bro, R. and Jong, S. D.: A fast non-negativity-constrained least squares algorithm, Journal of Chemometrics, 11, 393–401,

https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L, 1997.

Budil, D. E., Lee, S., Saxena, S., and Freed, J. H.: Nonlinear-Least-Squares Analysis of Slow-Motion EPR Spectra in One and

Two Dimensions Using a Modified Levenberg–Marquardt Algorithm, Journal of Magnetic Resonance, Series A, 120, 155–189,480

https://doi.org/10.1006/jmra.1996.0113, 1996.

Burnham, K. P. and Anderson, D. R.: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, Springer

Science & Business Media, 2003.

Chen, D. and Plemmons, R. J.: Nonnegativity constraints in numerical analysis, in: The Birth of Numerical Analysis, pp. 109–139, World

Scientific, https://doi.org/10.1142/9789812836267_0008, 2009.485

Chiang, Y.-W., Borbat, P. P., and Freed, J. H.: The determination of pair distance distributions by pulsed ESR using Tikhonov regularization,

Journal of Magnetic Resonance, 172, 279–295, https://doi.org/10.1016/j.jmr.2004.10.012, 2005a.

Chiang, Y.-W., Borbat, P. P., and Freed, J. H.: Maximum entropy: A complement to Tikhonov regularization for determination of pair distance

distributions by pulsed ESR, Journal of Magnetic Resonance, 177, 184–196, https://doi.org/10.1016/j.jmr.2005.07.021, 2005b.

24

https://doi.org/10.5194/mr-2020-13

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 9 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Collauto, A., DeBerg, H. A., Kaufmann, R., Zagotta, W. N., Stoll, S., and Goldfarb, D.: Rates and equilibrium constants of the ligand-induced490

conformational transition of an HCN ion channel protein domain determined by DEER spectroscopy, Physical Chemistry Chemical

Physics, 19, 15 324–15 334, https://doi.org/10.1039/C7CP01925D, 2017.

Di Valentin, M., Albertini, M., Zurlo, E., Gobbo, M., and Carbonera, D.: Porphyrin Triplet State as a Potential Spin Label

for Nanometer Distance Measurements by PELDOR Spectroscopy, Journal of the American Chemical Society, 136, 6582–6585,

https://doi.org/10.1021/ja502615n, 2014.495

Doll, A. and Jeschke, G.: Double electron–electron resonance with multiple non-selective chirp refocusing, Physical chemistry chemical

physics: PCCP, 19, 1039–1053, https://doi.org/10.1039/c6cp07262c, 2017.

Domingo Köhler, S., Spitzbarth, M., Diederichs, K., Exner, T. E., and Drescher, M.: A short note on the analysis of distance measurements

by electron paramagnetic resonance, Journal of Magnetic Resonance, 208, 167–170, https://doi.org/10.1016/j.jmr.2010.10.005, 2011.

Dzuba, S. A.: The determination of pair-distance distribution by double electron–electron resonance: regularization by the length of distance500

discretization with Monte Carlo calculations, Journal of Magnetic Resonance, 269, 113–119, https://doi.org/10.1016/j.jmr.2016.06.001,

2016.

Edwards, T. H. and Stoll, S.: A Bayesian approach to quantifying uncertainty from experimental noise in DEER spectroscopy, Journal of

Magnetic Resonance, 270, 87–97, https://doi.org/10.1016/j.jmr.2016.06.021, 2016.

Edwards, T. H. and Stoll, S.: Optimal Tikhonov regularization for DEER spectroscopy, Journal of Magnetic Resonance, 288, 58–68,505

https://doi.org/10.1016/j.jmr.2018.01.021, 2018.

Efron, B. and Tibshirani, R.: Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy,

Statistical Science, 1, 54–75, https://doi.org/10.1214/ss/1177013815, publisher: Institute of Mathematical Statistics, 1986.

Fitzkee, N. C. and Rose, G. D.: Reassessing random-coil statistics in unfolded proteins, Proceedings of the National Academy of Sciences,

101, 12 497–12 502, https://doi.org/10.1073/pnas.0404236101, 2004.510

Freedman, D. A.: A Note on Screening Regression Equations, The American Statistician, 37, 152–155, https://doi.org/10.2307/2685877,

1983.

Fábregas Ibáñez, L. and Jeschke, G.: General regularization framework for DEER spectroscopy, Journal of Magnetic Resonance, 300, 28–40,

https://doi.org/10.1016/j.jmr.2019.01.008, 2019.

Fábregas Ibáñez, L. and Jeschke, G.: Optimal background treatment in dipolar spectroscopy, Physical Chemistry Chemical Physics, 22,515

1855–1868, https://doi.org/10.1039/C9CP06111H, 2020.

Golub, G. and Pereyra, V.: Separable nonlinear least squares: the variable projection method and its applications, Inverse Problems, 19,

R1–R26, https://doi.org/10.1088/0266-5611/19/2/201, publisher: IOP Publishing, 2003.

Golub, G. H., Heath, M., and Wahba, G.: Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter, Technometrics,

21, 215–223, https://doi.org/10.1080/00401706.1979.10489751, 1979.520

Hansen, P. C.: The L-curve and its use in the numerical treatment of inverse problems, in: Computational Inverse Problems in Electrocardi-

ology, ed. P. Johnston, Advances in Computational Bioengineering, pp. 119–142, WIT Press, 2000.

Hansen, P. C., Pereyra, V., and Scherer, G.: Least Squares Data Fitting with Applications, Johns Hopkins University Press, 2012.

Hintze, C., Bücker, D., Domingo Köhler, S., Jeschke, G., and Drescher, M.: Laser-Induced Magnetic Dipole Spectroscopy, The Journal of

Physical Chemistry Letters, 7, 2204–2209, https://doi.org/10.1021/acs.jpclett.6b00765, 2016.525

Hogben, H. J., Krzystyniak, M., Charnock, G. T. P., Hore, P. J., and Kuprov, I.: Spinach – A software library for simulation of spin dynamics

in large spin systems, Journal of Magnetic Resonance, 208, 179–194, https://doi.org/10.1016/j.jmr.2010.11.008, 2011.

25

https://doi.org/10.5194/mr-2020-13

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 9 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Hurvich, C. M. and Tsai, C.-L.: Regression and time series model selection in small samples, Biometrika, 76, 297–307,

https://doi.org/10.1093/biomet/76.2.297, 1989.

Hustedt, E. J., Marinelli, F., Stein, R. A., Faraldo-Gómez, J. D., and Mchaourab, H. S.: Confidence Analysis of DEER Data and Its Structural530

Interpretation with Ensemble-Biased Metadynamics, Biophysical Journal, 115, 1200–1216, https://doi.org/10.1016/j.bpj.2018.08.008,

2018.

Ionita, P., Volkov, A., Jeschke, G., and Chechik, V.: Lateral Diffusion of Thiol Ligands on the Surface of Au Nanoparticles: An Electron

Paramagnetic Resonance Study, Analytical Chemistry, 80, 95–106, https://doi.org/10.1021/ac071266s, 2008.

Jagessar, K. L., Claxton, D. P., Stein, R. A., and Mchaourab, H. S.: Sequence and structural determinants of ligand-535

dependent alternating access of a MATE transporter, Proceedings of the National Academy of Sciences, 117, 4732–4740,

https://doi.org/10.1073/pnas.1917139117, 2020.

Jeschke, G.: DEER Distance Measurements on Proteins, Annual Review of Physical Chemistry, 63, 419–446,

https://doi.org/10.1146/annurev-physchem-032511-143716, 2012.

Jeschke, G.: Dipolar Spectroscopy – Double-Resonance Methods, in: eMagRes, pp. 1459–1476,540

https://doi.org/10.1002/9780470034590.emrstm1518, 2016.

Jeschke, G.: MMM: A toolbox for integrative structure modeling, Protein Science, 27, 76–85, https://doi.org/10.1002/pro.3269, 2018.

Jeschke, G., Pannier, M., Godt, A., and Spiess, H. W.: Dipolar spectroscopy and spin alignment in electron paramagnetic resonance, Chemical

Physics Letters, 331, 243–252, https://doi.org/10.1016/S0009-2614(00)01171-4, 2000.

Jeschke, G., Koch, A., Jonas, U., and Godt, A.: Direct Conversion of EPR Dipolar Time Evolution Data to Distance Distributions, Journal of545

Magnetic Resonance, 155, 72–82, https://doi.org/10.1006/jmre.2001.2498, 2002.

Jeschke, G., Panek, G., Godt, A., Bender, A., and Paulsen, H.: Data analysis procedures for pulse ELDOR measurements of broad distance

distributions, Applied Magnetic Resonance, 26, 223, https://doi.org/10.1007/BF03166574, 2004.

Jeschke, G., Chechik, V., Ionita, P., Godt, A., Zimmermann, H., Banham, J., Timmel, C. R., Hilger, D., and Jung, H.: Deer-

Analysis2006—a comprehensive software package for analyzing pulsed ELDOR data, Applied Magnetic Resonance, 30, 473–498,550

https://doi.org/10.1007/BF03166213, 2006.

Kasper, v. W., John A, S., William, N., and Luis, T.: Data and model uncertainty estimation for linear inversion, Geophysical Journal

International, 149, 625–632, https://doi.org/10.1046/j.1365-246X.2002.01660.x, 2002.

Kattnig, D. R. and Hinderberger, D.: Analytical distance distributions in systems of spherical symmetry with applications to double elec-

tron–electron resonance, Journal of Magnetic Resonance, 230, 50–63, https://doi.org/10.1016/j.jmr.2013.01.007, 2013.555

Kattnig, D. R., Reichenwallner, J., and Hinderberger, D.: Modeling Excluded Volume Effects for the Faithful Description of

the Background Signal in Double Electron–Electron Resonance, The Journal of Physical Chemistry B, 117, 16 542–16 557,

https://doi.org/10.1021/jp408338q, 2013.

Keller, K., Mertens, V., Qi, M., Nalepa, A. I., Godt, A., Savitsky, A., Jeschke, G., and Yulikov, M.: Computing distance distributions from

dipolar evolution data with overtones: RIDME spectroscopy with Gd(III)-based spin labels, Physical Chemistry Chemical Physics, 19,560

17 856–17 876, https://doi.org/10.1039/C7CP01524K, 2017.

Kulik, L. V., Dzuba, S. A., Grigoryev, I. A., and Tsvetkov, Y. D.: Electron dipole–dipole interaction in ESEEM of nitroxide biradicals,

Chemical Physics Letters, 343, 315–324, https://doi.org/10.1016/S0009-2614(01)00721-7, 2001.

Kutsovsky, Y. E., Mariasov, A. G., Aristov, Y. I., and Parmon, V. N.: Electron spin echo as a tool for investigation of surface structure of

finely dispersed fractal solids, Reaction Kinetics and Catalysis Letters, 42, 19–24, https://doi.org/10.1007/BF02137612, 1990.565

26

https://doi.org/10.5194/mr-2020-13

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 9 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Lawson, C. L. and Hanson, R. J.: Solving Least Squares Problems, vol. 18, SIAM, Prentice-Hall, Englewood Cliffs, New Jersey, 1974.

Lukacs, P. M., Burnham, K. P., and Anderson, D. R.: Model selection bias and Freedman’s paradox, Annals of the Institute of Statistical

Mathematics, 62, 117, https://doi.org/10.1007/s10463-009-0234-4, 2009.

Martens, C., Stein, R. A., Masureel, M., Roth, A., Mishra, S., Dawaliby, R., Konijnenberg, A., Sobott, F., Govaerts, C., and Mchaourab,

H. S.: Lipids modulate the conformational dynamics of a secondary multidrug transporter, Nature Structural & Molecular Biology, 23,570

744–751, https://doi.org/10.1038/nsmb.3262, 2016.

MathWorks: MATLAB, 2020.

Matveeva, A. G., Nekrasov, V. M., and Maryasov, A. G.: Analytical solution of the PELDOR inverse problem using the integral Mellin

transform, Physical Chemistry Chemical Physics, 19, 32 381–32 388, https://doi.org/10.1039/C7CP04059H, 2017.

Milikisiyants, S., Voinov, M. A., and Smirnov, A. I.: Refocused Out-Of-Phase (ROOPh) DEER: A pulse scheme for suppress-575

ing an unmodulated background in double electron-electron resonance experiments, Journal of Magnetic Resonance, 293, 9–18,

https://doi.org/10.1016/j.jmr.2018.05.007, 2018.

Milikisyants, S., Scarpelli, F., Finiguerra, M. G., Ubbink, M., and Huber, M.: A pulsed EPR method to determine distances between param-

agnetic centers with strong spectral anisotropy and radicals: The dead-time free RIDME sequence, Journal of Magnetic Resonance, 201,

48–56, https://doi.org/10.1016/j.jmr.2009.08.008, 2009.580

Milov, A., Salikhov, K., and Shchirov, M.: Use of the Double Resonance in Electron Spin Echo Method for the Study of Paramagnetic Center

Spatial Distribution in Solids, Soviet Physics Solid State, 23, 565–569, 1981.

Milov, A. D., Ponomarev, A. B., and Tsvetkov, Y. D.: Electron-electron double resonance in electron spin echo: Model biradical systems and

the sensitized photolysis of decalin, Chemical Physics Letters, 110, 67–72, https://doi.org/10.1016/0009-2614(84)80148-7, 1984.

Milov, A. D., Maryasov, A. G., and Tsvetkov, Y. D.: Pulsed electron double resonance (PELDOR) and its applications in free-radicals585

research, Applied Magnetic Resonance, 15, 107–143, https://doi.org/10.1007/BF03161886, 1998.

Nickerson, R. S.: Confirmation Bias: A Ubiquitous Phenomenon in Many Guises, Review of General Psychology, 2, 175–220,

https://doi.org/10.1037/1089-2680.2.2.175, 1998.

Pannier, M., Schädler, V., Schöps, M., Wiesner, U., Jeschke, G., and Spiess, H. W.: Determination of Ion Cluster Sizes and Cluster-

to-Cluster Distances in Ionomers by Four-Pulse Double Electron Electron Resonance Spectroscopy, Macromolecules, 33, 7812–7818,590

https://doi.org/10.1021/ma000800u, 2000a.

Pannier, M., Veit, S., Godt, A., Jeschke, G., and Spiess, H. W.: Dead-Time Free Measurement of Dipole–Dipole Interactions between Electron

Spins, Journal of Magnetic Resonance, 142, 331–340, https://doi.org/10.1006/jmre.1999.1944, 2000b.

Pribitzer, S., Sajid, M., Hülsmann, M., Godt, A., and Jeschke, G.: Pulsed triple electron resonance (TRIER) for dipolar correlation spec-

troscopy, Journal of Magnetic Resonance, 282, 119–128, https://doi.org/10.1016/j.jmr.2017.07.012, 2017.595

Razzaghi, S., Qi, M., Nalepa, A. I., Godt, A., Jeschke, G., Savitsky, A., and Yulikov, M.: RIDME Spectroscopy with Gd(III) Centers, The

Journal of Physical Chemistry Letters, 5, 3970–3975, https://doi.org/10.1021/jz502129t, 2014.

Rein, S., Lewe, P., Andrade, S. L., Kacprzak, S., and Weber, S.: Global analysis of complex PELDOR time traces, Journal of Magnetic

Resonance, 295, 17–26, https://doi.org/10.1016/j.jmr.2018.07.015, 2018.

Salikhov, K. M., Dzuba, S. A., and Raitsimring, A. M.: The theory of electron spin–echo signal decay resulting from dipole–dipole in-600

teractions between paramagnetic centers in solids, Journal of Magnetic Resonance (1969), 42, 255–276, https://doi.org/10.1016/0022-

2364(81)90216-X, 1981.

27

https://doi.org/10.5194/mr-2020-13

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 9 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Saxena, S. and Freed, J. H.: Double quantum two-dimensional Fourier transform electron spin resonance: Distance measurements, Chemical

Physics Letters, 251, 102–110, https://doi.org/10.1016/0009-2614(96)00075-9, 1996.

Saxena, S. and Freed, J. H.: Theory of double quantum two-dimensional electron spin resonance with application to distance measurements,605

The Journal of Chemical Physics, 107, 1317–1340, https://doi.org/10.1063/1.474490, 1997.

Schwarz, G.: Estimating the Dimension of a Model, The Annals of Statistics, 6, 461–464, https://doi.org/10.1214/aos/1176344136, 1978.

Sen, K. I., Logan, T. M., and Fajer, P. G.: Protein Dynamics and Monomer–Monomer Interactions in AntR Activation by Electron Paramag-

netic Resonance and Double Electron–Electron Resonance, Biochemistry, 46, 11 639–11 649, https://doi.org/10.1021/bi700859p, 2007.

Sima, D. M. and Van Huffel, S.: Separable nonlinear least squares fitting with linear bound constraints and its application610

in magnetic resonance spectroscopy data quantification, Journal of Computational and Applied Mathematics, 203, 264–278,

https://doi.org/10.1016/j.cam.2006.03.025, 2007.

Spindler, P. E., Waclawska, I., Endeward, B., Plackmeyer, J., Ziegler, C., and Prisner, T. F.: Carr–Purcell Pulsed Electron Double Resonance

with Shaped Inversion Pulses, The Journal of Physical Chemistry Letters, 6, 4331–4335, https://doi.org/10.1021/acs.jpclett.5b01933,

2015.615

Srivastava, M. and Freed, J. H.: Singular Value Decomposition Method to Determine Distance Distributions in Pulsed Dipolar Electron Spin

Resonance, The Journal of Physical Chemistry Letters, 8, 5648–5655, https://doi.org/10.1021/acs.jpclett.7b02379, 2017.

Stein, R. A., Beth, A. H., and Hustedt, E. J.: Chapter Twenty - A Straightforward Approach to the Analysis of Double Electron–Electron

Resonance Data, in: Methods in Enzymology, edited by Qin, P. Z. and Warncke, K., vol. 563 of Electron Paramagnetic Resonance

Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions, Part A, pp. 531–567, Academic Press,620

https://doi.org/10.1016/bs.mie.2015.07.031, 2015.

Stoll, S. and Schweiger, A.: EasySpin, a comprehensive software package for spectral simulation and analysis in EPR, Journal of Magnetic

Resonance, 178, 42–55, https://doi.org/10.1016/j.jmr.2005.08.013, 2006.

Sugiura, N.: Further analysis of the data by Akaike’ s information criterion and the finite corrections, Communications in Statistics - Theory

and Methods, 7, 13–26, https://doi.org/10.1080/03610927808827599, 1978.625

Teucher, M. and Bordignon, E.: Improved signal fidelity in 4-pulse DEER with Gaussian pulses, Journal of Magnetic Resonance, 296,

103–111, https://doi.org/10.1016/j.jmr.2018.09.003, 2018.

Tikhonov, A. N.: Solution of incorrectly formulated problems and the regularization method, Soviet Math. Dokl., 4, 1035–1038, 1963.

Timofeev, I. O., Krumkacheva, O. A., Fedin, M. V., Karpova, G. G., and Bagryanskaya, E. G.: Refining Spin–Spin Distance Distri-

butions in Complex Biological Systems Using Multi-Gaussian Monte Carlo Analysis, Applied Magnetic Resonance, 49, 265–276,630

https://doi.org/10.1007/s00723-017-0965-y, 2018.

Wang, H.: Confidence intervals for the mean of a normal distribution with restricted parameter space, Journal of Statistical Computation and

Simulation, 78, 829–841, https://doi.org/10.1080/00949650701273902, 2008.

Weese, J.: A reliable and fast method for the solution of Fredhol integral equations of the first kind based on Tikhonov regularization,

Computer Physics Communications, 69, 99–111, https://doi.org/10.1016/0010-4655(92)90132-I, 1992.635

Wilhelm, J. and Frey, E.: Radial Distribution Function of Semiflexible Polymers, Physical Review Letters, 77, 2581–2584,

https://doi.org/10.1103/PhysRevLett.77.2581, 1996.

Worswick, S. G., Spencer, J. A., Jeschke, G., and Kuprov, I.: Deep neural network processing of DEER data, Science Advances, 4, eaat5218,

https://doi.org/10.1126/sciadv.aat5218, 2018.

28

https://doi.org/10.5194/mr-2020-13

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 9 June 2020
c© Author(s) 2020. CC BY 4.0 License.


