
Response to Robert Tycko (Editor) 

Reviewer comments are in black, responses are in blue 

This manuscript is potentially suitable for publication in Magnetic Resonance after the 
authors make revisions that fully address the comments of the two anonymous reviewers 
as well as the following points: 

1. The "tennis racquet theorem" says that any object in free space will rotate stably about 
axes close to its smallest and largest principal axes of inertia, but not stably around the 
middle axis of inertia. This is also mentioned by one of the anonymous reviewers. The 
authors should explain how this relates to their statement that "an object is capable of 
spinning stably about ANY axis ... as long as there are no avenues to dissipate rotational 
energy." The authors’ statement seems erroneous, except perhaps because they are 
discussing situations where the object is not in free space. Their later statement that "a 
high aspect ratio cylindrical MAS rotor requires active stabilization...in order to spin stably 
about its axis of symmetry" also appears to contradict the tennis racquet theorem. 

This statement was in error. This was meant to say “an axially-symmetric object is capable 
of spinning stably about any axis,” but it turns out that this statement is also erroneous. 
We have removed this statement and instead included in the manuscript a discussion with 
respect to the conditions of stability associated with axially symmetric objects. Using 
Euler’s equations, one can show that a rigid, axially-symmetric object spins stably about 
its axis of symmetry regardless of whether the moment of inertia about that axis is the 
greatest or smallest moment. However, due to energy dissipation phenomena, objects 
tend to prefer to rotate about the axis with the highest moment of inertia. 

2. The examples of satellites and asteroids may not be relevant to an MAS rotor. I suspect 
the behavior of satellites and asteroids may be affected by INTERNAL dissipation 
(movement of internal material), which is not an issue for an MAS rotor. This may need 
clarification. 

Avenues to dissipate energy in the vacuum of space must necessarily concern internal 
dissipation, as there is no surrounding medium to which the rotational energy can be 
dissipated. However, in the MAS stator, the surrounding gas dissipates rotational energy. 
The operating principle of pneumatic MAS depends on energy transfer between the gas 
and the rotor. We have clarified this point in our discussion. 

3. A potential problem with spherical rotors may be that the magic angle needs to be 
readjusted for each sample, in other words the final direction of the axis of rotation may 
depend on the mass distribution within the rotor or on imperfections in the rotor itself. Is 
this true? The authors should comment on this issue, one way or the other. 

Once adjusted to the proper angle for one rotor, a second rotor will spin at an angle very 
close to the magic angle, but not exactly. This is definitely a current challenge with the 
method, and something we are currently working on addressing. For now, it is 
recommended that all samples include some KBr to readjust the angle as needed, but we 
plan to solve this issue in an upcoming manuscript. 

4. The description that "the nozzle aperture is placed at the complement of the magic 
angle in order to tilt the spinning axis of the rotor to a value near the magic angle" needs 
further clarification. A more detailed drawing of the stator in Figure 1 might help. 



Figure 1 has been updated to show a cross section of the stator from another angle. We 
hope this addresses the concern. 



Response to Anonymous Referee #1 

Reviewer comments are in black, responses are in blue 

General Comments: 

The authors discuss eight different turbine groove designs for spherical magic angle 
spinning rotors. They find that deep turbine grooves do not allow stable spinning, and that 
some shallow groove designs allow modest increases in spinning speed compared to a 
groove-free surface. The stability of these spherical ring rotors is discussed in terms of the 
rotor’s principle moments of inertia, and compared to the situation for more conventional 
cylindrical MAS rotors. 

The paper reports progress on the optimization of the very novel magic angle spinning 
rotor system design that has come out of this laboratory in recent years, and gives a 
theoretical basis for why the stability of this design is so robust. 

The results reported here represent a necessary step in the evolution and optimization of 
this new spinning system design. While the community of researchers who build their own 
magic angle spinning systems is rather small, and those who spin with spherical rotors is 
smaller still, this work represents what I hope will be one of many modest forward steps 
that will eventually make spherical rotors a compelling alternative to conventional designs. 

The paper is logically organized and easy to follow. 

Specific comments: 

The title seems inappropriate for the work described. While I understand that the fact that 
groove less rotors perform nearly as well as the best grooved design is one of the 
significant results, the title ignores most of the experiments described. 

While we initially wanted to highlight the most interesting result in our title, we agree that 
the title as written does have the potential to overshadow the other experiments and 
discussion. Unless there are restrictions on changing the title after the discussion period, 
we have proposed a title change to “Highly Stable Magic Angle Spinning Spherical 
Rotors,” in order to de-emphasize the focus on the rotor lacking turbine grooves and 
instead focus more broadly on the discussion of stability.  

In considering moments of inertia, the authors consider empty rotors: spherical rings or 
cylindrical shells. But some conventional cylindrical rotor designs do not spin well empty - 
the sample matters. The addition of the sample is considered only cursorily at the end of 
the manuscript. Presumably if the sample density is much less than the density of the rotor 
itself things aren’t changed much by the sample, but maybe something more could be 
said? 

To address this concern, we have added as supplementary material an interactive 
Mathematica document which allows the reader to independently adjust the densities for 
the sample, caps, and rotor in order to see the effect on the moments of inertia as a 
function of normalized inner radius. We have added additional discussion on this topic to 
this document.  

The discussion of the stability of rotation is somewhat unsatisfying. There is a commonly 
known theorem about rotation that for objects with three distinct moments of inertia, 
rotations about the axes having the largest and smallest moments are stable, while 



rotation about the intermediate axis is not (tennis rackets are a prototypical example). That 
theorem would suggest that cylinders rotating about their long axes should be stable, as 
long as both energy and angular momentum are conserved. The situation with both 
spherical rings and cylinders might be a little different because of the cylindrical symmetry, 
where there is no intermediate axis. I’d like to see a bit deeper discussion of the stability 
criteria. While this represents old physics, it would be nice to see a sound discussion in 
the context of magic angle spinning systems. 

We have taken this comment to heart and have now added a discussion with respect to 
the conditions of stability associated with axially symmetric objects. Using Euler’s 
equations, one can show that a rigid, axially-symmetric object spins stably about its axis 
of symmetry regardless of whether the moment of inertia about that axis is the greatest or 
smallest moment. However, due to energy dissipation phenomena, objects tend to prefer 
to rotate about the axis with the highest moment of inertia. 

I wonder if the statement on line 108, that rotation about any axis is stable if there is no 
energy dissipation, is actually helpful in understanding stability issues? 

We have removed this statement in favor of a more rigorous discussion of the rotational 
dynamics. 

Minor issues: 

pg 2 line 46. What is meant by 4.7 M-ohm transimpedance amplifier? Does that mean a 
4.7 M-ohm resistor in series with the photodiode? 

The resistor in this case is in the feedback loop of the amplifier. The size of the feedback 
resistor relates to the gain of the amplifier and also determines the noise of the amplifier. 
We have adjusted the text to say “a transimpedance amplifier with a 4.7 M-Ohm feedback 
resistor” for clarity. 

line 51 reference should be parenthesized. 

This has now been corrected. 

line 162, 175 and others: links to cited doi’s appear twice in a number of the references. 

We have now corrected these citations. 



Response to Anonymous Referee #2 

Reviewer comments are in black, responses are in blue 

General Comments: 

The authors examine and discuss factors important for fast, stable spinning of spherical 
rotors for magic angle spinning solid-state NMR experiments. They show that a stator for 
spherical rotors can be integrated into a commercial NMR probe head in a straightforward 
manner. They present measurements of spinning speeds and spinning stability achieved 
with eight different turbine groove designs, including one design with no grooves. The 
spinning rate achieved at a given pressure is shown to be sensitive to the surface grooves, 
with moderate spinning rate improvements observed for some groove geometries over 
others, and over a smooth rotor. Finally, they present a theoretical motivation for the 
spinning stability they observed in spherical rotors based on an analysis of the principal 
values of a spherical rotor’s moment of inertia tensor. 

The results presented here are broadly interesting to the solid-state NMR community. 
Spherical rotors represent an alternative to the conventionally used cylindrical rotors, with 
several potential benefits which the authors outline. While much development work is still 
necessary, this work reports progress which is likely to spur further investigation into 
spherical rotors, and into other alternative rotor designs. 

Specific Comments: 

It would be interesting to hear comments about how spherical rotor stability is influenced 
by the sample, beyond what was included at the end of the manuscript.  

To address this concern, we have added as supplementary material an interactive 
Mathematica document which allows the reader to independently adjust the densities for 
the sample, caps, and rotor in order to see the effect on the moments of inertia as a 
function of normalized inner radius. We have added additional discussion on this topic to 
this document.  

NMR data acquired on a sample spun in rotor H were acquired with a 3.5 kHz spinning 
speed, which is below the maximum spinning speed reported for rotor H in Figure 3a. Was 
3.5 kHz chosen for stability reasons? 

As shown in Figure 3A, rotor H is capable of spinning stably at 4 kHz at 4 bar of air 
pressure. However, we exercised reasonable caution for the NMR experiment, as 3.5 kHz 
can be achieved with nearly half the air pressure required to reach 4 kHz, and the 
experimental results achieve the same goal. 

Was any consideration given when designing deep turbine grooves to how these grooves 
might alter the moment of inertia tensor of the spherical rotors? 

At the time of their design, we were not considering that removing material might have a 
significant effect on the inertia tensor of the rotor itself, and instead assumed that the 
grooves would be a negligible change. However, it is possible that removing a significant 
amount of material from the outer equatorial region could have had an impact on their 
stability by changing the inertia tensor. We still maintain however, that the primary effect 
causing rotors E, F, and G to not spin stably was due to the excess space allowing for 
complex and turbulent fluid flows in the stator cup. The motion of rotors E, F and G in the 



stator is random and chaotic even at very low pressures/flow rates, while for the other 
rotors, they simply don’t spin until a certain pressure threshold is reached and then beyond 
that, spin up smoothly. More research is needed to explore the fluid dynamics of the gas 
flow within the stator cup, as even for the simplest case (Rotor H) we expect the fluid flow 
to be very complex and require a complete 3D description. For now, the guidance on 
turbine groove development is to make them as shallow as possible, which should also 
minimize changes to the spherical ring inertia tensor. 

Technical corrections: 

The formatting of several of the references is somewhat strange, with the doi appearing 
twice in multiple references. 

We have now corrected this issue. 



Response to Geoffrey Bodenhausen  

Comments are in black, responses are in blue 

It would be interesting to know if more than 5 rotors were tested, and if the performance 
documented in Fig. 3 refers to their average performance or to unique cases. 

We tested all 8 rotors, however rotors E, F and G did not spin stably. Figure 3 refers to 
unique cases, but the results are reproducible to within ~100 Hz for each rotor at each 
pressure value. Collecting statistics is useful for our development of these rotors and 
stators, but the results can vary based on which printed stator is used and the exact 
conditions of the experimental setup. The figure shown represents a unique test series 
performed using the same stator and experimental conditions for all rotors, as described 
in the experimental details.  

The description of the curves of Fig. 3 as “pressure increases at higher pressures less 
effectively increased at spinning rate than at lower pressure” should be replaced by a 
sober reference to the figure itself. 

We agree that this sentence does not benefit the discussion and have removed it. 

While the discussion of the moments of inertia for empty spherical and cylindrical rotors is 
interesting, it is only at the very end that the authors admit that the sample and caps will 
affect these considerations.  

To address this concern, as other reviewers have also noted interest in this issue, we have 
added as supplementary material an interactive Mathematica document which allows the 
reader to independently adjust the densities for the sample, caps, and rotor in order to see 
the effect on the moments of inertia as a function of normalized inner radius. We have 
added additional discussion on this topic to this document. The model we use is a simple 
approximation of how we pack sample into the rotors, but should give a sense for the 
effects of sample and cap density on the moments of inertia of the overall packed rotor. 

The sentence “adjusted until the rotor’s spinning axis was inclined to the magic angle, 
taken as the maximal number of rotor echoes in the time domain data” leaves me 
dumbfounded. Surely it is the decay of the envelope of the rotational echoes that could be 
taken as a measure for the adjustment of the magic angle. 

In a practice, when setting the magic angle, the researcher usually looks to see if more 
echoes are visible beyond the noise level out to a certain time in the time domain data as 
the angle is adjusted. Perhaps we chose a bit too practical of a description. We have 
modified this sentence to read: “The stator's pitch angle was adjusted until the rotor's 
spinning axis was inclined to the magic angle, as observed by measuring the decay of 
rotor echoes out to 10 ms in the time domain data.”  

The claim that “the fact that rotor H established a stable spinning axis about its own axis 
of symmetry” is interesting, but this hardly “shows that the grooves do not direct the rotor 
to spin about this axis, but rather the geometry of the rotor itself is responsible”. There is 
no evidence that the machining of the groves agrees with the geometry. 

We have measured the rotors that were machined, and found them to be within the 
tolerance levels of our design specifications. If a rotor with no grooves spins stably about 
its own axis, it shows that the grooves are not required in order to spin stably. The reason 



it spins stably about its own axis must be due to another factor, and that is the spherical-
ring geometry of the rotor itself. 

I have learned in a first-year physics course (at ETH!) that objects end up tumbling around 
the axis with the largest moment of inertia. I believe that this has been known since the 
XIXth, perhaps even since the XVIIIth century. It is unfortunate that the designers of “early 
spacecraft such as Explorer 1” were not aware of this phenomenon. 

This is a very important issue, and there is a lot of confusion surrounding this topic 
(including for us as we have worked on writing and developing this manuscript!), as 
classical rotational dynamics is an issue which seems simple on first glance, but is actually 
quite complex and has received significant attention and development over the past 
century. Euler’s equations have been known since the 18th century, but they do not say 
anything about objects ultimately ending up spinning about the axis with the greatest 
moment of inertia. They predict that a rigid, axially-symmetric object will spin stably about 
its axis of symmetry regardless of whether the moment of inertia along that axis is the 
greatest or smallest moment. What happened with the Explorer 1 was that the satellite 
was intended to spin about its lowest inertia axis, which should have been fine if the object 
was rigid. However, due to avenues for dissipating rotational energy internally being 
present (antennas on the craft) the satellite began a precession which eventually turned 
into an end over end spin. The result of Explorer 1 spurred the further development of 
rigid-body rotational dynamics to account for this phenomenon. If avenues to dissipate 
rotational energy are present, the “stable” configuration initially predicted by Euler’s 
equations is no longer stable. In MAS, a cylindrical rotor exchanges energy with the 
surrounding gas and can enter into a precession if it is not actively kept from doing so. 
This is partly why oversized bearings in the stator result in unstable spinning.   

 



Response to Asif Equbal 

Comments are in black, responses are in blue 

I have two concerns regarding this draft. 

1. Figure 4A shows that as the inner radius (r) in a sphere increases, the moment of inertia 
along Iz and Ix(or Iy) become unequal, with inertia along Iz being larger than Ix. The 
authors have used this fact to support the spinning-stability of sphere without groves. The 
moment of inertia of a sphere is proportional to the radius of sphere (R). Therefore, the 
absolute difference between the inertia in two directions (z and x) is also proportional to 
R. In the case presented, the sphere is large 9.5mm (with the maximum speed of∼4-5 
kHz), and therefore it has a preferred axis of rotation. But as one goes for smaller sphere 
to achieve faster spinning (which is a major goal here), the absolute difference between 
Iz and Ix will be smaller and smaller. And in such scenario, the spinning along any 
particular axis will not be stable. 

All calculations were performed without using a fixed value for the radius. The results 
depicted in Figure 4 are valid for any given radius- note that the x-axis is “normalized inner 
radius,” which takes into account the fact that these results scale for any outer radius 
value. It is true that the absolute values of the moments of inertia will decrease with smaller 
rotors, but the ratio of values between Iz and Ix will always be the same. The size of the 
rotor should not affect these stability considerations. For experimental proof of this, we 
have spun 4mm spherical rotors stably at 28 kHz, and 2mm rotors at around 60 kHz 
(unpublished).  

2. The authors have compared two cases, a sphere vs. a cylinder in figure 4. 
Sphere(hollow one) has preference to spin along "z" and a cylinder along "x". Using this 
simple comparison, authors have shown why a sphere is better than cylinder for stability. 
In reality, the sample cup should be viewed as a combination of coaxial: (i). Spherical ring, 
(ii) a hollow cylinder (in which sample will be filled), (iii) a solid cylinder (basically the 
sample filled in the cylinder) and (iv) curved cap. Different components (i, ii, iii and iv) will 
have different inertia. These are known or at least easy to calculate. Since moments of 
inertia are additive, it is possible to do a more realistic calculation, taking into consideration 
moments of inertia of all these components. 

To address this concern, as other reviewers have also noted interest in this issue, we have 
added as supplementary material an interactive Mathematica document which allows the 
reader to independently adjust the densities for the sample, caps, and rotor in order to see 
the effect on the moments of inertia as a function of normalized inner radius. We have 
added additional discussion on this topic to this document. The model we use is a simple 
approximation of how we pack sample into the rotors, but should give a sense for the 
effects of sample and cap density on the moments of inertia of the overall packed rotor. 

Minor concern: Authors have used same notations to represent the dimensions of the two 
objects. It is better to use distinguished symbols to , e.g., r_s, R_s, r_c and R_c. 

For the results to be compared between the sphere and cylinder for a given outer radius 
R and inner radius r, we have chosen not to demarcate these with distinguished symbols. 



Highly Stable Magic Angle Spinning Spherical RotorsLacking
Turbine Grooves
Thomas M. Osborn Popp1, Alexander Däpp1, Chukun Gao1, Pin-Hui Chen1, Lauren E. Price1, Nicholas
H. Alaniva1, and Alexander B. Barnes1

1Laboratory for Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland

Correspondence: Alexander Barnes (alexander.barnes@phys.chem.ethz.ch)

Abstract. The use of spherical rotors for magic angle spinning offers a number of advantages including improved sample

exchange, efficient microwave coupling for dynamic nuclear polarization nuclear magnetic resonance (NMR) experiments

and, most significantly, high frequency and stable spinning with minimal risk of rotor crash. Here we demonstrate the sim-

ple retrofitting of a commercial NMR probe with MAS spheres for solid-state NMR. We analyze a series of turbine groove

geometries to investigate the importance of the rotor surface on spinning performance. Of note, rotors lacking any surface5

modification spin rapidly and stably even without feedback control. The high stability of a spherical rotor about the magic

angle is shown to be dependent on its inertia tensor rather than the presence of turbine grooves.

1 Introduction

Magic angle spinning (MAS) nuclear magnetic resonance (NMR) is usually used for high resolution analysis of the local chem-

ical environments of nuclear spins within biomolecular and inorganic solids (??????????????). The sample is spun rapidly10

about an axis inclined at the magic angle, which is 54.74° with respect to the external magnetic field B0. This averages terms

in the NMR Hamiltonian whose orientational dependence is described by the second-order Legendre polynomial 3cos2 θ− 1

(???). For spins-1/2, MAS can yield spectra with highly resolved isotropic chemical shifts.

MAS has traditionally been performed by spinning a cylindrical rotor within a stator installed at the magic angle, thereby

requiring a gas bearing to stabilize the rotor and drive gas to apply torque (???). However, we recently showed that it is possible15

to spin samples via a different paradigm, namely using spherical rotors spun using a single gas stream for both the bearing

and drive (??). This approach allows highly stable rotor spinning about a single axis inclined at the magic angle, with record

rates as high as 4.6 kHz (N2, 4.1 Bar) and 10.6 kHz (He, 11 Bar) for 9.5 mm diameter rotors and 11.4 kHz (N2, 3.1 Bar) and

28 kHz (He, 7.6 Bar) for 4 mm diameter rotors. Decreasing the rotor diameter permits even higher spinning rates. Additional

benefits of spherical rotors include easy sample exchange and improved microwave access for dynamic nuclear polarization20

(DNP)-NMR experiments, yielding improved microwave B1 field strength and homogeneity compared with current methods

(??).

In order to make spherical rotors robust and accessible for magnetic resonance experiments and to design apparatuses

capable of achieving very high MAS rates, we examined the spinning and stabilization mechanisms of these spherical rotors.

1



Here we: (i) demonstrate how a stator for spinning spheres can be easily integrated into a commercial NMR probehead, and25

(ii) examine the spinning behavior of a series of spherical rotors with various turbine groove geometries. We show that the

spinning performance of spherical rotors can be improved by using a turbine groove geometry similar to the drive tips used in

conventional cylindrical rotor MAS systems, which are themselves based on the Pelton impulse turbine (?). However, we also

find across a wide array of turbine styles that spinning performance is remarkably indifferent to the surface design and that even

a rotor without turbine grooves can achieve stable, on-axis spinning. We show that a spherical rotor attains its stability from its30

inherent shape and mass distribution (i.e., its inertia tensor) and that turbine grooves are not essential for stable spinning.

2 Experimental Apparatus

The experimental apparatus is depicted in Figure 1. The stator employed for spinning spherical rotors was designed to adapt

into a double-resonance APEX-style Chemagnetics probe (built decades ago for spinning 7 mm diameter cylindrical rotors)

and 3D printed in clear acrylonitrile-butadiene-styrene (ABS) using either a ProJet MJP2500 3D printer (3D Systems, Rock35

Hill, SC, US) or a Form3 3D printer (Formlabs, Somerville, MA, US). A double saddle coil made from 1.5 mm silver-coated

copper magnet wire was wound by hand using a mandrel and wrapped in Teflon tape for insulation with the leads soldered into

place in the existing RF circuit of the Chemagnetics probe. The two optical fibers of the tachometer system were introduced

into holes at the bottom of the semi-transparent stator. The transceiver of the original tachometer system was replaced with

a more sensitive circuit. The transmitter in this circuit was an SFH756 light emitting diode fed with 42 mA of current. The40

detector comprised an SFH250 photodiode and a
::::::::::::
transimpedance

::::::::
amplifier

::::
with

:
a
:
4.7 MΩ transimpedance amplifier

:::::::
feedback

::::::
resistor

:
followed by a gain block providing a voltage gain of 42. The magic angle adjustment was achieved by coupling the

stator to the existing angle adjust rod in the probe.

NMR experiments were performed at 7.05 T using a Bruker Avance III spectrometer (Bruker Corp., Billerica, MA, US).
79Br spectra were taken at a transmitter frequency of 75.46 MHz and a MAS rate of 3.5 kHz. The implementation of a double45

saddle coil within the probe enabled the application of a 35 kHz B1 field on 79Br with 300 W incident RF power, a significant

improvement over our previous implementation of 9.5 mm spherical rotors, which achieved a B1 field of only 12.5 kHz using

a split coil and 800 W incident RF power ?
::
(?

:
).

The 9.5 mm spherical rotors were machined from yttria-stabilized zirconia (O’Keefe Ceramics, Woodland Park, CO, US).

Seven new spherical rotor designs were introduced (Figure 2), each with a 2.54 mm inner diameter cylindrical through hole:50

notched (rotors A, C), Pelton-style (rotors B, F), circular (rotors C, G), dimpled (rotor D), and with no flutes (rotor H). For the

notched, circular, and Pelton-style rotors, two variations were machined differing by 0.5 mm in depth. For spin testing, each

rotor was filled with a rigid 3D printed cylindrical ABS blank terminated with 4.75 mm spherical radius contoured ends. For

the NMR experiment, the rotor was packed with 97.1 mg KBr powder and sealed at each end with 3D printed ABS plugs. The

same stator design was used for all spin testing experiments.55

2



Figure 1. Experimental apparatus. A.) Probehead design schematic depicting the stator with a double saddle coil, spherical rotor, and angle

adjust arm. B.)
::::
Fully

::::::::
assembled

::::::::
probehead.

:::
C.)

:
Cross-section view

::::
views of the stator showing the drive gas inlet and angled through holes

for the fiber optic tachometer. Drive gas is fed from
::::::
through the left side

:::::
nozzle

::::::
aperture

:::::
placed

::
at

::
the

::::::::::
complement

::
of

::
the

:::::
magic

::::
angle

::::::
(35.3°)

into the stator cup(red arrow). C.) Fully assembled probehead.

3 Results and Discussion

Spherical rotors spin within the hemispherical stator cup by the application of a gas stream along the rotor’s equator from

a converging nozzle tangent to the rotor surface (?). The nozzle aperture is placed at the complement of the magic angle

(35.26
::::
35.3°) in order to tilt the spinning axis of the rotor to a value near the magic angle

:::
(as

::::::
shown

::
in

:::::
Figure

::::
1C). The rotor

turbine grooves are intended to provide a means to efficiently couple the gas stream to the rotor surface, converting the kinetic60

energy of the fluid flow into rotational kinetic energy.

The designs depicted in Figure 2 were chosen to explore this concept. Intuition might suggest that deeper grooves allow for

greater coupling to the gas stream due to the increased surface area perpendicular to the direction of fluid flow. However, the

3



Figure 2. 9.5 mm spherical rotor turbine groove designs. Each rotor has a 2.54 mm diameter through hole. A.) Twelve 60º notched grooves,

0.35 mm depth (as described previously by ?
:
). B.) Six impeller-style grooves, 0.25 mm radius. C.) Twelve circular 0.25 mm radius grooves.

D.) Twelve dimpled grooves, 4.75 mm radius dimples. E.) Twelve 60º notched grooves, 0.85 mm depth. F.) Six impeller-style grooves, 0.5

mm radius. G.) Twelve circular 0.5 mm radius grooves. H.) Smooth surface, no flutes machined.

deep-grooved rotors E, F, and G could not spin stably under any of the conditions tested. It is possible that the large spaces

created by the removal of material to make these deep grooves allow chaotic and turbulent flows to develop within the stator65

cup. The shallow-grooved rotors A, B, C, and D, as well as rotor H, achieved stable spinning. Figure 3A shows the spin test

data in air at gauge pressures ranging from 0 to 4.3 Bar for these five rotors. Across the five turbine geometries, the spinning

rate increased non-linearly with respect to the applied pressure; pressure increases at higher pressures less effectively increased

the spinning rate than at lower pressures. The maximum spinning rates for the five rotors at the pressures tested ranged between

4 and 6 kHz in air, with Pelton-style rotor B having the highest maximum spinning rate of 5.7 kHz. Note that the maximum70

tested pressure was not limited by the rotors, as their spinning rates would be predicted to increase with increasing pressure, but

rather the maximum pressure was limited to ∼4 Bar due to safety concerns with regard to the connecting assemblies. Rotor B’s

maximum observed rate was a significant improvement over our previous maximum of 4.6 kHz for 9.5 mm rotors in air, which

was achieved using rotor A at 4.1 Bar (?). As rotor A also performed better in our current tests, with a maximum rate of 5.2

kHz at 4.1 Bar, we attribute some of the performance gains to the higher precision 3D printing of our latest stators. However,75

the further increase to 5.7 kHz with rotor B is likely to be due to the Pelton-style grooves more efficiently coupling
::
to the fluid

flowand the rotor surface with a sufficiently shallow groove profile to prevent undesirable complex fluid flows in the stator.

A significant finding was that rotor H, with its smooth surface and lack of grooves, spun stably and on-axis. While not

delivering the highest frequency spinning of the tested rotors, its performance was comparable to many of the designs with

4



Figure 3. Spin test data. A.) Spinning rate as a function of applied air pressure for rotors A, B, C, D, and H. B.) 79Br spectrum of KBr packed

into rotor H and spinning at 3.5 kHz at the magic angle; 512 scans. C.) Histogram of spinning frequencies without spinning regulation over

the 10 minute KBr data acquisition period.

machined grooves. Figure 3B shows the 79Br spectrum of KBr at 3.5 kHz MAS using rotor H. The stator’s pitch angle was80

adjusted until the rotor’s spinning axis was inclined to the magic angle, taken as the maximal number
::
as

::::::::
observed

::
by

:::::::::
measuring

::
the

::::::
decay of rotor echoes

::
out

:::
to

::
10

:::
ms

:
in the time domain data. The spectrum shows the spinning sideband manifold equally

spaced by 3.5 kHz, corroborating the spinning rate observed by optical tachometry. The spinning was stable, with a standard

deviation of ±1 Hz without the use of any spinning regulation mechanism (Figure 3C). The ability of rotor H to spin stably at

reasonable MAS rates implies that while turbine grooves can improve fluid flow and rotor coupling, a significant contribution85

to the overall spherical rotor spinning mechanism is simply from the torque created by drag induced by the driving gas stream

moving across the rotor surface. Additionally, the fact that rotor H established a stable spinning axis about its own axis of

symmetry shows that the grooves do not direct the rotor to spin about this axis, but rather
:::
that

:
the geometry of the rotor itself

is
::::
must

::
be

:
responsible.

A spherical rotor with a cylindrical through hole is a solid known as a spherical ring. The inertia tensor
:::::::
moments

::
of

::::::
inertia90

for a spherical ring of constant density ρ, outer radiusR, and inner radius r, whereR≥ r and z lies along the axis of cylindrical

symmetry, is
::::::::
symmetry,

:::
are

:
given by:

Isrx
::

= Isry =
::::

4

15
πρ(R2 − r2)3/2

(
4R2 + r2

2
:::::::

)
(1)

Considering

Isrz =
4

15
πρ(R2 − r2)3/2(2R2 + 3r2)

::::::::::::::::::::::::::::::

(2)95
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::
As

:
most previous MAS experiments have been performed with cylindrical rotors, it is worth examining the inertia tensor of a

cylindrical shell for comparison. For a cylindrical shell of constant density ρ, outer radius R, inner radius r, and length of 2kR,

where k is the aspect ratio and R≥ r, the inertia tensor is
:::::::
moments

::
of

::::::
inertia

:::
are given by:

Icsx
::

= Icsy =
::::

πρkR(R2 − r2)

(
(2k+ 1)R2 + r2

2
:::::::::::::

)
(3)

100

Icsz = πρkR(R2 − r2)(R2 + r2)
::::::::::::::::::::::::::

(4)

Figure 4 shows the magnitudes of the moments of inertia for a spherical ring and a cylindrical shell (k = 4) as a function

of the inner radius given by equations 1 and 2. For the spherical ring, Iz is greater than or equal to the transverse moments

Ix,y for all values of r, while for the cylindrical shell, Iz is less than or equal to the transverse moments Ix,y for all values of

r. When r = 0, the moments of inertia for the spherical ring and cylindrical shell are equivalent to those of a solid sphere and105

solid cylinder, respectively. Note that while Figure 4B is representative of the high aspect ratio cylindrical rotors commonly

used in MAS experiments, when k is low such that the geometry is disk-like, Iz will be greater than Ix,y for all values of r.

Figure 4. Moments of inertia for spherical and cylindrical rotors as a function of the normalized inner radius r/R. A.) Iz (blue) and Ix,y (red)

for a spherical rotor as a function of the normalized inner radius. The rotors spun in this study correspond to r/R= 0.267. The difference

between Iz and Ix,y is maximized at r/R= 0.632. B.) Iz (blue) and Ix,y (red) for a cylindrical rotor with aspect ratio k = 4 as a function

of the normalized inner radius.

An object is capable of spinning stably about any axis without the need for stabilization as long asthere are no avenues

to dissipate rotational energy. However
:::::::
Consider

::
a
::::
rigid

::::::
object

::::
with

::::::::
principal

::::::::
moments

::
of

::::::
inertia

:::
Iz , when such dissipative

elements
::
Iy ,

:::
and

:::
Ix,

:::::::
rotating

:::::
about

:::
the

::::
axis

:::::::::
coincident

::::
with

::
Iz::::

with
::
a
:::::::
constant

:::::::
angular

::::::
velocity

::::::
vector

::
of

:::::::::
(ωz,0,0).

:
If
::
a
:::::
small110
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::::::::::
perturbation

::
is

:::::::
applied,

:::
the

::::::
angular

:::::::
velocity

::::::
vector

:::::::
assumes

:::
the

::::
form

:::::::::
(ωz,λ,µ).

::::::::
Through

:::::::::
substitution

:::
of

:::
this

:::::::
angular

:::::::
velocity

:::::
vector

::::
into

::::::
Euler’s

::::::::
equations

::
to

::::
yield

::
a
::::::
second

:::::
order

:::::
linear

:::::::::
differential

:::::::
equation

::::
with

:::::::
respect

::
to

:
λ
::::
(??

:
),

:::
we

:::::
arrive

::
at:

:

λ̈+
(Iz − Ix)(Iz − Iy)

IyIx
ω2
zλ= 0

:::::::::::::::::::::::::

(5)

:::::::
Equation

::
5

:::
can

::
be

::::
used

::
to

:::::
arrive

::
at

:::
the

::::::
famous

:::::
result

::
of

:::
the

::::::::::
intermediate

::::
axis

:::::::
theorem,

:::::
which

:::::
states

:::
that

::::::
objects

::::
with

:::::::::::
Iz > Iy > Ix

:::
will

::::
spin

:::::
stably

:::::
only

:::::
about

:::
the

:::
first

::::
and

::::
third

::::::::
principal

::::
axes

::
(z

::::
and

:::
x),

:::::
while

:
a
:::::::
rotation

:::::
about

:::
the

::::::
second

::::::::
principal

::::
axis

:::
(y)

::
is115

:::::::
unstable.

::::::::
However,

:::
for

:::
an

::::::
axially

:::::::::
symmetric

::::::
object,

:::::
where

:::
the

::::
axis

::
of

:::::::::
symmetry

::
is

::::::
aligned

::::
with

:::
the

::::::
z-axis

:::
and

:::::::
Iy = Ix:::::

(such

::
as

:
a
::::::::
spherical

:::
ring

:::
or

:
a
:::::::::
cylindrical

::::::
shell),

:::::::
equation

:
3
::::::::
becomes:

:

λ̈+
(Iz − Ix)2

I2x
ω2
zλ= 0

:::::::::::::::::::

(6)

:::::::
Equation

::
6

::::::
implies

::::
that

:
a
:::::::
rotation

:::::
about

:::
the

:::
axis

::
of
:::::::::
symmetry

:::
(z)

::
is

::::::
always

:::::
stable,

:::
as:

:

(Iz − Ix)2

I2x
ω2
z > 0

::::::::::::::

(7)120

::
If,

:::::::
however,

:::
the

::::::
x-axis

::
is

::::::
instead

:::
the

:::
axis

:::
of

::::::::
symmetry

:::
and

:::::::
Iz = Iy ,

::::::::
equation

:
5
:::::::
reduces

::
to

:::::
λ̈= 0,

::::::
whose

::::::::
solutions

::::
grow

:::::::
linearly

::
in

::::
time.

:::::
Thus,

:::::::
rotation

:::::
about

::
an

::::
axis

::::::::::::
perpendicular

::
to

:::
the

::::
axis

::
of

::::::::
symmetry

::
is
::::::::
unstable.

:::::::::
According

::
to

:::::
these

::::::
results,

:::
we

::::::
should

:::::
expect

::::
that

:
a
:::::::
rotation

:::::
about

:::
the

:::
axis

:::
of

::::::::
symmetry

:::
(z)

::
is

:::::
stable

:::
and

::
a

::::::
rotation

::::::::::::
perpendicular

::
to

:::
the

::::
axis

::
of

::::::::
symmetry

::
is

::::::::
unstable,

::::::::
regardless

::
of

:::::::
whether

::
Iz::

is
::::::
greater

::::
than

::
or
:::::
equal

::
to
:::
Ix.

:

::::
From

::::
this

:::::
result,

:::
we

:::::
might

::::::
expect

::::
that

:
a
::::::::
spherical

::::
shell

:::::
(axis

::
of

::::::::
symmetry

::
is

:::
the

::::::
highest

::::::
inertia

::::
axis)

::::
and

:
a
:::::::::
cylindrical

:::::
shell125

::::
(axis

::
of

::::::::
symmetry

::
is
:::
the

::::::
lowest

:::::
inertia

::::
axis)

::
to
::::
both

:::
be

::::::::::
continuously

::::::
stable

:::::
during

:
a
::::
spin

:::::
about

::::
their

::::
axis

::
of

:::::::::
symmetry.

::::::::
However,

:
it
:::
has

:::::
been

::::::::
observed

::::::::::::
experimentally

::::
that

:::::
when

:::::::
avenues

::
to

::::::::
dissipate

::::::
energy are present, the object will

::
an

:::::::::::::::
axially-symmetric

:::::
object

:::
can

::::::::
dissipate

::::::
energy

:::
to end up rotating about the axis that minimizes its rotational kinetic energy for a fixed angu-

lar momentum, which is the axis with the largest moment of inertia (???). This phenomenon has been observed in ob-

jects such as comets and asteroids as well as in early spacecraft such as Explorer 1 (???). Explorer 1 was a cylindrical130

:::::::::::::::::::
cylindrically-symmetric

:
satellite with a high aspect ratio that was meant to spin about its axis of symmetry (the lowest in-

ertia axis) but ended up spinning
:::::::::
developing

:
a
:::::::::
precession

::
as

::
it

::::::::::
transitioned

:::
into

:::
an end-over-end

::::
spin (the highest inertia axis)

as a result of energy being dissipated into the structure. Similarly, as a result of this phenomenon, asteroids are more often

found tumbling end-over-end rather than spinning about an axis of cylindrical symmetry.

Like a cylindrical satellite, a high aspect ratio
:::
Due

::
to
:::::::::
dissipative

::::::::::
interactions

::::
with

:::
the

:::::::::::
surrounding

::::
fluid,

::
a

::::::::::::::
high-aspect-ratio135

cylindrical MAS rotor requires
:::::
cannot

::::
spin

:::::
stably

::::
and

:::::::::::
continuously

:::::
about

::
its

::::
axis

::
of

::::::::
symmetry

:::::::
without active stabilization (i.e.

, a bearing)in order to spin stably about its axis of symmetry, and any instabilities in the spinning could magnify as the rotor

attempts to transition into a spin about its highest inertia axis, potentially leading to a rotor crash
:::::::
bearing),

::
as

:::
its

::::::::
symmetry

::::
axis

:
is
::::
also

::
its

::::::
lowest

::::::
inertia

:::
axis. However, in the case of a spherical MAS rotor, the rotor is placed into the stator without a specific

orientation and initially may spin about an arbitrary axis. As the axis of symmetry for a spherical ring is also its greatest inertia140
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axis, a spherical rotor ultimately ends up stably spinning about its axis of symmetry due to rotational energy being dissipated

by interactions with the gas stream and surrounding atmosphere. For this reason, a spherical rotor shows very stable on-axis

spinning and resilience to crashing, as any spinning instabilities will be damped by the surrounding fluid and cause the rotor to

::
the

:::::
rotor

:::
will

::::::
always

:
return to a stable minimum about its axis of symmetry

::::
after

:
a
::::::::::
perturbation.

Equation 1 suggests that spherical rotors
::::::::
Equations

::
1
:::
and

::
2
::::::
suggest

::::
that

:
a
::::::::
spherical

:::::
rotor should spin most stably about

::
its145

:::
axis

::
of
:::::::::

symmetry,
:
z
:
, when r/R= 0.632, where the difference between Iz and Ix,y is maximized

::::::
(Figure

:::
4a). Critically, this

means that rotors with a spherical ring geometry can be quite stable even with very large sample volumes. When considering

a packed rotor, as long as the density of the caps and sample are lower than the density of the rotor material, Iz will be greater

than Ix,y for all values of r/R between 0 and 1, and stable on-axis spinning will occur.
::
A

::::::
detailed

:::::::::::
investigation

::
of

:::
the

::::::::
moments

::
of

:::::
inertia

:::
for

:
a
:::::::
packed

:::::::
spherical

:::::
rotor

:::::
taking

::::
into

:::::::::::
consideration

:::
the

::::
caps,

:::::::
sample

:::
and

:::::
rotor,

::::
each

::::
with

:::::::
different

::::::::
densities,

:::
can

:::
be150

:::::
found

::
as

::
an

:::::::::
interactive

::::::::
notebook

::
in

:::
the

::::::::::::
supplementary

::::::::
material.

4 Conclusions

While turbine grooves can help to increase MAS rates for spherical rotors, the inertia tensor is responsible for its spinning

stability. As MAS rates continue to increase to values in excess of 100 kHz, the possibility of spinning instabilities leading to

rotor crashes becomes a significant concern. Spherical rotors spinning at high rates will be able to self-correct to a stable state155

after a perturbation due to the large
::::::
highest

:
moment of inertia about their axis

:::
axis

:::::
being

:::::::
aligned

::::
with

:::
the

:::
axis

:
of symmetry. To

achieve high MAS rates with spherical rotors, new rotors with smaller outer diameters must be designed and fabricated. These

rotors could use shallow, Pelton-style grooves to increase the maximum spinning rate by about 30% compared to a rotor with

no machined grooves, as observed here. However, since turbine grooves are not necessary to achieve stable spinning, these

rotors could be fabricated without the need for complex micro-machining techniques to produce turbine grooves.160
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