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Abstract 

A theoretical framework is proposed to describe the spin dynamics driven by coherent spin mixing at Level 

Anti-Crossings (LACs). We briefly introduce the LAC concept and propose to describe the spin dynamics 

using a vector of populations of the diabatic eigenstates. In this description, each LAC gives rise to a 10 

pairwise redistribution of eigenstate populations, allowing one to construct the total evolution operator 

of the spin system. Additionally, we take into account that in the course of spin evolution a “rotation” of 

the eigenstate basis case take place. The approach is illustrated by a number of examples, dealing with 

magnetic field inversion, cross-polarization, singlet-state NMR and parahydrogen induced polarization.  
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1 Introduction 15 

NMR methods, which exploit coherent spin mixing at Level Anti-Crossings (LACs), are widely used 

in various areas of research, notably, to perform broad-band excitation (Baum et al., 1985;Freeman, 

1998;Tannús and Garwood, 1997) and cross-polarization (Hartmann and Hahn, 1962), to transfer spin 

hyperpolarization (Ivanov et al., 2014;Theis et al., 2018;Theis et al., 2014b;Pravdivtsev et al., 

2014c;Pravdivtsev et al., 2014b;Pravdivtsev et al., 2014a;Franzoni et al., 2013) and to generate and detect 20 

long-lived nuclear singlet order (DeVience et al., 2013;Rodin et al., 2019;Rodin et al., 2018;Pravdivtsev et 

al., 2016). In this work, we propose an approach aimed at simple understanding of spin mixing at LACs 

and predicting the resulting spin order. The approach is applicable to spin systems with arbitrary 

populations of adiabatic nuclear spin states and no coherence between them; it makes use of two 

ingredients – permutations of the populations and rotation of the basis of spin eigenstates. In this work, 25 

we introduce the main concept and formalism and provide a number of NMR-relevant examples, showing 

how the approach works. These examples include consideration of spin order transfer upon adiabatic 

inversion (Lukzen and Steiner, 1995;Eills et al., 2019) of the external magnetic field and, more generally, 

NMR experiments with field jumps (Miesel et al., 2006;Pravdivtsev et al., 2013a), as well as some pulsed 

NMR experiments, such as cross-polarization (Hartmann and Hahn, 1962;Pines et al., 1972). Last but not 30 

least, using the language of LACs we describe some pulse sequences, which are currently exploited in 

singlet-state NMR (Levitt, 2019, 2012) and Para-Hydrogen Induced Polarization (PHIP) (Natterer and 

Bargon, 1997;Green et al., 2012;Barskiy et al., 2019;Duckett and Mewis, 2012).  

PHIP makes use of the spin order of parahydrogen, pH2, which is the H2 molecule in its nuclear 

singlet state. It is straightforward to enrich the H2 gas in the para-component to > 90%. Such a significant 35 

deviation of the singlet state population from the value expected at equilibrium conditions at high 

temperature, only 25% of pH2, provides a source of strong non-thermal polarization. In the traditional 

PHIP method, pH2 is attached to a substrate molecule by using a suitable catalyst. When the equivalence 

of the pH2-nascent protons is broken in the reaction product, the non-thermal spin order can be converted 

into observable magnetization, giving rise to significant NMR signal enhancements (Pravica and 40 

Weitekamp, 1988;Bowers and Weitekamp, 1987). PHIP can also be transferred from the primarily 

polarized protons to other nuclei in the product molecule to enhance their NMR signals. Alternatively, 

one can use the Signal Amplification By Reversible Exchange (SABRE) method (Adams et al., 2009;Barskiy 

et al., 2019;Duckett and Mewis, 2012), in which no chemical modification of the substrate occurs. Instead, 

pH2 and the substrate bind to an Ir-based organometallic complex, where spin order conversion gives rise 45 

to polarization of the substrate. Subsequently, the hyperpolarized substrate molecule dissociates from 

the complex, contributing to polarization of the free substrate pool. 

A related field is singlet-state NMR (Levitt, 2012;Carravetta and Levitt, 2004;Carravetta et al., 

2004), dealing with slowly relaxing symmetry-protected spin states, which can be used to probe various 

slow processes and to store non-equilibrium spin polarization. In many molecules (Levitt, 2012;Carravetta 50 

and Levitt, 2004;Carravetta et al., 2004;Stevanato et al., 2015;Sheberstov et al., 2019;Zhou et al., 

2017;Wang et al., 2017;Buratto et al., 2014;Vasos et al., 2009;Zhang et al., 2015;Franzoni et al., 

2012;Kiryutin et al., 2019;DeVience et al., 2013) singlet-order relaxes much longer than spin 

magnetization for the reason that it is immune to some relaxation mechanisms, for instance, in a two-

spin system dipolar relaxation cannot drive singlet-triplet transitions because the dipole-dipole 55 

interaction is invariant to exchange of the two spins (Pileio, 2010). In singlet-state NMR experiments, spin 

magnetization is converted into singlet order by a suitable pulse sequence; singlet-state readout is also 

done by singlet-to-magnetization conversion using special pulse sequences. 

In the cases of PHIP and singlet-state NMR consideration of LACs often becomes important, in 

particular, in molecules with pairs of nearly-equivalent spins (Ivanov et al., 2014;Pravdivtsev et al., 60 

2013b;Franzoni et al., 2013;Franzoni et al., 2012;Sheberstov et al., 2019;Stevanato et al., 2015;DeVience 
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et al., 2013;Theis et al., 2014a), such that the symmetry breaking is due to a very small chemical shift 

difference of the nuclei or due to their magnetic non-equivalence, i.e., due to slightly different couplings 

to other spins. Such symmetry breaking is usually a minor effect, giving rise to spin mixing only under 

special conditions, which correspond to LACs. In this situation, the approach proposed in this work can be 65 

useful for understanding the spin dynamics.  

This contribution aims at a simple description of LAC-based coherent phenomena. We illustrate 

the concept presented here by a number of examples, in each case showing the scheme of energy levels 

and discussing the type of spin mixing. For numerical calculations, we used the “SpinDynamica” software 

package (Bengs and Levitt, 2018). We also anticipate that the present method is easy to exploit and widely 70 

applicable to treat magnetic resonance experiments, which utilize LACs. 

2 Theory 

2.1 Spin mixing at LACs 

Before going into detail of the method, we would like to remind the reader the LAC concept (von 

Neumann and Wigner, 1929) and characterize the efficiency of spin mixing at LACs.  75 

By a level anti-crossing, or an avoided crossing, we mean the following situation. Let us imagine a 

spin system described by the Hamiltonian 

ℋ̂ = ℋ̂0 + �̂� (1) 

comprising the main term ℋ̂0 and a small perturbation �̂�; we imply that the Frobenius norm of the 

perturbation term is much smaller, ‖�̂�‖ ≪ ‖ℋ̂0‖. The perturbation term becomes relevant only under 

special conditions, namely, when the difference between energies dictated by the ℋ̂0 term (eigenvalues 80 

of ℋ̂0) is small, i.e., the energy levels tend to cross. Let us consider this situation in more detail. 

Hereafter, we assume that there is a parameters 𝑥, which one can control experimentally: this 

can be the external magnetic field strength, or the strength of an applied radiofrequency (RF) field. Upon 

variation of 𝑥 the energies, i.e., eigenvalues of the spin Hamiltonian, change. For simplicity, we consider 

what happens to a pair of levels, corresponding to the eigenstates |𝜓𝑘〉 and |𝜓𝑙〉 of the “unperturbed” 85 

Hamiltonian ℋ̂0, with energies ℰ𝑘
0 and ℰ𝑙

0, i.e., we consider the solutions of the eigenproblem ℋ̂0|𝜓𝑘,𝑙〉 =

ℰ𝑘,𝑙
0 |𝜓𝑘,𝑙〉. The next step is to figure out how the perturbation term affects the actual energies and the 

corresponding eigenstates of the full Hamiltonian. When solving this problem, we assume that the 

energies ℰ𝑘
0 and ℰ𝑙

0 closely approach each other in a certain range of 𝑥 values, having a crossing at 𝑥 = 𝑥0 

so that ℰ𝑘
0(𝑥0) = ℰ𝑙

0(𝑥0). We also imply that all other states |𝜓𝑚〉 (where 𝑚 ≠ 𝑘, 𝑙) are remote in energy 90 

at 𝑥 ≈ 𝑥0. Below, we discuss the reason of making such an assumption. To solve the problem, we need to 

do nothing else but diagonalize the full Hamiltonian, including the perturbation term. To determine the 

actual state energies, i.e., the eigenvalues of ℋ̂, we solve the following equation for ℰ and obtain the 

energies: 

|
ℰ − ℰ𝑘

0 𝒱𝑘𝑙
𝒱𝑙𝑘 ℰ − ℰ𝑙

0
| = 0   ⇒    ℰ𝑘,𝑙 =

ℰ𝑘
0 + ℰ𝑙

0

2
±
1

2
√(ℰ𝑘

0 − ℰ𝑙
0)2 + 4|𝒱𝑘𝑙|2 

(2) 

For simplicity, here we assume that the perturbation term has only off-diagonal elements 𝒱𝑘𝑙 =95 

〈𝜓𝑘|�̂�|𝜓𝑙〉 in the basis |𝜓𝑘,𝑙〉 (when this is not true the diagonal terms are also modified with a 

consequence that the actual crossing point might move from 𝑥0 to 𝑥0
′ ). One can see that when 𝒱𝑘𝑙 ≠ 0, 

there are always two different solutions for the energy, ℰ𝑘 ≠ ℰ𝑙. Even when the unperturbed levels do 

cross, ℰ𝑘
0(𝑥0) = ℰ𝑙

0(𝑥0), the levels of the total Hamiltonian are always different and cannot cross: the 

crossing is “avoided” and we obtain a LAC instead of the Level Crossing (LC), see Figure 1a. Or course, the 100 

perturbation term is inactive when |𝒱𝑘𝑙| ≪ |ℰ𝑘
0 − ℰ𝑙

0| (since ℰ𝑘,𝑙 ≈ ℰ𝑘,𝑙
0 ) but it strongly affects the 
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energies when |𝒱𝑘𝑙|~|ℰ𝑘
0 − ℰ𝑙

0|. The range of 𝑥 values such that |𝒱𝑘𝑙|~|ℰ𝑘
0 − ℰ𝑙

0| determines the LAC 

region. The minimal splitting between ℰ𝑘 and ℰ𝑙  is achieved at the LC point 𝑥0 (also giving the center of 

the LAC region) being equal to 2|𝒱𝑘𝑙|. According to the widely accepted terminology, the energy levels 

ℰ𝑘,𝑙
0 , corresponding to the unperturbed Hamiltonian, are diabatic levels, whereas the levels ℰ𝑘,𝑙, 105 

corresponding to the full Hamiltonian, are adiabatic levels. 

 
Figure 1. (a) Representation of an LC and LAC. The black lines represent the energies of the diabatic states, which have a LC. The 
red lines show the adiabatic energy levels. (b) The mixing coefficients introduced in eq. (3) in the LAC region. 

It is important to emphasize that LACs strongly affect spin dynamics, giving rise to coherent spin 110 

mixing. To rationalize this, we need to solve the eigenproblem of the full Hamiltonian ℋ̂. The two 

eigenstates corresponding to the levels ℰ𝑘(𝑥) and ℰ𝑙(𝑥) are superposition states of |𝜓𝑘〉 and |𝜓𝑙〉: 

|𝜑𝑘〉 = 𝑐𝑘𝑙|𝜓𝑘〉 + 𝑐𝑘𝑙
′ |𝜓𝑙〉 = cos 𝜃𝑘𝑙 |𝜓𝑘〉 + sin 𝜃𝑘𝑙 |𝜓𝑙〉 

|𝜑𝑙〉 = −𝑐𝑘𝑙
′ |𝜓𝑘〉 + 𝑐𝑘𝑙|𝜓𝑙〉 = − sin𝜃𝑘𝑙 |𝜓𝑘〉 + cos 𝜃𝑘𝑙 |𝜓𝑙〉 

(3) 

The “mixing angle” 𝜃𝑘𝑙  is defined via the off-diagonal perturbation term and the difference of the 

unperturbed energies:  

tan 2𝜃 =
𝒱𝑘𝑙

ℰ𝑘
0 − ℰ𝑙

0 
(4) 

For the sake of simplicity, we assume that 𝒱𝑘𝑙  is real. The 𝜃 angle goes to zero when the unperturbed 115 

levels are very different in energy and the |𝜓𝑘〉 and |𝜓𝑙〉 states are the eigenstates of the spin system. 

However, in the LAC region 𝜃 ≠ 0 and the |𝜓𝑘〉 and |𝜓𝑙〉 states are superpositions of the true eigenstates 
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|𝜑𝑘〉 and |𝜑𝑙〉. Hence, if initially the |𝜓𝑘〉 state is populated, the spin system will not stay in this state: the 

population will oscillate between the states |𝜓𝑘〉 and |𝜓𝑙〉. From eq. (3) we notice that this effect is 

particularly pronounced at ℰ𝑘
0 − ℰ𝑙

0 = 0, i.e., at the LC, |𝜃| =
𝜋

4
. In this case |𝜑𝑘,𝑙〉 =

1

√2
{|𝜓𝑘〉 ± |𝜓𝑙〉} 120 

meaning that the population can be completely transferred between the states |𝜓𝑘〉 and |𝜓𝑙〉. This is 

exactly the way how LACs can be exploited: spin mixing at LACs can be utilized to perform complete 

transfer of the population from one state to another. In Figure 1b we demonstrate how the coefficients 

𝑐𝑘𝑙  and 𝑐𝑘𝑙
′ , which describe the state mixing, change upon variation of the 𝑥 parameter: away from the 

LAC one of them goes to 1 and the other one goes to 0, whereas in the LAC region both of them are non-125 

zero. When a LC is not turned into a LAC mixing does not occur – for this reason, LCs are of no significance 

for this work. 

Here we consider two different ways of transferring population between the diabatic states. The 

first method utilizes coherent spin mixing at the LAC. The idea is that away from the LAC we prepare the 

spin system in an unperturbed state, for clarity, in |𝜓𝑘〉. A fast (non-adiabatic) jump to 𝑥 = 𝑥0 will keep 130 

the state the same, but |𝜓𝑘〉 now becomes a superposition of the true eigenstates 

|𝜓𝑘〉 =
1

√2
{|𝜑𝑘〉 + |𝜑𝑙〉} 

(5) 

The wavefunction will change in time, since the two eigenstates have different energies (having a LAC is 

equivalent to having two different energies). At time 𝑡, the wavefunction becomes (we express the energy 

in ℏ units) 

|𝜓〉(𝑡) =
1

√2
{|𝜑𝑘〉𝑒

−𝑖ℰ𝑘𝑡 + |𝜑𝑙〉𝑒
−𝑖ℰ𝑙𝑡} 

(6) 

and the populations of the unperturbed state are (here we substitute ℰ𝑘 − ℰ𝑙 = 2𝒱𝑘𝑙) 135 

𝑝𝑘 = 𝑝(𝜓𝑘) = |〈𝜓𝑘|𝜓〉|
2 =

1 + cos(2𝒱𝑘𝑙𝑡)

2
,     𝑝𝑙 = 𝑝(𝜓𝑙) = |〈𝜓𝑙|𝜓〉|

2 =
1 − cos(2𝒱𝑘𝑙𝑡)

2
 

(7) 

Hence, the population oscillates between the states |𝜓𝑘〉 and |𝜓𝑙〉; at 𝑡 = 𝜋/2𝒱𝑘𝑙  the populations are 

inverted. If we bring the system out of the LAC at this instant of time the population will be transferred 

from |𝜓𝑘〉 to |𝜓𝑙〉. When 𝑥 ≠ 𝑥0, coherent spin mixing can still take place but the efficiency of population 

exchange is reduced (e.g., population inversion is no longer possible). 

Another possibility to transfer the population is to perform a slow (adiabatic) passage through the 140 

LAC. When the adiabaticity condition is fulfilled, meaning that the rate of variation of |𝜑𝑘,𝑙〉 is much 

smaller than the intrinsic evolution frequency of the spin system |ℰ𝑘 − ℰ𝑙|, the populations adjust to the 

slow variation of the adiabatic eigenstates. As a consequence, the populations of the adiabatic eigenstates 

|𝜑𝑘,𝑙〉 do not change upon passage through the LAC. This means that the populations of the diabatic states 

|𝜓𝑘,𝑙〉  are swapped: 𝑝𝑘 → 𝑝𝑙 and 𝑝𝑙 → 𝑝𝑘. Hence, like in the previous case, complete exchange of the 145 

populations takes place. When complete adiabaticity is not achieved, the populations are not swapped, 

but partially redistributed, as explained in the following subsection. This effects can be taken into account 

by using the Landau-Zener approach (Zener, 1932). Specifically, assuming that initially 𝑝𝑘 = 1 and 𝑝𝑙 = 0, 

after a passage through a LAC we obtain the following state populations (Zener, 1932) 

𝑝𝑘 = exp [−
2𝜋|𝒱𝑘𝑙|

2

ℱ𝑘𝑙
],     𝑝𝑙 = 1− exp [−

2𝜋|𝒱𝑘𝑙|
2

ℱ𝑘𝑙
] 

(8) 

where ℱ𝑘𝑙 =
𝑑

𝑑𝑡
|ℰ𝑘 − ℰ𝑙| gives the rate, at which the splitting between the diabatic levels changes in time 150 

(in the Landau-Zener approach this speed is taken constant).  
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In many cases, adiabatic passage gives better results as compared to coherent exchange of 

populations, being more robust to inaccuracies in setting the parameters of the spin Hamiltonian. Indeed, 

spin mixing using coherences requires that 𝑥 is precisely set to satisfy the LC condition for the Hamiltonian 

ℋ̂0 and the timing is controlled. In the case of adiabatic passage, it is sufficient to pass through the LAC 155 

region slowly enough. One should note, however, that as far as the transfer time is concerned, coherent 

population exchange is preferable, since it takes less time (an adiabatic process always requires a 

relatively slow variation of the control parameter). 

We illustrate how population exchange can take place for spin-
1

2
, i.e., in a two-level system, which 

is described by the Hamiltonian: 160 

ℋ̂(𝑡) = ℋ̂0(𝑡) + �̂�,    ℋ̂0(𝑡) = 𝜔𝑧(𝑡)𝐼𝑧,     �̂� = 𝜔𝑥𝐼𝑥  (9) 

Hence, a time-dependent field is applied along the 𝑧-axis; additionally there is a constant 𝑥-field. The 

system has a LAC at zero magnetic field, where the |𝛼〉 and |𝛽〉 eigenstates of ℋ̂0 have a crossing, which 

is “avoided” due to the presence of the perturbation term. As usual, by |𝛼〉 and |𝛽〉 we hereafter denote 

the spin-1/2 states with the 𝑧-projection of +
1

2
 and −

1

2
, respectively.  

If we assume that initially the system is in the |𝛼〉 state, a possible way to perform the |𝛼〉 → |𝛽〉 165 

population transfer is to introduce a non-adiabatic jump to zero field, where the true eigenstates, 

(|𝛼〉 ± |𝛽〉)/√2 are superposition states of |𝛼〉 and |𝛽〉. In this situation, according to eq. (7), the 

population oscillates between |𝛼〉 and |𝛽〉, as shown in Figure 2a. 

 
Figure 2. (a) Time dependence of the state populations in the case of coherent exchange with 𝜔𝑥 2𝜋⁄ = 10 Hz, as obtained from 170 
eq. (7). (b) Populations after a passage through zero field, 𝜔𝑧 = 0, as functions of the switching time 𝜏𝑠𝑤 . Here the solid lines 
present the result of eq. (8) and the dashed lines show the numerical simulation result. Here 𝜔𝑥 2𝜋⁄ = 10 Hz, 𝜔𝑧

𝑚𝑎𝑥 2𝜋⁄ = 100 
Hz. Initially the system is in the |𝛼〉 state; the blue and red lines shown the populations of the |𝛼〉 and |𝛽〉 states, respectively. 

Another possibility is to perform an adiabatic passage through the LAC, by varying the 𝑧-

component of the field, so that 𝜔𝑧  goes from a negative value −𝜔𝑚𝑎𝑥 to a positive value +𝜔𝑚𝑎𝑥 . Here 175 

we assume that 𝜔𝑚𝑎𝑥 ≫ 𝜔𝑥  and that the time dependence of 𝜔𝑧  is a linear dependence 

𝜔𝑧(𝑡) = 𝜔𝑚𝑎𝑥 (
2𝑡

𝜏𝑠𝑤
− 1) 

with 𝜏𝑠𝑤 being the duration of the switch. The resulting state populations would then follow from eq. (8), 

with the Landau-Zener parameter equal to 
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2𝜋|𝒱𝑘𝑙|
2

ℱ𝑘𝑙
=
𝜋𝜔𝑥

2𝜏𝑠𝑤
4𝜔𝑧

𝑚𝑎𝑥  180 

The resulting state populations are shown in Figure 2b; for comparison we also show the result of a 

numerical simulation of the spin dynamics with a ℋ̂(𝑡) time-dependent Hamiltonian. 

We would like to emphasize that in some cases the mixing matrix element is zero; however, when 

the states |𝜓𝑘〉 and |𝜓𝑙〉 are both coupled to a third state |𝜓𝑚〉 the basis wavefunctions also become 

perturbed and a mixing matrix element 𝒱𝑘𝑙  effectively becomes non-zero. In Appendix A, we explain how 185 

to calculate 𝒱𝑘𝑙  in this case, corresponding to degenerate perturbation theory. Hence, the two states |𝜓𝑘〉 

and |𝜓𝑙〉 are never mixed (and the LC is never turned to a LAC) only when the Hamiltonian ℋ̂ is block-

diagonal and these two states belong to different blocks. 

2.2 Theoretical framework 

The idea of this paper is to describe how spin order changes due to coherent spin mixing at LACs. 190 

In all cases, we consider processes, in which a certain parameter 𝑥(𝑡) is varied so that the spin Hamiltonian 

ℋ̂0(𝑥) also varies with time and the system goes through LCs, which are turned into LACs by the �̂� term. 

In the following, we make several assumptions.  

First, we consider the initial and final spin states characterized by the density matrices 𝜌𝑖 and 𝜌𝑓, 

which are diagonal in the eigenbasis of the Hamiltonian: 195 

𝜌𝑖 =∑𝑝𝑚
𝑚

|𝜓𝑚
𝑖 〉〈𝜓𝑚

𝑖 |,      𝜌𝑓 =∑𝑝𝑛
𝑛

|𝜓𝑛
𝑓〉〈𝜓𝑛

𝑓| (10) 

where |𝜓𝑚
𝑖 〉 and |𝜓𝑚

𝑓 〉 stand for the diabatic eigenstates of the initial and final unperturbed Hamiltonian 

ℋ̂0. We also assume that the eigenstates of ℋ̂0 can be determined analytically at any 𝑥 value, which is 

possible in many cases when the perturbation term is dropped off. Consideration of the coherences can 

be complicated, as they give rise to complex phenomena, e.g., those described by Berry’s phase 

(Zwanziger et al., 1990;Berry, 1984). Here we avoid such complexities assuming that the initial state is 200 

adjusted such that the density matrix 𝜌𝑖 is diagonal in the eigenbasis of the initial Hamiltonian. This means 

that instead of the density matrix we can use a vector of state populations, |𝜌), introduced in the following 

way: 

|𝜌) =∑𝑝𝑚
𝑚

|𝜓𝑚) 
(11) 

Here |𝜓𝑚) = |𝜓𝑚⟩⟨𝜓𝑚| define the operator basis for the density matrix. Note that the curly bracket 

introduced in this way does not correspond to the bra-ket notations, used to define wavefunctions in 205 

quantum mechanics (we deliberately use a different type of brackets). It is easy to notice, that this basis 

is orthonormal as (𝜓𝑚|𝜓𝑘) ≡ Tr{|𝜓𝑚⟩⟨𝜓𝑚|𝜓𝑘⟩⟨𝜓𝑘|} = 𝛿𝑚𝑘. Since we deal with population vectors, in 

eq. (10) we omit all terms |𝜓𝑚〉〈𝜓𝑛| when 𝑚 ≠ 𝑛. 

Second, we assume that the spin dynamics is described entirely in terms of redistribution of the 

populations, occurring at LACs. The idea is that we can determine the LC points for the levels of ℋ̂0, figure 210 

out whether the LCs are turned into LACs by the �̂� term and assume that at each LAC redistribution of the 

corresponding state populations is taking place. This means that after mixing at the LAC between |𝜓𝑘〉 

and |𝜓𝑙〉 the populations of the diabatic eigenstates change as follows 

𝑝𝑘 → 𝑝𝑘
′ = (1 − Δ𝑘𝑙)𝑝𝑘 + Δ𝑘𝑙𝑝𝑙 

𝑝𝑙 → 𝑝𝑙
′ = (1 − Δ𝑘𝑙)𝑝𝑙 + Δ𝑘𝑙𝑝𝑘 

(12) 

Here Δ𝑘𝑙  stands for the mixing efficiency, which is varied between zero and 1. Hence, we keep in mind 

that exchange of the populations may be incomplete, for instance, when the time of the coherent 215 
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evolution at the LAC is not optimized or when the adiabaticity condition is not perfectly fulfilled. When 

Δ𝑘𝑙 = 1 the populations are swapped, when Δ𝑘𝑙 = 0 there is no population exchange taking place. The 

precise Δ𝑘𝑙  value can be determined by simulating the spin dynamics at the LAC. For coherent spin mixing 

and adiabatic passage it can be determined from eqs. (7) and (8), respectively. 

Third, we assume that LACs are isolated from each other, meaning that the spin mixing is occurring 220 

independently at different LACs. For instance, the region of LAC occurring between the states |𝜓𝑘〉 and 

|𝜓𝑙〉 should not overlap with that of the LAC between the states |𝜓𝑘〉 and |𝜓𝑚〉. LACs between different 

pairs of states are allowed to occur at similar values of 𝑥. Under such assumptions we can describe the 

spin dynamics in terms of pairwise redistribution of populations at isolated LACs.  

Finally, we need to consider that the eigenstates of the Hamiltonian ℋ̂0 can differ when the 𝑥 225 

parameter is varied: a “rotation” of the eigenbasis can take place. The state basis |𝜓𝑚
𝑓 〉 is then “tilted” 

with respect to the basis |𝜓𝑚
𝑖 〉. Hence, when we compute an expectation value of a certain spin operator 

in the basis of |𝜓𝑚
𝑓 〉 states, it might correspond to a different operator in the |𝜓𝑚

𝑖 〉 basis. This happens, 

for instance, when the direction of a quantization axis changes upon variation of 𝑥. We will discuss such 

examples separately. 230 

Using these assumptions, we can formulate the theory for evaluating the spin evolution driven by 

LACs. Redistribution of the diabatic state populations given by eq. (12) can be described by an operator 

Π̂(𝑘𝑙)(Δ𝑘𝑙), hereafter, termed as “population redistribution operator”, which is a square matrix with the 

following non-zero elements (here 𝛿𝑚𝑛 is the Kronecker delta): 

Π̂𝑚𝑛
(𝑘,𝑙)(Δ𝑘𝑙) = 𝛿𝑚𝑛 (when 𝑚, 𝑛 ≠ 𝑘, 𝑙) 

Π̂𝑘𝑘
(𝑘,𝑙)(Δ𝑘𝑙) = Π̂𝑙𝑙

(𝑘,𝑙)(Δ𝑘𝑙) = 1 − Δ,      Π̂𝑘𝑙
(𝑘,𝑙)

= Π̂𝑙𝑘
(𝑘𝑙)

= Δ 

(13) 

This operator can be explicitly written as: 235 

Π̂𝑚𝑛
(𝑘𝑙)

= (1 − Δ){|𝜓𝑘
𝑓)(𝜓𝑘

𝑖 | + |𝜓𝑙
𝑓)(𝜓𝑙

𝑖|} + Δ{|𝜓𝑙
𝑓)(𝜓𝑘

𝑖 | + |𝜓𝑘
𝑓)(𝜓𝑙

𝑖|} + ∑ |𝜓𝑚
𝑓 )(𝜓𝑚

𝑖 |

𝑚≠𝑙,𝑘

 (14) 

One can see that this operator does not change the populations of states 𝑚 ≠ 𝑙, 𝑘. When acting on a 

certain state, which gets mixed with another state, for example, |𝜓𝑘
𝑖 ), we obtain: 

Π̂𝑚𝑛
(𝑘𝑙)|𝜓𝑘

𝑖 ) = (1 − Δ)|𝜓𝑘
𝑓)(𝜓𝑘

𝑖 |𝜓𝑘
𝑖 ) + Δ|𝜓𝑙

𝑓)(𝜓𝑘
𝑓|𝜓𝑘

𝑖 ) = (1 − Δ)|𝜓𝑘
𝑓) + Δ|𝜓𝑙

𝑓) 

This expression agrees with Eq. (13). Acting on the vector of populations by Π̂(𝑘𝑙) we get the result 

|𝜌′) = Π̂(𝑘,𝑙)(Δ𝑘𝑙)|𝜌) (15) 

The elements of the new population vector |𝜌′) are 𝑝𝑗
′ = 𝑝𝑗  for 𝑗 ≠ 𝑘, 𝑙; the 𝑝𝑘

′  and 𝑝𝑙
′ populations are 240 

given by eq. (12). To be more precise, one should term Π̂ “superoperator” (as it is an operator acting in 

the operator space); however, we do not use double “hats” and omit this complexity for the sake of 

brevity. 

If the system passes through a sequence of LACs (occurring in pairs of state 𝑘𝑙, …, 𝑝𝑞, 𝑟𝑠) the 

resulting redistribution operator is 245 

Π̂ = Π̂(𝑟𝑠)(Δ𝑟𝑠) ⋅ Π̂
(𝑝𝑞)(Δ𝑝𝑞) ⋅ … ⋅ Π̂

(𝑘𝑙)(Δ𝑘𝑙)    ⇒    |𝜌
′) =  Π̂|𝜌) (16) 

The operators, describing population redistribution at subsequent LACs, are sequentially multiplied from 

right to left to obtain the resulting operator Π̂. 

In some cases, the actual permutation of the state populations is performed via several 

consecutive permutations, for example, 𝑖 → 𝑝 → 𝑓. Such a sequence of simple permutations gives rise to 

a more complex permutation. When Δ = 1 for each permutation, the actual form of the Π̂ operator is 250 
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simplified, corresponding to cyclic permutation. For instance, for permutations 𝑖 → 𝑝 → 𝑓 we obtain Π̂ =

Π̂(𝑝𝑓)(1) ⋅ Π̂(𝑖𝑝)(1). This is equivalent to the following permutations: 𝑖 → 𝑓, 𝑓 → 𝑝, 𝑝 → 𝑖. In this work we 

will mostly consider spin order transfer pathways with a single permutation. Nevertheless, we also discuss 

cases where more complex permutations come into play (Rodin et al., 2020). 

 255 
Figure 3. (a) Variation of the control parameter 𝑥 with time. When the 𝑥 value reaches the LACs region, mixing of the populations 
occurs, LC positions 𝑥𝑘𝑙 are indicated as well as the permutation operators. (b) Representation of the population mixing between 
the pairs of diabatic states at the corresponding LACs, indicated by arrows. 

Knowing the final vector or state populations, we are able to evaluate the final density matrix 

from eq. (15) and to compute the expectation values of a spin operator �̂�𝐴 of interest: 260 

𝑄𝐴 = (�̂�𝐴|𝜌
′) = Tr{𝑄𝐴 ⋅ 𝜌′} (17) 

It is important to note that that for many operators the 𝑄𝐴 expectation value will be zero, because all off-

diagonal elements of the density matrix are zero. In some cases, it is desirable to express the resulting 

spin order in the eigenbasis |𝜓𝑘
𝑖 〉 of the initial Hamiltonian: an additional transformation is required then 

described by a basis rotation operator Ψ̂𝑖→𝑓  (whereas Ψ̂𝑓→𝑖  gives the inverse transformation). If we then 

express the final density matrix in the initial |𝜓𝑘
𝑖 〉 basis, it becomes as follows: 265 

|𝜌) =∑𝑝𝑚
𝑚

Ψ̂𝑓→𝑖|𝜓𝑚) 
(18) 

In some cases, the basis rotation is equivalent to a physical rotation of spins in the three-dimensional 

space. In this situation, we can introduce the rotation axis 𝐧 and the rotation angle 𝜗, so that Ψ̂𝑖→𝑓 =

Ψ̂𝐧(𝜗), where Ψ̂𝐧(𝜗) is the superoperator describing the actual rotation (all superoperators here are 

denoted by capital Greek letters). If the operator generating the basis rotation is given by (𝐧, �̂�), the basis 
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rotation corresponds to the physical spin rotation. In the general case, rotation in the Hilbert space does 270 

not necessarily correspond to rotation in the physical 3D space. Using expression (18), we can evaluate 

the expectation value of any operator of interest.  

Basis “rotation” becomes an important concern in some NMR experiments: an example is given 

by our recent work (Rodin et al., 2020) on “algorithmic cooling” of a spin system exploiting long-lived 

singlet order. The protocol for algorithmic cooling requires specific permutations of state populations in 275 

a four-level system, which are carried out by using NMR pulses with adiabatically increased or decreased 

field strength (which make use of adiabatic passage through LACs). Such pulses not only swap state 

populations but also rotate the basis of spin eigenstates. Consequently, additional pulses are required to 

compensate for this effect (Rodin et al., 2020). Examples, in which basis rotation is taking place, are 

discussed below in section 3.4. 280 

The conversion of spin order can be illustrated by a diagram, as the one depicted in Figure 3. In 

the diagram above, we plot the 𝑥(𝑡) trajectory in a schematic way, showing only the passages through 

LACs or jumps to LACs. In the diagram below, we show the energy levels as functions of 𝑥 and indicate the 

pathway for redistribution of the state populations. The resulting spin order can be represented by the 

populations of the eigenstates |𝜓𝑛
𝑓〉 in the cases of either complete population exchange or partial 285 

redistribution of the populations. 

3 Results and Discussion 

In this section, we consider a number of examples of LC/LAC based analysis of the spin dynamics. 

In each case, we start from introducing the ℋ̂0 Hamiltonian (along with its eigenvalues) and the 

perturbation term �̂�. After that, we explain how spin order of the system is modified due to the evolution 290 

at LACs. 

3.1 Adiabatic zero-field passage 

The first example we consider here is given by adiabatic inversion of the external magnetic field 

𝐁||𝑧. The simplest example is given by a two-spin system with spins 𝐼 and 𝑆 of different kind, i.e., two 

heteronuclei with the gyromagnetic ratios 𝛾𝐼 ≠ 𝛾𝑆.  295 

The Hamiltonian of the spin system is given by expression (in ℏ units; here 𝐽𝐼𝑆 is the coupling 

strength, given in Hz) 

ℋ̂ = −𝛾𝐼𝐵𝐼𝑧 − 𝛾𝑆𝐵�̂�𝑧 + 2𝜋𝐽𝐼𝑆(�̂� ⋅ �̂�) (19) 

Here we assume that the first two terms and the secular part of the coupling term give the main 

Hamiltonian  

ℋ̂0 = −𝛾𝐼𝐵𝐼𝑧 − 𝛾𝑆𝐵�̂�𝑧 + 2𝜋𝐽𝐼𝑆𝐼𝑧�̂�𝑧 300 

while the non-secular coupling term is a perturbation: 

�̂� = 𝜋𝐽𝐼𝑆{𝐼+�̂�− + 𝐼−�̂�+} 

The unperturbed states of the spin system are the Zeeman states |1〉 = |𝛼𝛼〉, |2〉 = |𝛼𝛽〉, |3〉 = |𝛽𝛼〉 and 

|4〉 = |𝛽𝛽〉.  

When 𝐵 = 0 the unperturbed energy levels cross: |𝛼𝛼〉 crosses with |𝛽𝛽〉 and |𝛼𝛽〉 crosses with 305 

|𝛽𝛼〉. The first LC cannot be turned into a LAC, since 〈𝛼𝛼|�̂�|𝛽𝛽〉 = 0, but the second LC is turned into a 

LAC by the perturbation term, since 〈𝛼𝛽|�̂�|𝛽𝛼〉 = 𝜋𝐽𝐼𝑆. The true LCs are completely irrelevant for spin 

mixing, but at the LAC the populations of the states |2〉 and |3〉 can be exchanged. The energy levels are 

schematically shown in Figure 4. One can see that there are two more LCs at 𝐵 ≠ 0 (an LC at a positive 
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field and an LC at a negative field), which are never turned to LACs when the Hamiltonian has the form 310 

given by Eq. (19), because the corresponding states are characterized by different values of the 𝑧-

projection of the total spin �̂� = �̂� + �̂� and are not mixed by the perturbation term. However, mixing at 

this LCs may become a concern (Lukzen and Steiner, 1995) in the presence of an additional transverse 

field. Discussing such effects is beyond the scope of this work. 

 315 
Figure 4. Correlation diagram for an adiabatic inversion. Simulation parameters: 𝑱𝑰𝑺 = 𝟏𝟎𝟎 Hz, 𝑰 and 𝑺 spins are 1H and 13C nuclei 

with the gyromagnetic ratios 𝜸𝑯 = 𝟐.𝟔𝟖 ⋅ 𝟏𝟎
𝟖 rad⋅s–1⋅T–1 and 𝜸𝑪 = 𝟔.𝟕𝟑 ⋅ 𝟏𝟎

𝟕 rad⋅s–1⋅T–1. 

If we assume that the two spins have different polarizations, the initial density matrix is given by 

expression 

𝜌 =
1

4
1̂ + 𝑀𝐼𝐼𝑧 +𝑀𝑆�̂�𝑧 

(20) 

The coefficients 𝑀𝐼 = Tr{𝐼𝑧𝜌} and 𝑀𝑆 = Tr{�̂�𝑧𝜌} (here we omit division by Tr{𝐼𝑧
2} and Tr{�̂�𝑧

2}, which are 320 

equal to one) give the polarizations of the two nuclei, which are taken different, 𝑀𝐼 ≠ 𝑀𝑆. They can also 

be determined directly from the populations as 𝑀𝐼 = 𝑝𝛼𝛼 + 𝑝𝛼𝛽 − 𝑝𝛽𝛼 − 𝑝𝛽𝛽  and 𝑀𝑆 = 𝑝𝛼𝛼 − 𝑝𝛼𝛽 +

𝑝𝛽𝛼 − 𝑝𝛽𝛽, ranging from 1 to −1. The population vector in the basis of Zeeman states, ℤ =

{𝛼𝛼, 𝛼𝛽, 𝛽𝛼, 𝛽𝛽}, is as follows: 

|𝜌) =

(

 
 
 
 

1
4 +

1
2𝑀𝐼 +

1
2𝑀𝑆

1
4 +

1
2𝑀𝐼 −

1
2𝑀𝑆

1
4 −

1
2𝑀𝐼 +

1
2𝑀𝑆

1
4 −

1
2𝑀𝐼 −

1
2𝑀𝑆)

 
 
 
 

 

 
 

(21) 

Now we consider a passage through zero field from −𝐵0 to +𝐵0, assuming that |𝛾𝐼 − 𝛾𝑆|𝐵0 ≫325 

2𝜋|𝐽𝐼𝑆| (this condition simply means that at 𝐵 = ±𝐵0 the spin system is away from the LAC region). If we 

redistribute the populations of the states |2〉 and |3〉 by an adiabatic passage through the LAC, we arrive 

at the following expression for the populations  
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|𝜌′) = Π̂(𝛼𝛽,𝛽𝛼)(Δ)|𝜌) =

(

 
 
 
 

1
4
+
1
2
𝑀𝐼 +

1
2
𝑀𝑆

1
4 +

(1 − 2Δ) [
1
2𝑀𝐼 −

1
2𝑀𝑆

]

1
4
− (1 − 2Δ) [

1
2
𝑀𝐼 −

1
2
𝑀𝑆]

1
4
−
1
2
𝑀𝐼 −

1
2
𝑀𝑆 )

 
 
 
 

 

(22) 

Rewriting the �̂�𝑧 and �̂�𝑧  operators in their vector form (i.e., omitting zero off-diagonal elements): 

(𝐼𝑧| = (
1

2

1

2
−
1

2
−
1

2
) 

(𝑆𝑧| = (
1

2
−
1

2

1

2
−
1

2
) 

(23) 

we can determine the polarization values: 330 

𝑀𝐼
′ = (𝐼𝑧|𝜌

′) = (1 − Δ)𝑀𝐼 + Δ𝑀𝑆,      𝑀𝑆
′ = (𝑆𝑧|𝜌

′) = (1 − Δ)𝑀𝑆 + Δ𝑀𝐼 (24) 

Hence, redistribution of polarizations occurs. When the efficiency Δ = 1 we obtain that the spins 

exchange polarizations, 𝑀𝐼
′ = 𝑀𝑆 and 𝑀𝑆

′ = 𝑀𝐼, in accordance with an earlier result on polarization 

transfer in electron-nuclear systems (Lukzen and Steiner, 1995). The actual efficiency can be estimated 

from Eq. (8), by evaluating the parameter 
2𝜋|𝒱𝑘𝑙|

2

ℱ𝑘𝑙
. In the present case, 𝒱𝑘𝑙 = 𝜋𝐽𝐼𝑆 and ℱ𝑘𝑙 =

1

2
(𝛾𝐼 − 𝛾𝑆)

𝑑𝐵

𝑑𝑡
.  335 

Polarization transfer can be carried out in other ways. For instance, one can perform a non-

adiabatic jump 𝐵0 → 𝐵 = 0, i.e., to the LAC, to convert the population difference (𝑝𝛼𝛽 − 𝑝𝛽𝛼) into the 

coherences between the new eigenstates |2,3〉 = {|𝛼𝛽〉 ± |𝛽𝛼〉}/√2. As explained above, by controlling 

the evolution time 𝑡𝑚𝑖𝑥  at zero-field one can change the sign of the coherence. After that, a non-adiabatic 

field jump to 𝐵0 will swap the populations of the states |2〉 and |3〉. If we assume that the mixing efficiency 340 

Δ is less than one, we get the general result given by eq. (24). As follows from eq. (7), the optimal mixing 

time, which guarantees  Δ → 1, is achieved when 2𝒱𝑘𝑙𝑡𝑚𝑖𝑥 = 𝜋, i.e., 𝑡𝑚𝑖𝑥 = 1/𝐽𝐼𝑆. 

In this context, it is useful to consider a more complex problem of enhancing NMR signals of 

“insensitive” nuclei, such as 13C or 15N, by transferring PHIP upon adiabatic passage through zero field. 

This method has been successfully implemented (Eills et al., 2019) to polarize 13C nuclei in a system of two 345 

protons prepared in the singlet spin state and a carbon nucleus. In this case, two protons (spins 𝐼𝑎  and 𝐼𝑏) 

coupled to a 13C nucleus (spin 𝑆), the spin Hamiltonian takes the form: 

ℋ̂ = −𝛾𝐼𝐵{𝐼𝑎𝑧 + 𝐼𝑏𝑧} − 𝛾𝑆𝐵�̂�𝑧 + 2𝜋𝐽𝐻𝐻(�̂�𝑎 ⋅ �̂�𝑏) + 2𝜋𝐽𝑎𝑆(�̂�𝑎 ⋅ �̂�) + 2𝜋𝐽𝑏𝑆(�̂�𝑏 ⋅ �̂�) (25) 

The proton-proton coupling is 𝐽𝐻𝐻; the coupling on the first proton and second proton to the carbon 

nucleus are denoted as 𝐽𝑎𝑆 and 𝐽𝑏𝑆. The key issue is how to separate the Hamiltonian into two parts. 

Hereafter, we follow the results of Eills et al. (Eills et al., 2019) introducing the main Hamiltonian as 350 

(keeping Zeeman interactions, proton-proton coupling and secular part of the heteronuclear couplings) 

ℋ̂0 = −𝛾𝐼𝐵{𝐼𝑎𝑧 + 𝐼𝑏𝑧} − 𝛾𝑆𝐵�̂�𝑧 + 2𝜋𝐽𝐻𝐻(�̂�𝑎 ⋅ �̂�𝑏) + 2𝜋𝐽𝑎𝑆𝐼𝑎𝑧�̂�𝑧 + 2𝜋𝐽𝑏𝑆𝐼𝑏𝑧�̂�𝑧 

and the perturbation as 

�̂� = 𝜋𝐽𝑎𝑆{𝐼𝑎+�̂�− + 𝐼𝑎−�̂�+} + 𝜋𝐽𝑏𝑆{𝐼𝑏+�̂�− + 𝐼𝑏−�̂�+} 

For ℋ̂0 the eigen-basis of states is the “singlet-triplet-Zeeman” basis. In ref. (Eills et al., 2019) such a basis 355 

is introduced in two ways. The obvious one is to use the basis 𝕊𝕋ℤ = {|𝑆〉, |𝑇+〉, |𝑇0〉, |𝑇−〉}12⊗

{|𝛼〉, |𝛽〉}𝑆. This is the singlet-triplet basis of the 𝐼 spins and Zeeman basis of the 𝑆 spin. As usual, the 

singlet-triplet states are 
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|𝑆〉 =
|𝛼𝛽〉 − |𝛽𝛼〉

√2
,    |𝑇+〉 = |𝛼𝛼〉,    |𝑇0〉 =

|𝛼𝛽〉 + |𝛽𝛼〉

√2
,   |𝑇−〉 

(26) 

However, one should note that the true eigenbasis of ℋ̂0 is given by 𝕊𝕋ℤ′ ≠ 𝕊𝕋ℤ, which takes into 

account that the only the states |𝑇±𝛼〉 and |𝑇±𝛽〉 are true eigenstates of ℋ̂0, while the other four states 360 

are superposition states of |𝑆𝛼〉, |𝑆𝛽〉, |𝑇0𝛼〉 and |𝑇0𝛽〉. However, when 𝐽𝐻𝐻  is significantly larger than the 

other two couplings in the spin system, the following expressions hold approximately: |𝑆𝛼〉′ ≈ |𝑆𝛼〉, 
|𝑆𝛽〉′ ≈ |𝑆𝛽〉, |𝑇0𝛼〉′ ≈ |𝑇0𝛼〉 and |𝑇0𝛽〉′ ≈ |𝑇0𝛽〉. In this situation, assuming a special case of the spin 

system prepared in the |𝑆〉 state of the 𝐼 spins, we can approximately set only four populations to a non-

zero value, namely, the populations of the |𝑆𝛼〉′, |𝑆𝛽〉′, |𝑇0𝛼〉′ and |𝑇0𝛽〉′.  365 

 
Figure 5. The two state manifolds of a three-spin 𝐼1𝐼2𝑆 system with 𝐹𝑧 = ±1/2. The balls represent the state populations in the 
initial and final state, while the arrows show the adiabatic pathways. Simulation parameters: 𝐼 and 𝑆 nuclei are 1H and 13C 
respectively, 𝐽𝐻𝐻 = 15.7 Hz, 𝐽1𝑆 = 6.6 Hz, 𝐽2𝑆 = 3.2 Hz. 

In the spin system, there is a number of LCs and LACs, see Figure 5. At zero-field, in any multi-spin 370 

system there are always several LCs present (for symmetry reasons, groups of spin states become 

degenerate): in the present case six levels with proton triplet character are degenerate, as well as the two 

states having singlet character. There is also a number of LCs at non-zero fields, however, not all of them 

are turned into LACs. The reason is the same as in the case of an 𝐼𝑆 two-spin system: all terms in ℋ̂ do 

not alter the 𝑧-projection of all three spins, �̂� = �̂�𝑎 + �̂�𝑏 + �̂�. For this reason, we need to consider only 375 

four LCs, which turn into LACs. The LC positions have been determined in the previous work (Eills et al., 

2019); they are as follows, 𝐵𝐿𝐶
(1)

 and 𝐵𝐿𝐶
(2)

: 

𝐵𝐿𝐶
(1)
=
𝜋

2
⋅
4𝐽𝐻𝐻 − 𝐽Σ
𝛾𝐼 − 𝛾𝑆

,         𝐵𝐿𝐶
(2) = −

𝜋

2
⋅

𝐽Σ
𝛾𝐼 − 𝛾𝑆

 
(27) 

where 𝐽Σ = 𝐽1𝑆 + 𝐽2𝑆; this expression is valid when |𝐽𝐻𝐻| ≫ |𝐽1𝑆 − 𝐽2𝑆|. Upon adiabatic passage −𝐵0 →

+𝐵0 (where 𝐵0 ≫ 𝐵𝐿𝐶
(1)
, 𝐵𝐿𝐶
(2)
) the following population swapping occurs 

|𝑆𝛼〉′ ⟷ |𝑇+ 𝛽〉′ 
|𝑆𝛽〉′ ⟷ |𝑇−𝛼〉′ ⟷ |𝑇0𝛽〉′ ≡ |𝑆𝛽〉′ ⟷ |𝑇0𝛽〉

′ 
(28) 

Strictly speaking, upon the field inversion two more population swaps occur: additionally there are 380 

population swaps of the kind |𝑇0𝛽〉′ ⟷ |𝑇−𝛼〉′ and |𝑇+𝛽〉′ ⟷ |𝑇0𝛼〉′. Hence, in both state manifolds with 

𝐹𝑧 = ±
1

2
, we have cyclic permutations of the populations of three states. However, initially only one of 

the three states of each manifold (the one with singlet character of the protons) is populated, which 
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simplifies the description. Specifically, in the 𝐹𝑧 = +
1

2
 manifold it is sufficient to consider a single 

population swap, whereas in the 𝐹𝑧 = −
1

2
 manifold two swaps should be taken into account. 385 

The initial density matrix in the case under study can be written as: 

|𝜌) ≈
1

2
|𝑆𝛼)′ +

1

2
|𝑆𝛽)′ 

(29) 

After the adiabatic swap, the final density matrix becomes (when Δ = 1 for the relevant LACs) 

|𝜌′) =
1

2
Π̂(𝑇+𝛽,𝑆𝛼)|𝑆𝛼)′ +

1

2
 Π̂(𝑇0𝛽,𝑆𝛽)|𝑆𝛽)′ =

1

2
|𝑇+𝛽)

′ +
1

2
|𝑇0𝛽)

′ 
(30) 

As a result, the singlet order is converted into 𝑧-polarization of protons and 𝑆 spins. The polarizations of 

the 𝐼 spins and 𝑆 spins becomes (if we assume that only two states are populated at 𝐵 = 𝐵0) 

𝑀𝑆 = (𝑆𝑧|𝜌
′) =

1

2
[(𝑆𝑧|𝑇+𝛽)

′ + (𝑆𝑧|𝑇0𝛽)
′] = −

1

2
 

𝑀𝐼 = (𝐼𝑧|𝜌
′) =

1

2
[(𝐼𝑧|𝑇+𝛽)

′ + (𝐼𝑧|𝑇0𝛽)′] =
1

2
 

(31) 

Hence, the singlet order is converted into the polarization of the 𝐼 spins and 𝑆 spins; 𝑀𝐼 and 𝑀𝑆 are the 390 

same in size but have opposite signs, since the 𝐹𝑧 value is conserved. To optimize the conversion efficiency, 

so that Δ → 1, one can use eq. (8). 

Spin order transfer in this system can be carried out in a different (perhaps, simpler) way. For 

instance, one can perform a sweep from 𝐵 = 0 to +𝐵0: the populations are swapped between the states 
|𝑆𝛼〉′ ↔ |𝑇+𝛽〉

′ whereas the population of the  |𝑆𝛽〉′ state remain the same. One more possibility is to 395 

perform a non-adiabatic field jump 𝐵0 → 𝐵𝐿𝐶
(1)

 to generate the coherence between the states |𝑆𝛼〉′ and 

|𝑇+𝛽〉
′, let it evolve for half period and perform a field jump 𝐵𝐿𝐶

(1)
→ 𝐵0. If the timing is properly set, the 

states |𝑆𝛼〉′ and |𝑇+𝛽〉
′ exchange populations. In both cases, there is a single step of redistributing the 

populations. The resulting spin order is the same as in the case of the adiabatic field inversion. The 

experiments exploiting adiabatic passage are, most likely, easier to implement as they do not require 400 

precise control of the timing. The optimal mixing time can be evaluated using Eq. (7). 

3.2 Cross-polarization 

Cross-Polarization (CP) is a widely used method (Hartmann and Hahn, 1962;Pines et al., 

1972;Hediger et al., 1994) to enhance NMR signals of “rare” nuclei in high-field NMR experiments, in 

particular, in solid-state NMR. The idea of CP is to transfer polarization from protons, hereafter denoted 405 

as 𝐼 spins, to “insensitive” nuclei, hereafter 𝑆 spins. Here we consider polarization transfer in a two-spin 

𝐼𝑆 system with 𝛾𝐼 > 𝛾𝑆 . 

In the CP experiment (Hartmann and Hahn, 1962), see Figure 6a, the 𝐼 spins are first flipped by a 

90° pulse, here a 90𝑦  pulse, and then the transverse magnetization is locked by a continuous-wave (CW) 

pulse. After that, an RF-pulse is applied at the frequency of the 𝑆 spins. When the amplitudes of the two 410 

RF-fields are set in a proper way, see explanation below, the transverse polarization is transferred from 

the 𝐼 spins to 𝑆 spins. To detect this polarization, the RF-field applied to the 𝑆 spins is instantaneously 

turned off. Polarization transfer enables enhancement of the NMR signals of the 𝑆 spins due to the 

transfer of the higher polarization of the 𝐼 spins. 

To describe this experiment, we write down the Hamiltonian in the doubly rotating frame 415 

ℋ̂𝑑𝑟𝑓 = 𝑒
𝑖𝜔𝑆𝑡�̂�𝑧𝑒𝑖𝜔𝐼𝑡𝐼𝑧ℋ̂𝑒−𝑖𝜔𝐼𝑡𝐼𝑧𝑒−𝑖𝜔𝑆𝑡�̂�𝑧 = 𝜔1𝐼𝐼𝑥 +𝜔1𝑆�̂�𝑥 + ℋ̂𝐶  (32) 
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In such a frame the Zeeman interactions of the two spins are time-independent; for simplicity we assume 

that they are applied exactly on resonance so that the spins interact only with the RF-fields, here 𝜔1𝐼 =

−𝛾𝐼𝐵1𝐼 and 𝜔1𝑆 = −𝛾𝑆𝐵1𝑆. The coupling term ℋ̂𝐶  is time-dependent and contains contributions, which 

oscillate at the frequencies 𝜔𝐼, 𝜔𝑆, (𝜔𝐼 +𝜔𝑆) and (𝜔𝐼 − 𝜔𝑆). Such terms rapidly average out to zero; the 

only exception is given by the 𝑧𝑧-term, ℋ̂𝑧𝑧 = 𝐻𝑧𝑧𝐼𝑧�̂�𝑧 , which commutes with 𝑒𝑖𝜔𝑆𝑡�̂�𝑧 and 𝑒𝑖𝜔𝐼𝑡𝐼𝑧 and 420 

remains time-independent in the doubly rotating frame.  

 
Figure 6. (a) experimental protocol for the cross polarization experiment (b) Adiabatic energy levels of the system in the doubly 
rotating frame. Simulation parameters: 𝐼 and 𝑆 nuclei are 1H and 13C respectively, 𝜔1𝐼/2𝜋 = 25 kHz, 𝐻𝑧𝑧/2𝜋 = 3 kHz.  

In the following, it is convenient to go to the doubly tilted frame, in which the quantization axes 425 

are parallel to the effective fields, i.e., to the 𝑥-axes of the doubly rotating frame. In the new frame, the 

Hamiltonian takes the form 

ℋ̂𝑑𝑡𝑓 = ℋ̂0 + �̂�, 

ℋ̂0 = 𝜔1𝐼𝐼𝑧 +𝜔1𝑆 �̂�𝑧,     �̂� = 𝐻𝑧𝑧𝐼𝑥�̂�𝑥 =
1

4
𝐻𝑧𝑧{𝐼+�̂�+ + 𝐼+�̂�− + 𝐼−�̂�+ + 𝐼−�̂�−} 

(33) 

These expressions are obtained from eq. (32) by making a substitution of spin operators: 𝐼𝑥 , �̂�𝑥 → 𝐼𝑧, �̂�𝑧 

and 𝐼𝑧�̂�𝑧 → 𝐼𝑥�̂�𝑥. This can also be achieved by using the operator of frame rotation �̂�𝐼𝑆 =

exp [𝑖
𝜋

2
𝐼𝑦] exp [𝑖

𝜋

2
�̂�𝑦] and “sandwitching” the Hamiltonian ℋ̂𝑟𝑑𝑓  between �̂�𝐼𝑆 and �̂�𝐼𝑆

−1. The initial state 430 

of the spin system in the doubly tilted frame can be described by the following density matrix (𝐼 spins are 

polarized along the corresponding RF-field) 
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𝜌𝑖 =
1

4
1̂ + 𝑀𝐼𝐼𝑧 

(34) 

The eigenstates of ℋ̂0 are obviously the Zeeman states |1〉 = |𝛼𝛼〉, |2〉 = |𝛼𝛽〉, |3〉 = |𝛽𝛼〉 and |4〉 =

|𝛽𝛽〉. In this basis the density matrix in eq. (34) can be written as: 

|𝜌) =

(

 
 
 
 
 

1

4
+
𝑀𝐼
2

1

4
+
𝑀𝐼
2

1

4
−
𝑀𝐼
2

1

4
−
𝑀𝐼
2 )

 
 
 
 
 

 

 
 

(35) 

The perturbation term, which contains the raising and lowering spin operators, can mix the states |1〉 and 435 

|4〉 as well as |2〉 and |3〉. When 𝜔1𝐼 and 𝜔1𝑆 are of the same sign, the states |2〉 and |3〉 have a crossing, 

which can be turned into LAC by the �̂� term, see Figure 6b. The LC condition 

𝜔1𝐼 = 𝜔1𝑆    ⇔    𝛾𝐼𝐵1𝐼 = 𝛾𝑆𝐵1𝑆 (36) 

is known as the Hartmann-Hahn condition (Hartmann and Hahn, 1962). In accordance with this condition, 

the fields 𝐵1𝐼 and 𝐵1𝑆 should be set inverse proportional to the corresponding gyromagnetic ratios, i.e., 
𝐵1𝑆

𝐵1𝐼
=
𝛾𝐼

𝛾𝑆
. By virtue of the perturbation term, the populations of the states |2〉 and |3〉 are redistributed 440 

and polarization transfer takes place. As a result, the density matrix takes the form 

|𝜌′) = Π̂(𝛼𝛽,𝛽𝛼)|𝜌) = |𝜌) =

(

 
 
 
 
 

1

4
+
𝑀𝐼
2

1

4
+
𝑀𝐼
2
(1 − 2Δ)

1

4
−
𝑀𝐼
2
(1 − 2𝛥)

1

4
−
𝑀𝐼
2 )

 
 
 
 
 

 

 
 
 

(37) 

Hence, in the ideal case 𝑀𝑆
′ = (𝑀𝑆|𝜌′)

Δ→1
→  𝑀𝐼 and 𝑧-polarization is completely transferred to the 𝑆 spin. 

In the non-tilted rotating frame this would correspond to the transfer of transverse polarization among 

the spins of the heteronuclei. 

The CP experiment can be done is a different way (Metz et al., 1994). The RF-field 𝐵1𝑆 can be 445 

increased in an adiabatic fashion from a value below 
𝛾𝐼

𝛾𝑆
𝐵1𝐼 (corresponding to the LC) to a value above this 

field, in order to enable passage through the LAC. The result of such an experiment, ramped-CP, will be 

the same as for conventional CP: passage through the LAC will enable population swapping between the 

same states, |2〉 and |3〉. Such a technique is often more robust, as explained above. 

Like in the cases described above, one can use Eqs. (7) and (8) for quantitative analysis of the Δ 450 

value and for optimization of the polarization transfer. 

3.3 Singlet order 

Experiments with long-lived singlet order are drawing increased attention, as they allow one to 

investigate various slow processes and to preserve non-thermal spin order from relaxation losses (Levitt, 

2012;Carravetta and Levitt, 2004;Carravetta et al., 2004). Presently, there is a number of NMR methods, 455 

reviewed in detail by Pileio (Pileio, 2017), known to convert magnetization into singlet order and to 

perform backward conversion of such a long-lived order into detectable magnetization. In strict terms, 
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the long-lived order is given by the expectation value of the singlet order operator ⟨SO⟩. The singlet order 

operator is written as: 

SÔ = |𝑆〉〈𝑆| −
1

3
(|𝑇+〉〈𝑇+| + |𝑇0〉〈𝑇0| + |𝑇−〉〈𝑇−|) 

(38) 

 In the present work, we only focus on LAC-based methods, which can be applied to pairs of nearly-460 

equivalent spins 1/2, meaning that the difference {𝜔𝑎 −𝜔𝑏} in their Zeeman interaction with the external 

field is much smaller than the spin-spin coupling strength 𝐽. In the weak coupling regime LAC-based 

consideration is typically not applicable, whereas in strongly coupled spin pairs the magnetization-to-

singlet conversion is commonly occurring at LACs in the RF-rotation frame, carried out in the manner of 

SLIC (Spin-Locking Induced Crossing).(DeVience et al., 2013) 465 

The Hamiltonian of a homonuclear two-spin system, comprising spins 𝐼𝑎  and 𝐼𝑏, in the presence 

of an RF-field can be written as follows in the rotating frame: 

ℋ̂ = 𝛿𝜔𝑎𝐼𝑎𝑧 + 𝛿𝜔𝑏𝐼𝑏𝑧 +𝜔1{𝐼𝑎𝑥 + 𝐼𝑏𝑥} + 2𝜋𝐽(�̂�𝑎 ⋅ �̂�𝑏) (39) 

Here 𝛿𝜔𝑎,𝑏 = 𝜔𝑎,𝑏 −𝜔𝑟𝑓 , where 𝜔𝑎,𝑏 stand for the NMR frequency of the corresponding spin and 𝜔𝑟𝑓  

is the RF-frequency. The definition of the main term and the perturbation is then as follows: 

ℋ̂0 = 〈𝛿𝜔〉{𝐼𝑎𝑧 + 𝐼𝑏𝑧} + 𝜔1{𝐼𝑎𝑥 + 𝐼𝑏𝑥} + 2𝜋𝐽(�̂�𝑎 ⋅ �̂�𝑏),        �̂� =  𝜔Δ{𝐼𝑎𝑧 − 𝐼𝑏𝑧} (40) 

where 〈𝛿𝜔〉 =
1

2
{𝛿𝜔𝑎 + 𝛿𝜔𝑏} and 𝜔Δ =

1

2
{𝛿𝜔𝑎 − 𝛿𝜔𝑏} =

1

2
{𝜔𝑎 −𝜔𝑏}. Hence, the perturbation is given 470 

by the small difference in the resonance frequencies of the two spins. To determine the eigenvalues and 

eigenstates of the main Hamiltonian it is convenient to tilt the reference frame such that the new 𝑧-axis 

is parallel to the effective field vector 𝛚 = (𝜔1 , 0, 〈𝛿𝜔〉). In this frame the ℋ̂0 term takes the form: 

ℋ̂0 = 𝜔𝑒𝑓𝑓{𝐼𝑎𝑧 + 𝐼𝑏𝑧} + 2𝜋𝐽(�̂�𝑎 ⋅ �̂�𝑏) (41) 

where 𝜔𝑒𝑓𝑓 = √𝜔1
2 + 〈𝛿𝜔〉2. The scalar coupling term remains unchanged, since the operator (�̂�𝑎 ⋅ �̂�𝑏) 

is invariant to spatial rotations. The eigenstates of ℋ̂0 correspond to the singlet-triplet basis of states in 475 

the tilted frame: 

𝕊𝕋𝑡 = Ψ𝑥(𝜃𝑡){|𝑇+⟩, |𝑆⟩, |𝑇0⟩, |𝑇−⟩} = {|𝑇+⟩
′, |𝑆⟩, |𝑇0⟩

′, |𝑇−⟩
′} (42) 

Where 𝜃𝑡 = tan
−1𝜔1/𝛿𝜔. The primes in the notations of the triplet states indicate that they are defined 

in the tilted reference frame with 𝑧||𝛚𝑒𝑓𝑓 (we do not use the prime for the |𝑆〉 state, which is the same 

in any frame). The energies of these states of ℋ̂0 are: 

ℰ𝑆 = −
3𝜋

2
𝐽,   ℰ𝑇+ = 𝜔𝑒𝑓𝑓 +

𝜋

2
𝐽,   ℰ𝑇0 =

𝜋

2
𝐽,   ℰ𝑇− = −𝜔𝑒𝑓𝑓 +

𝜋

2
𝐽 

(43) 

The ℋ̂0 Hamiltonian has a single LC occurring when 𝜔𝑒𝑓𝑓 = 2𝜋|𝐽|, which is an 𝑆-𝑇+ or 𝑆-𝑇− crossing 480 

(depending on the sign of 𝐽). The coupling term gives rise to mixing of the crossing states, hence, the LC is 

turned into a LAC. Let us now consider how spin mixing at this LAC can be exploited to perform spin order 

conversion. 

The simplest way to convert spin order is given by the SLIC (Spin-Locking Induced Crossing) 

(DeVience et al., 2013) method, which utilizes a resonant RF-pulse, i.e., 〈𝛿𝜔〉 = 0, with 𝜔1 = 2𝜋|𝐽|. 485 

Application of such a pulse brings the spin system to the LC, where the perturbation term becomes active. 

Hence, 𝑆-𝑇± mixing takes place, in the ideal case it swaps the populations of the two states, see Figure 7. 
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Figure 7. (a) The experimental protocol of SLIC (left) and adiabatic SLIC with linearly ramped RF-field amplitude (right). (b) 
Correlation diagram describing 𝑇+ → 𝑆 conversion at the LAC. 490 

Efficient conversion of magnetization into singlet state requires that first the magnetization vector 

is set parallel to the effective field, in the case 〈𝛿𝜔〉 = 0 the 𝛚𝑒𝑓𝑓  vector is parallel to the 𝑥-axis of the 

tilted frame. Hence, starting with 𝑧-polarization one should first apply a 90𝑦  pulse and then apply a SLIC-

pulse with the 𝑥-phase. Under such conditions the initial density matrix in the tilted frame takes the form 

𝜌𝑖 =
1

4
1̂ + 𝑀𝐼{𝐼𝑎𝑧 + 𝐼𝑏𝑧} 

(44) 

Represented as a state population vector, it is as follows 495 

|𝜌) =

(

 
 
 
 
 

1

4
+ 𝑀𝐼

1

4
1

4
1

4
− 𝑀𝐼)

 
 
 
 
 

 

 
 

(45) 

Hence, the longitudinal magnetization in the tilted frame (corresponding to the transverse magnetization 

in the original frame) is non-zero, while the singlet order is zero, 〈SO〉 = 0. By applying a SLIC-pulse, 

however, one can swap the populations of the states |𝑆〉 and |𝑇+〉′. When the RF-field is resonant, i.e., 

𝛿𝜔 = 0, and the tilt angle is 𝜃𝑡 = 𝜋 2⁄  we obtain that permutation occurs between the states |𝑆⟩ and 
|𝑇+〉

′, which is obtained from |𝑇+⟩ after a 90𝑥  rotation. Consequently, after spin mixing at the LAC the 500 

state populations become 
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|𝜌′) =  Π̂(𝑆,𝑇+)(Δ = 1)|𝜌) =

(

 
 
 
 
 

1

4
1

4
+ 𝑀𝐼

1

4
1

4
− 𝑀𝐼)

 
 
 
 
 

 

 
 

(46) 

According to the definition given by eq. (37), the singlet order operator is as follows: 

(SO| = (−
1

3
1 −

1

3
−
1

3
) 

(47) 

Hence, we obtain that 〈SO〉 = (SO|𝜌′) =
4

3
𝑀𝐼 and the polarization is reduced. The same kind of pulse can 

be used to convert the singlet order back into transverse polarization. 

A possible way (Theis et al., 2014a) to implement SLIC is to apply a pulse with time-dependent 505 

amplitude 𝜔1(𝑡), which is varied in an adiabatic way such that the minimal 𝜔1 is smaller than 2𝜋|𝐽| and 

the maximal 𝜔1 is greater than 2𝜋|𝐽|. In this particular case, it does not matter if 𝜔1 is increased or 

decreased: the permutation of the populations is the same, namely, the |𝑆〉 and |𝑇+〉′ populations are 

swapped. As in the previous example, spin order conversion by an adiabatic pulse is usually more robust, 

although a pulse with 𝜔1 = 2𝜋|𝐽| provides faster conversion. 510 

Spin order conversion by SLIC pulses is not the unique method of driving singlet-triplet transitions. 

It is also possible to apply off-resonant pulses to perform the desired conversion. At a first glance, by using 

an RF pulse with 〈𝛿𝜔〉 ≠ 0 and with a ramped amplitude 𝜔1(𝑡), designed such that the LC at 𝜔𝑒𝑓𝑓 =

2𝜋|𝐽| is passed, one can perform the same kind of transformation as in the SLIC case. However, this is not 

true because the direction of 𝛚𝑒𝑓𝑓  changes upon variation of RF-field amplitude. Indeed, when 𝜔1 = 0 515 

the effective field is directed along the 𝑧-axis (for any small, but non-zero, value of 𝜔1), since there is only 

the 〈𝛿𝜔〉-term in the Hamiltonian ℋ̂0, whereas at 𝜔1 ≫ 〈𝛿𝜔〉 the effective field is parallel to the 𝑥-axis. 

As a consequence, a pulse with an adiabatically increased 𝜔1(𝑡) converts the 𝑧-magnetization of spins 

into singlet order. A pulse with adiabatically decreased 𝜔1(𝑡) converts the singlet order into 𝑧-

magnetization. This type of conversion is exploited in the APSOC (Adiabatic Passage Spin Order 520 

Conversion) method (Pravdivtsev et al., 2016), which has an advantage that additional pulses are not 

required for locking spin magnetization; furthermore, there is no need to control the phase of the pulses. 

In order to estimate the efficiency of spin order conversion in all outlined cases, eqs. (7) and (8) should be 

used. 

3.4 Parahydrogen induced polarization  525 

PHIP also frequently relying (Franzoni et al., 2013;Franzoni et al., 2012;Pravdivtsev et al., 

2014b;Theis et al., 2014b;Pravdivtsev et al., 2013b) on spin mixing occurring at LACs. In this section, we 

discuss possible methods for transferring PHIP to polarize “rare” spins, such as 13C or 15N. We consider 

here a three-spin system, comprising two 𝐼 spins (protons), 𝐼𝑎  and 𝐼𝑏, prepared in the singlet state and an 

𝑆 spin. Such a consideration is relevant in the context of transferring SABRE-derived polarization to rare 530 

spins, such as 15N. A number of methods has been suggested to solve this problem (Theis et al., 

2014b;Theis et al., 2018;Knecht et al., 2018); here we provide a unified view on such methods. For 

simplicity, we assume that the 𝐼 spins are chemically equivalent, but not magnetically equivalent nuclei: 

the unequal 𝐽𝐼𝑆 couplings lift the magnetic equivalence. We also consider a particular method of spin 

order transfer, assuming that it is performed at a high magnetic field by applying RF-excitation solely on 535 

the 𝑆 channel. In the rotating frame (with the frame rotation done only for the 𝐼 spins) the Hamiltonian 

of the spin system is as follows: 
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ℋ̂ = 𝜔𝐻{𝐼𝑎𝑧 + 𝐼𝑏𝑧} + 𝛿𝜔𝑆�̂�𝑧 +𝜔1�̂�𝑥 + 2𝜋𝐽𝐼𝐼(�̂�𝑎 ⋅ �̂�𝑏) + 2𝜋𝐽𝐼𝑆𝐼𝑎𝑧�̂�𝑥  (48) 

Here 𝜔𝐻  is the proton NMR frequency, 𝛿𝜔𝑆 is the offset of the RF-field from the frequency of the 𝑆 spins, 

𝜔1 is the RF-field strength expressed in the frequency units, 𝐽𝐼𝐼 is the couplings of the 𝐼 spins. For the 𝐼𝑆 

couplings we assume that there is interactions only for the 𝐼𝑎-𝑆 spin pair and that 𝐽𝐼𝑆 ≪ 𝐽𝐼𝐼 (so that 540 

perturbation theory treatment is applicable). For the same reason as explained above, in the 𝐼𝑆 coupling 

term we keep only the products of 𝑧-operators. Hence, we set the main part of the Hamiltonian as 

ℋ̂0 = 𝜔𝐻{𝐼𝑎𝑧 + 𝐼𝑏𝑧} + 𝛿𝜔𝑆�̂�𝑧 +𝜔1�̂�𝑥 + 𝐽𝐼𝐼(�̂�𝑎 ⋅ �̂�𝑏) (49) 

and the perturbation as 

�̂� = 2𝜋𝐽𝐼𝑆𝐼𝑎𝑧�̂�𝑧  (50) 

Now we again go to the tilted frame and modify the Hamiltonian in the following way for the main term 

ℋ̂0 = 𝜔𝐻{𝐼𝑎𝑧 + 𝐼𝑏𝑧} + 𝜔𝑆,𝑒𝑓𝑓�̂�𝑧 + 2𝜋𝐽𝐼𝐼(�̂�𝑎 ⋅ �̂�𝑏) (51) 

and for the perturbation term 545 

�̂� = 2𝜋𝐽𝐼𝑆{cos 𝜃𝑒𝑓𝑓 𝐼𝑎𝑧�̂�𝑧 + sin 𝜃𝑒𝑓𝑓 𝐼𝑎𝑧�̂�𝑥} (52) 

Here 𝜔𝑆,𝑒𝑓𝑓 = √𝜔1
2 + 𝛿𝜔𝑆

2 and 𝜃𝑒𝑓𝑓  is the tilt angle; tan 𝜃𝑒𝑓𝑓 =
𝜔1

𝛿𝜔𝑆
. Here the frame tilt is introduced 

only for the 𝑆 spin, which is subject to RF-excitation. 

The next step is solving the eigen-problem of the unperturbed Hamiltonian. To do so, we 

introduce a suitable basis, which is given by the direct product of the singlet-triplet bases of each spin 

pair: {|𝑆〉, |𝑇+〉, |𝑇0〉, |𝑇−〉}𝐼𝐼⊗ {|𝛼′〉, |𝛽′⟩}𝑆, in the basis of the 𝑆 spin the primes indicate that the Zeeman 550 

states are written in the tilted frame. In this basis, the ℋ̂0 Hamiltonian is diagonal. It is then 

straightforward to evaluate the diabatic energy levels. One can determine that two LCs emerge, when the 

following matching conditions are fulfilled 

ℰ𝑆𝛼′ = ℰ𝑇0𝛽′ ,        𝜔𝑆,𝑒𝑓𝑓 = 2𝜋𝐽𝐼𝐼 

ℰ𝑆𝛽′ = ℰ𝑇0𝛼′ ,        𝜔𝑆,𝑒𝑓𝑓 = −2𝜋𝐽𝐼𝐼 

(53) 

Here we consider only LCs in the manifold of |𝑆〉 and |𝑇0〉 states. The reason is that the |𝑆〉 states and |𝑇±〉 

are split by the large proton Zeeman interaction, 𝜔𝐻, and the corresponding crossings cannot occur at 555 

high magnetic fields; furthermore, there is no perturbation term, which would mix these states. 

Therefore, in the present case of single-frequency excitation it is sufficient to consider only 𝑆-𝑇0 mixing of 

the 𝐼 spins. 

At each of the two LCs, the perturbation terms become active: the 𝐼𝑎𝑧 operator can mix the |𝑆〉 

and |𝑇0〉 states, while the �̂�𝑥  operator can mix the |𝛼〉 and |𝛽〉 states. One should only be careful that 560 

when the matching condition  

𝜔𝑆,𝑒𝑓𝑓 = ±2𝜋𝐽𝐼𝐼  (54) 

is fulfilled the 𝜃𝑒𝑓𝑓  should not be approaching zero (which is the case when 𝛿𝜔 ≈ 2𝜋𝐽𝐼𝐼 ≫ 𝜔1): under 

such conditions the coupling term becomes too small to provide fast and efficient exchange of the state 

populations at the LAC. Of course, both conditions 𝜔𝑆,𝑒𝑓𝑓 = ±2𝜋𝐽𝐼𝐼  cannot be fulfilled simultaneously. 

Therefore, for the sake of clarity, we assume that 𝜔𝑆,𝑒𝑓𝑓 = 2𝜋𝐽𝐼𝐼. The relevant energy levels are shown in 565 

Figure 8. 
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Figure 8. Population swapping upon increase of the amplitude of the RF-field applied to the 𝑆 spin. Simulation parameters: 𝐼 and 
𝑆 nuclei are 1H and 13C respectively, 𝐽𝐼𝐼 = 11.5 Hz, 𝐽𝐼𝑆 = 13.7 Hz, 𝛿𝜔 = 2 Hz. See text for further detail.  

Now, let us consider the LAC-driven spin-dynamics of the process. In the case 𝐽𝐼𝐼 ≫ 𝐽𝐼𝑆 the initial 570 

density matrix can be written as: 

|𝜌) ≈
1

2
|𝑆𝛼′) +

1

2
|𝑆𝛽′) 

(55) 

After population swapping the density matrix becomes 

|𝜌)′ = Π̂(𝑆𝛼,𝑇0𝛽)|𝜌) =
1

2
|𝑇0𝛽

′) +
1

2
|𝑆𝛽′) 

(56) 

That is, spin mixing gives rise to population exchange between the states |𝑆𝛼′〉 and |𝑇0𝛽
′〉. As a 

consequence, singlet order is converted into magnetization of the 𝑆 spin. The resulting polarization of the 

𝑆 spin is then as follows: 575 

𝑀𝑆
′ = (𝑆𝑧

′|𝜌)′ ≈
1

2
(𝑆𝑧
′ |𝑇0𝛽

′) +
1

2
(𝑆𝑧
′ |𝑆𝛽′) =

1

2
 

(57) 

Here 𝑀𝑆
′  is the magnetization value in the tilted frame. The resulting spin order of the 𝑆 spins depends on 

how the experiment is carried out. In the simplest case, where a single pulse with 𝜔𝑆,𝑒𝑓𝑓 = 2𝜋𝐽𝐼𝐼  is applied 

for a sufficiently long time (so that spin mixing can occur) the 𝑆 spin is polarized along the 𝛚𝑆,𝑒𝑓𝑓 vector. 

In the situation 𝛿𝜔 = 0 and 𝜔1 = 2𝜋𝐽𝐼𝐼  (resonant pulse) magnetization of the 𝑆 spin is the purely 

transverse magnetization: the �̂�𝑧  spin order in the tilted frame corresponds to �̂�𝑥 in the non-tilted frame. 580 

If it is necessary to generate longitudinal magnetization, an additional RF-pulse should be applied (Theis 

et al., 2014b). By applying a pulse with 𝜔𝑆,𝑒𝑓𝑓 = 2𝜋𝐽𝐼𝐼  and 𝛿𝜔 ≠ 0, one can again generate the �̂�𝑧
′  order 

(Knecht et al., 2018) in the tilted frame, which corresponds to spin order  

�̂�𝑧
′ = �̂�𝑧 cos 𝜃𝑒𝑓𝑓 + �̂�𝑥 sin 𝜃𝑒𝑓𝑓  (58) 

in the non-tilted frame. Hence, the magnetization vector has transverse as well as longitudinal 

components. If the RF-pulse is applied such (Theis et al., 2018) that 𝜔1(𝑡) is adiabatically reduced to zero 585 

in such a way that the LC 𝜔𝑆,𝑒𝑓𝑓 = 2𝜋𝐽𝐼𝐼  is passed and 𝛿𝜔 ≠ 0 the 𝑆 spin is polarized along the 𝛚𝑆,𝑒𝑓𝑓 

vector, which becomes parallel to 𝑧-when 𝜔1 becomes zero. It means that longitudinal magnetization of 

the 𝑆 spins is generated. It is important that necessarily 𝛿𝜔 ≠ 0 in this case: when the offset from the 

resonance frequency is zero, the effective field does not have any preferred direction and the 𝑆 spins 

cannot be preferentially polarized parallel or anti-parallel to the external magnetic field. 590 
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A similar situation arises upon transfer of the singlet order into the magnetization of heteronuclei 

in a four-spin system of the AA′XX′ type. In this situation, the Hamiltonian is written as follows (in the RF-

rotating frame for the 𝑆 spins): 

ℋ̂0 = 𝜔𝐻{𝐼𝑎𝑧 + 𝐼𝑏𝑧} + 𝛿𝜔𝑆(�̂�𝑎𝑧 + �̂�𝑏𝑧) + 𝜔1(�̂�𝑎𝑥 + �̂�𝑏𝑥) + 2𝜋𝐽𝐼𝐼(�̂�𝑎 ⋅ �̂�𝑏)

+ 2𝜋𝐽𝑆𝑆(�̂�𝑎 ⋅ �̂�𝑏) 

(59) 

The perturbation term cis given by expression  

�̂� = 2𝜋𝐽𝐼𝑆{𝐼𝑎𝑧�̂�𝑎𝑧 + 𝐼𝑏𝑧�̂�𝑏𝑧} (60) 

Now it is convenient to rewrite the Hamiltonians in the tilted frame. The main Hamiltonian becomes 595 

ℋ̂0 = 𝜔𝐻{𝐼𝑎𝑧 + 𝐼𝑏𝑧} + 𝜔𝑆,𝑒𝑓𝑓(�̂�𝑎𝑧 + �̂�𝑏𝑧) + 2𝜋𝐽𝐼𝐼(�̂�𝑎 ⋅ �̂�𝑏) + 2𝜋𝐽𝑆𝑆(�̂�𝑎 ⋅ �̂�𝑏) (61) 

and the perturbation is 

�̂� = 2𝜋𝐽𝐼𝑆{cos 𝜃𝑒𝑓𝑓 (𝐼𝑎𝑧�̂�𝑎𝑧 + 𝐼𝑏𝑧�̂�𝑏𝑧) + sin𝜃𝑒𝑓𝑓 (𝐼𝑎𝑧�̂�𝑎𝑥 + 𝐼𝑏𝑧�̂�𝑏𝑥)} (62) 

Here 𝜔𝑆,𝑒𝑓𝑓 = √𝜔1
2 + 𝛿𝜔𝑆

2 and 𝜃𝑒𝑓𝑓  is the tilt angle; tan 𝜃𝑒𝑓𝑓 =
𝜔1

𝛿𝜔𝑆
. The eigen-basis for the ℋ̂0 

Hamiltonian for now is given by the direct product of the singlet-triplet bases in each spin pair: 

{|𝑆〉, |𝑇+〉, |𝑇0〉, |𝑇−〉}𝐼𝐼⊗ {|𝑆〉, |𝑇+
′ 〉, |𝑇0

′〉, |𝑇−
′ 〉}𝑆𝑆, in the basis of the 𝑆 spins the primes indicate that the 

singlet-triplet states are written in the tilted frame (there is no frame tilt introduced for the 𝐼 spins). 600 

The perturbation term (61) can drive 𝑆 → 𝑇0 transitions for the 𝐼 spins accompanied by 𝑆 → 𝑇±
′  

transitions for the 𝑆 spins resulting in the increasing the |𝑇±
′ ⟩ populations and, consequently, causing the 

enhanced heteronuclei magnetization along the RF-field directions. The LCs of the system are the 

following (LC conditions are also specified): 

ℰ𝑆𝑆 = ℰ𝑇0𝑇+′ ,        𝜔𝑆,𝑒𝑓𝑓 = −2𝜋(𝐽𝐼𝐼 + 𝐽𝑆𝑆) 

ℰ𝑆𝑆 = ℰ𝑇0𝑇−′ ,        𝜔𝑆,𝑒𝑓𝑓 = 2𝜋(𝐽𝐼𝐼 + 𝐽𝑆𝑆) 

(63) 

The generalized LACs condition is then 𝜔𝑆,𝑒𝑓𝑓 = ±2𝜋(𝐽𝐼𝐼 + 𝐽𝑆𝑆). The spin dynamics and polarization 605 

behavior is similar to the three-spin case described above; hence, we do not consider further detail here. 

In order to learn more about this subject, the reader is advised to read previous publications (Knecht et 

al., 2018;Theis et al., 2014b). 

Finally in this section, we would like to note that similar LAC-driven spin dynamics have been 

reported for homonuclear systems of the AA′MM′ type, where AA′ and MM′ stand for the two groups of 610 

chemically equivalent but magnetically non-equivalent spins, with the AA′ spins prepared in the singlet 

state. Discussion of this case is beyond the scope of the present work. We only mention that spin order 

transfer is based on the same principles as those described above: upon RF-excitation polarization transfer 

occurs at LACs (in the rotating frame) and gives rise to polarization of the AA′ and MM′ spins along their 

respective effective fields. One can also vary the actual spin magnetization by introducing a single RF-615 

pulse, which brings the spin system to an LAC, or by passing through LACs using adiabatically ramped RF-

field amplitudes. Further information can be found in the original publications (Pravdivtsev et al., 

2014b;Franzoni et al., 2013). 

4 Conclusions and Outlook 

In this work, we present a general approach to treat spin mixing occurring at LACs. The approach 620 

is formulated assuming that the spin system has a set of LACs, which do not overlap with each other, for 

the state described in terms of the populations of diabatic states, i.e., we ignore the possible presence of 

spin coherences in the initial and final state. Upon variation of a control parameter (magnetic field 

strength, RF-frequency, RF-field strength) the spin system passes through LACs and permutations of the 
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state populations occur. Introducing the operators of permutations, we can compute the final spin order. 625 

We also take into account that upon variation of the control parameter the basis of the diabatic 

eigenstates may be altered. This consideration of the spin dynamics proposed here is summarized by a 

flow-chart diagram, shown in Figure 9.  

 
Figure 9. Flow-chart diagram indicating (a) the way to find all LACs and (b) to calculate the spin dynamics due to LACs. 630 

The treatment presented here is supported by a number of examples. These examples are dealing 

with spin order conversion via adiabatic passage through zero field, with cross-polarization, with singlet-

state NMR and with PHIP. To conclude, utilizing LACs provides powerful methods to manipulate spin order 

and to design experimental protocols for robust and efficient spin order conversion. LAC based methods 

have proven to be a useful tool. For instance, in our lab we have developed several methods based on 635 

harnessing LACs, such as the APSOC method and techniques for manipulating PHIP. Further applications 

of this method can be found in solid-state NMR using Magic Angle Spinning, which is a commonly used 

way to improve resolution and sensitivity. Notably, LAC-based description can be utilized to describe spin-

locking experiments with quadrupolar nuclei (Vega, 1992;Ashbrook and Wimperis, 2009) and dynamic 

nuclear polarization (Thurber and Tycko, 2014, 2012;Mentink-Vigier et al., 2015) in rotating solids. 640 

A possible extension of the theory presented here (which goes beyond the scope of the present 

work) is given by consideration of relaxation effects, which also give rise to population exchange between 

spin eigenstates. To treat relaxation, one should introduce a relaxation superoperator, which is acting in 

between passages through individual LACs. Hence, population swaps would be accompanied by relaxation 

of populations between subsequent swaps. Of course, such a treatment would be limited to relaxation of 645 

populations only, whereas relaxation of coherence would be beyond its reach.  
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Appendix A. Degenerate perturbation theory 

Here we present calculations of the effective coupling element 𝒱𝑘𝑙  in the situation where |𝜓𝑘〉 

and |𝜓𝑙〉 are not mixed by the perturbation, but are mixed with other states |𝜓𝑚〉. If we assume that there 655 

is only one such state, we can evaluate the second-order correction to the wavefunctions: 

|𝜓𝑘
(2)〉 ≈ |𝜓𝑘〉 +

𝒱𝑚𝑘

ℰ𝑘
0 − ℰ𝑚

0
|𝜓𝑚〉,        |𝜓𝑙

(2)〉 ≈ |𝜓𝑙〉 +
𝒱𝑚𝑙

ℰ𝑙
0 − ℰ𝑚

0
|𝜓𝑚〉 

(A1) 

The new wavefunctions can be mixed, because 𝒱𝑘𝑚  and 𝒱𝑙𝑚 are both non-zero. Assuming ℰ𝑘
0 ≈ ℰ𝑙

0 we 

can estimate the matrix element, which mixes them, as follows 

𝒱𝑘𝑙
𝑒𝑓𝑓

≈
𝒱𝑘𝑚𝒱𝑚𝑙

ℰ𝑘
0 − ℰ𝑚

0  
(A2) 

If there are multiple states |𝜓𝑚〉, through which the |𝜓𝑘〉 and |𝜓𝑙〉 are coupled, we generalize this 

expression as 660 

𝒱𝑘𝑙
𝑒𝑓𝑓

≈ ∑
𝒱𝑘𝑚𝒱𝑚𝑙

ℰ𝑘
0 − ℰ𝑚

0

𝑚≠𝑘,𝑙

 
(A3) 

The effective coupling element vanished only when for any 𝑚 both 𝒱𝑘𝑚  and 𝒱𝑙𝑚 are zero, meaning that 
|𝜓𝑘〉 and |𝜓𝑙〉 must belong to different blocks of a block-diagonal Hamiltonian. In this situation, a true LC 

between these states is possible; otherwise, it is turned into a LAC. 
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