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Abstract  9 

 Homonuclear finite-pulse radio frequency driven recoupling (fp-RFDR) has been broadly used in 10 

multi-dimensional magic-angle spinning (MAS) solid-state NMR experiments over the past 20 years. The 11 

theoretical and the simulated descriptions of this method were presented during that time, resulting in an 12 

understanding of the influence of chemical shift offset, finite pulse effects, and dipolar truncation. Here 13 

we present an operator analysis of both heteronuclear and homonuclear fp-RFDR. By numerical 14 

simulation, we show which operators are involved in the longitudinal exchange for both heteronuclear 15 

and the well-known homonuclear sequences. This results in a better understanding of the influence of 16 

phase cycling of the fp-RFDR pulses, which is typically a variant of XY cycling. We investigate the 17 

heteronuclear and homonuclear fp-RFDR signals and evolution of the operators through the fp-RFDR 18 

block. We show the convergence of the evolutions of the heteronuclear and homonuclear fp-RFDR 19 

signals at even numbers of rotor periods and completely different evolution between them. We 20 

demonstrate heteronuclear 1H- 13C and 1H-15N fp-RFDR magnetization transfer using a microcrystalline 21 

SH3 sample at 100 kHz MAS.    22 
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Introduction 24 

 Solid-state magic-angle spinning NMR spectroscopy is used to obtain atomic resolution physical 25 

and chemical knowledge about the investigated sample. One of the abilities of the NMR experiments is to 26 

determine distance between a pair of spin 1/2 nuclei via recoupling the homonuclear(A. E. Bennett et al. 27 

1992; Ok et al. 1992; Z. Zhang et al. 2020; Gelenter, Dregni, and Hong 2020; Takegoshi, Nakamura, and 28 

Terao 2001; Szeverenyi, Sullivan, and Maciel 1982; Hou, Yan, et al. 2011; Hou et al. 2013; Carravetta et 29 

al. 2000; Andrew E. Bennett et al. 1998) or heteronuclear(Gelenter, Dregni, and Hong 2020; T. Gullion 30 

and Schaefer 1989; Jaroniec, Filip, and Griffin 2002; Hing, Vega, and Schaefer 1992; Hartmann and 31 

Hahn 1962; Rovnyak 2008; Metz, Wu, and Smith 1994; Hediger et al. 1994; Hou, Byeon, et al. 2011; 32 

Brinkmann and Levitt 2001; Gelenter and Hong 2018; Z. Zhang, Chen, and Yang 2016) dipolar 33 

interactions. The homonuclear fp-RFDR sequence is successfully applied for the qualitative and 34 

quantitative determinations of the dipolar spin correlations in materials(Saalwächter 2013; Messinger et 35 

al. 2015; Fritz et al. 2019; Roos, Mandala, and Hong 2018; Nishiyama et al. 2014; Wong et al. 2020; 36 

Hellwagner et al. 2018; Pandey and Nishiyama 2018) and biomolecular samples(Zheng, Qiang, and 37 

Weliky 2007; Tang, Berthold, and Rienstra 2011; Shen et al. 2012; Pandey et al. 2014; Grohe et al. 2019; 38 

Andreas et al. 2015; Petkova et al. 2002; Aucoin et al. 2009; Zinke et al. 2018; R. Zhang, Mroue, and 39 

Ramamoorthy 2017; Zhou et al. 2012; Jain et al. 2017; Colvin et al. 2015; Shi et al. 2015; Daskalov et al. 40 

2020).      41 

 These applications depend on a firm quantum mechanical foundation. One of the theoretical tools 42 

to investigate the influence of radio frequency (RF) pulse sequences on the spin system is Average 43 

Hamiltonian Theory(Haeberlen and Waugh 1968; Maricq 1982) (AHT). The two necessary conditions for 44 

application of the AHT are(Ernst, Bodenhausen, and Wokaun 1987): 45 

1. The total Hamiltonian has to be periodic; 46 
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2. The stroboscopic measurements are synchronized with the period, or cycle time, of the total 47 

Hamiltonian.  48 

When these conditions are fulfilled, the time-dependent Hamiltonian, evaluated at multiples of the cycle 49 

time, can be replaced by the sum of the time-independent multiple order averaging terms(Ernst, 50 

Bodenhausen, and Wokaun 1987). 51 

AHT simplifies quantum calculations, especially in cases when complex multiple-pulse 52 

sequences are used. It can explain the selectivity of the pulse sequence, meaning to find the experimental 53 

conditions under which the desired interactions are recoupled and undesired decoupled. However, AHT 54 

can predict the state of the spin system at specific time points only and not the paths by which the spin 55 

system is evolves during the period when rf pulses are given. Another successful method, Floquet 56 

Theory(Levante et al. 1995; Scholz, van Beek, and Ernst 2010), allows to consider the Hamiltonian at any 57 

point of time. However, such analysis is complicated with a transformation to infinity-dimensional 58 

Hilbert space(Levante et al. 1995).  59 

Homonuclear transfer of the magnetization via longitudinal exchange occurs with a rotor-60 

synchronized train of π-pulses, with one pulse each rotor period. The method is called radio-frequency 61 

driven recoupling(A. E. Bennett et al. 1992) (RFDR), or simple excitation for the dephasing of rotational-62 

echo amplitudes(Terry Gullion and Vega 1992). This sequence has two different AHT descriptions of the 63 

recoupling of homonuclear dipolar interactions, depending on the experimental conditions(Ok et al. 1992; 64 

Ishii 2001).  65 

In the first case, delta 𝜋-pulses are assumed. The efficiency to recouple homonuclear dipolar 66 

interaction is linked with the difference between isotropic chemical shifts of the dipolar linked spins, 𝑆𝑘 67 

and 𝑆𝑙 (A. E. Bennett et al. 1992; Terry Gullion and Vega 1992; Andrew E. Bennett et al. 1998). The 68 

evolution of the spin system at specific time points is described with a flip-flop part of zero-quantum 69 
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dipolar Hamiltonian: 𝐼𝑘
+𝐼𝑙
− + 𝐼𝑘

−𝐼𝑙
+ (A. E. Bennett et al. 1992; Andrew E. Bennett et al. 1998; Nielsen et 70 

al. 1994; Ok et al. 1992; Bayro et al. 2009; Sodickson et al. 1993; Straasø et al. 2016).  71 

For the second theoretical description, finite 𝜋-pulses are considered (fpRFDR)(A. E. Bennett et 72 

al. 1992; Ishii 2001; Nishiyama, Zhang, and Ramamoorthy 2014; R. Zhang et al. 2015; Brinkmann, 73 

Schmedt auf der Günne, and Levitt 2002; Ji et al. 2020). The efficiency of recoupling of the homonuclear 74 

dipolar interaction is directly linked with a duty factor(Ishii 2001) – the ratio between the width of 𝜋-75 

pulse and the width of the rotor period. AHT predicts restoring of the whole zero-quantum dipolar 76 

Hamiltonian, 3𝐼𝑘𝑧𝐼𝑙𝑧 − 𝐼𝑘̅𝐼𝑙̅,under fast and ultra-fast MAS rates.(Ishii 2001)   77 

Both these theoretical descriptions consider the same experiment with the same phase cycling, 78 

traditionally XY8 (Terry Gullion, Baker, and Conradi 1990). Although the influence of the different 79 

phase cycling schemes was investigated in different articles(Ok et al. 1992; Nishiyama, Zhang, and 80 

Ramamoorthy 2014; R. Zhang et al. 2015; Ji et al. 2020), the main conclusion to the contribution from 81 

phase cycling to the transfer of the RFDR signal was a reduction of influence from resonance offsets and 82 

pulse errors(A. E. Bennett et al. 1992; Ishii 2001).  83 

In this article we investigate both heteronuclear and homonuclear fpRFDR experiments using 84 

numerical tools to track the system at any arbitrary time. Using the simulated and the theoretical analysis 85 

we show that for fpRFDR experiments the typical phase cycling, XY(Ishii 2001; Nishiyama, Zhang, and 86 

Ramamoorthy 2014; R. Zhang et al. 2015; Hellwagner et al. 2018), plays a crucial role in the transfer of 87 

magnetization between a pair of spins. Under fast and ultra-fast MAS rates the heteronuclear and 88 

homonuclear fpRFDR experiments can be described with the same model Hamiltonian, but only at 89 

increments of the rotor period. The evolutions of the operators, however, are completely different for 90 

heteronuclear and homonuclear cases between these points. For the experimental demonstrations we 91 

perform heteronuclear 1D 1H-{13C} and 1H-{15N} fp-RFDR experiments using -PET (Movellan et al. 92 

2019) labeled SH3 at 100 kHz MAS. 93 
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Theory   94 

The fp-RFDR sequence consists of a train of 𝜋-pulses every one rotor period (Fig.1a). The length 95 

of the repeated block is defined by the phase cycling: XYn (n=4, 8, 16, 32), resulting in a time of nTR 96 

(Ishii 2001). Measurements are, in the simplest case, restricted to occur every nTR. In our simulations as 97 

well as in the experiments we used XY8 phase cycling.  98 

To evaluate the operator, 𝐴̂, between the time points 𝑡𝑖 and 𝑡𝑖 + 𝑡𝑥 we first have to solve the von 99 

Neumann equation (ℏ = 1): 100 

𝑑𝜌

𝑑𝑡
= −𝑖[𝐻(𝑡), 𝜌(𝑡)],    Eq. (1.1) 101 

where 𝐻(𝑡) is a Hamiltonian of the spin system and 𝜌(𝑡) is a density matrix. The formal solution of the 102 

Eq. (1.1) (Ernst, Bodenhausen, and Wokaun 1987) is: 103 

𝜌(𝑡𝑖 + 𝑡𝑥) = 𝑇̂𝑒𝑥𝑝 {−𝑖 ∫ 𝑑𝑡
𝑡𝑖+𝑡𝑥
𝑡𝑖

𝐻(𝑡)} 𝜌(𝑡𝑖)𝑇̂𝑒𝑥𝑝 {−𝑖 ∫ 𝑑𝑡
𝑡𝑖+𝑡𝑥
𝑡𝑖

𝐻(𝑡)},  Eq. (1.2) 104 

where 𝑇̂ is a Dyson Operator.  105 

The evaluated operator, 𝐴̂(𝑡𝑖 + 𝑡𝑥) is: 106 

𝐴̂(𝑡𝑖 + 𝑡𝑥) = 𝑇𝑟{𝐴̂𝜌(𝑡𝑖 + 𝑡𝑥)}  Eq. (1.3) 107 

One of the possibilities to deal with a Dyson Operator in Eq. (1.2), in order to propagate forward 108 

in time from the point 𝑡𝑖 to 𝑡𝑖 + 𝑡𝑥, is to split one propagator into a product of N propagators(Nimerovsky 109 

and Goldbourt 2012): 110 

𝑇̂𝑒𝑥𝑝 {−𝑖 ∫ 𝑑𝑡
𝑡𝑖+𝑡𝑥
𝑡𝑖

𝐻(𝑡)} = lim
𝑁→⋈

∏ 𝑒𝑥𝑝 {−𝑖 ∫ 𝑑𝑡
𝑡𝑖+𝑡𝑥−Δ𝑥,𝑖(𝑘−1)

𝑡𝑖+𝑡𝑥−Δ𝑥,𝑖𝑘
𝐻(𝑡)}𝑁

𝑘=1 ,  Δ𝑥,𝑖 = 𝑡𝑥/𝑁    Eq. (1.4).      111 

It allows to omit the Dyson Operator and perform the simulations correctly. This is the way that 112 

calculations are performed in the popular SIMPSON software(Bak, Rasmussen, and Nielsen 2000). The 113 

main difference in our implementation of numerical evolutions with respect to SIMSPON calculations is 114 
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to use analytical integrations rather than numerical integrations, which significantly reduces the computer 115 

time.   116 

 Each of the rotor periods of the fp-RFDR sequence can be divided into two parts with the lengths 117 

of tp (defined with the length of  𝜋-pulse and TR – tp (the delay, Fig. 1a). The numerical calculations split 118 

each of these two parts into N subparts with the lengths tp/N and (TR – tp)/N, respectively. Fig. 1b shows 119 

the transferred fp-RFDR signals for I3 spin system under different values of N. Solid lines represent the 120 

transferred I2 → I3 signal between a weakly coupled dipolar pair with 66 Hz dipolar interaction, whereas 121 

the dotted lines represent the I2 → I2 signal. With an increase in the value of N, the simulated signals 122 

converge and under N=16 (red lines) and N=32 (black lines) the signals coincide. It means that under 123 

N≥16, the simulations provide the correct evolution of the spin system. In all numerical calculations we 124 

used N=32.  125 

 126 

Fig. 1 (a) Finite Pulse RFDR block consisting of four π-pulses every rotor period with phase cycling: x, y, x, y (XY4) or eight π-127 

pulses with phase cycling: x, y, x, y, y, x, y, x (XY8). (b) Simulated I3 spin system under 10 kHz of MAS and 65 kHz of rf-field, 128 

dipolar values of 𝜈12 = 66 Hz, 𝜈13 = 150 Hz, 𝜈23 = 2.15 kHz, and offset values of  Ω1 = −8 kHz, Ω2 = 9 kHz, Ω3 = −7 kHz 129 

and CSA values of 𝜈𝐶𝑆𝐴,1 = 9.2 Hz, f 𝜈𝐶𝑆𝐴,2 = 2.5 Hz, f 𝜈𝐶𝑆𝐴,3 = 8 kHz. Axis Y shows the intensities of the starting and 130 

transferred signals between different operators, 𝐼𝑧2 → 𝐼𝑧2 (the dotted lines) and 𝐼𝑧2 → 𝐼𝑧1 (the solid lines), under different values 131 

of N: 1 (magenta lines), 2 (green lines), 8 (blue lines), 16 (red lines) and 32 (black lines). The values of the dipolar interactions 132 

and MAS rate were taken from Ref. [(Bayro et al. 2009)]. XY8 phase cycling was used. 133 
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Figs. A1-2 show the transferred fp-RFDR signals for I3 and IS2 spin systems under different 134 

simulated conditions and validation by comparison with SIMSPON simulations of fp-RFDR signals.  135 

 In the next ‘Simulations’ section we firstly consider the evolution of the I3 spin system under the 136 

RFDR sequence. We investigate the influence of each part of the Dipolar Hamiltonian (the secular and 137 

the flip-flop parts) on the measured operators at specific time points under different simulated conditions. 138 

 In the subsequent subsections we compare the behavior of I2 and IS spin systems under RFDR. 139 

We consider the evolutions of all operators and their amplitude at different time points. We demonstrate 140 

with simulations and provide the theoretical analysis (applying the fictitious spin ½ operator 141 

formalism(Vega 1978))  of the influence of the phase cycling on the transfer of fp-RFDR signal. We 142 

shows the paths with which the signals are transferred between different spins for heteronuclear and 143 

homonuclear spin systems.    144 

Simulations 145 

   The full high field truncated dipolar Hamiltonian of I3 spin system is represented as follows:  146 

𝐻𝐷,𝐹𝑢𝑙𝑙 = 0.5∑𝜔𝐷,𝑟𝑠(𝑡)[3𝐼𝑧𝑟𝐼𝑧𝑠 − 𝐼𝑟𝐼𝑠] = 0.5∑𝜔𝐷,𝑟𝑠(𝑡)[3𝐼𝑧𝑟𝐼𝑧𝑠 − 𝐼𝑧𝑟𝐼𝑧𝑠 − 0.5(𝐼𝑟
+𝐼𝑠
− + 𝐼𝑟

−𝐼𝑠
+)] , Eq. 147 

(2.1) 148 

where 𝜔𝐷,𝑟𝑠(𝑡) is a periodic dipolar time dependent function(Olejniczak, Vega, and Griffin 1984) 149 

between spins Ir and Is. This Hamiltonian is subsequently referred, to as the full Hamiltonian, and contains 150 

only the A and B terms of the dipolar alphabet(Slichter 1990). 151 

Firstly we investigate which part of the full high field dipolar Hamiltonian can be a model Hamiltonian. A 152 

model Hamiltonian is a simplified Hamiltonian, which provides the same evolution of the spin system at 153 

specific time points as a full dipolar Hamiltonian. We consider 3 model Hamiltonians:  154 

𝐻𝐷 = 1.5∑𝜔𝐷,𝑟𝑠(𝑡)𝐼𝑧𝑟𝐼𝑧𝑠 ,  Eq. (2.2a)              𝐻𝐷 = −0.5∑𝜔𝐷,𝑟𝑠(𝑡)𝐼𝑟𝐼𝑠 ,    Eq. (2.2b) 155 

𝐻𝐷 = −0.25∑𝜔𝐷,𝑟𝑠(𝑡)[𝐼𝑟
+𝐼𝑠
− + 𝐼𝑟

−𝐼𝑠
+] .    Eq. (2.2c) 156 
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Eq. (2.2a) contains a secular part of the dipolar Hamiltonian (Eq. (2.1)), whereas the scalar products, 𝐼𝑟𝐼𝑠, 157 

are omitted. Eq. (2.2b) contains the scalar products of the dipolar Hamiltonian only. Eq. (2.2c) contains 158 

the flip-flop parts of the Dipolar Hamiltonian. The Figs. 2-4 show the evolution of a I3 spin system under 159 

these three model Hamiltonians (Eq. (2.2a) – red lines; Eq. (2.2b) – green lines; Eq. (2.2c) – pink lines) 160 

and comparison with the full Dipolar Hamiltonian (Eq. 2.1 – black lines).   161 

 Fig. 2 shows the transferred signals under 10 kHz of MAS, when only dipolar interactions are 162 

taken into account. Under these conditions the secular dipolar Hamiltonian (Fig. 2a, red lines) provides 163 

similar values of the amplitudes of the operators at specific time points (the simulated measurement 164 

occurred every 8𝑇𝑅, with XY8 phase cycling, as with the full Dipolar Hamiltonian (Fig. 2a, black lines). 165 

The scalar product dipolar Hamiltonian (Fig. 2b, green lines) and the flip-flop dipolar Hamiltonian (Fig. 166 

2b, pink lines) provide different results with respect to the full Dipolar Hamiltonian (Fig. 2b, black lines).  167 

 168 

Fig. 2 Simulated I3 spin system under 10 kHz of MAS and 65 kHz of rf-field, dipolar coupling values of 𝜈12 = 66 Hz, 𝜈13 =169 

150 Hz, 𝜈23 = 2.15 kHz (the schematic spin arrangement is shown in the insert of (b)) and zero values of offset and CSA. Axis Y 170 

shows the intensities of the starting and transferred signals between different operators: 𝐼𝑧2 → 𝐼𝑧2 (the dotted lines); 𝐼𝑧2 → 𝐼𝑧3 (the 171 

dashed lines); 𝐼𝑧2 → 𝐼𝑧1 (the solid lines); 𝐼𝑧3 → 𝐼𝑧1 (the dashed-dotted lines). (a) The black lines represent the signals, simulating 172 

with the full dipolar Hamiltonian (Eq. 2.1). The red lines represent the signals, simulating with the secular model Hamiltonian 173 

(Eq. 2.2a). (b) The black lines represent the signals, simulating with the full dipolar Hamiltonian (Eq. 2.1). The green lines 174 

represent the signals, simulating with the scalar product model Hamiltonian (Eq. 2.2b). The magenta lines represent the signals, 175 

https://doi.org/10.5194/mr-2020-30

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 20 November 2020
c© Author(s) 2020. CC BY 4.0 License.



9 
 

simulating with the scalar product model Hamiltonian (Eq. 2.2c). The values of the dipolar interactions and MAS rate was taken 176 

from Ref. [(Bayro et al. 2009)]. XY8 phase cycling was used.     177 

The conclusions are reversed when we add chemical shift offsets that have similar values with 178 

respect to the MAS frequency (Fig. 3). In the simulations CSA values were also added into simulations. 179 

However, the main influence comes from the offset as shown in Fig. (A2). The secular dipolar 180 

Hamiltonian (Fig. 3a, red lines) provides completely different results with respect to the full dipolar 181 

Hamiltonian (Fig. 3a, black lines), whereas the scalar product dipolar Hamiltonian (Fig. 3b, green lines) 182 

and the flip-flop dipolar Hamiltonian (Fig. 3b, pink lines) provide similar results as the full dipolar 183 

Hamiltonian (Fig. 3b, black lines).    184 

 185 

Fig. 3 Simulated I3 spin system under 10 kHz of MAS and 65 kHz of rf-field, dipolar coupling values of 𝜈12 = 66 Hz, 𝜈13 =186 

150 Hz, 𝜈23 = 2.15 kHz, offset values of  Ω1 = −8 kHz, Ω2 = 9 kHz,Ω3 = −7 kHz, and CSA values of 𝜈𝐶𝑆𝐴,1 =187 

9.2 Hz, f 𝜈𝐶𝑆𝐴,2 = 2.5 Hz, f 𝜈𝐶𝑆𝐴,3 = 8 kHz. Axis Y shows the intensities of the starting and transferred signals between different 188 

operators: 𝐼𝑧2 → 𝐼𝑧2 (the dotted lines); 𝐼𝑧2 → 𝐼𝑧3 (the dashed lines); 𝐼𝑧2 → 𝐼𝑧1 (the solid lines); 𝐼𝑧3 → 𝐼𝑧1 (the dashed-dotted lines). 189 

(a) The black lines represent the signals, simulating with the full dipolar Hamiltonian (Eq. 2.1). The red lines represent the 190 

signals, simulating with the secular model Hamiltonian (Eq. 2.2a). (b) The black lines represent the signals, simulating with the 191 

full dipolar Hamiltonian (Eq. 2.1). The green lines represent the signals, simulating with the scalar product model Hamiltonian 192 

(Eq. 2.2b). The magenta lines represent the signals, simulating with the scalar product model Hamiltonian (Eq. 2.2c). The values 193 

of the dipolar interactions and MAS rate were taken from Ref. [(Bayro et al. 2009)]. XY8 phase cycling was used.       194 
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 When the spinning frequency is increased such that it is significantly larger than the offsets, the 195 

situation again reverses. Fig. 4 shows the evolution of the spin system under 90 kHz MAS with the same 196 

offset and CSA values as in Fig. 3. Under such conditions the secular dipolar Hamiltonian (Fig. 4a, red 197 

lines) provides similar results as a full dipolar Hamiltonian (Fig. 3a, black lines), whereas the scalar 198 

product dipolar Hamiltonian (Fig. 4b, green lines) and the flip-flop dipolar Hamiltonian (Fig. 4b, pink 199 

lines) provide different results with respect to full dipolar Hamiltonian (Fig. 4b, black lines).    200 

 201 

Fig. 4 Simulated I3 spin system under 90 kHz of MAS and 65 kHz of rf-field, dipolar coupling values of 𝜈12 = 66 Hz, 𝜈13 =202 

150 Hz, 𝜈23 = 2.15 kHz, offset values of  Ω1 = −8 kHz, Ω2 = 9 kHz,Ω3 = −7 kHz, and CSA values of 𝜈𝐶𝑆𝐴,1 =203 

9.2 Hz, f 𝜈𝐶𝑆𝐴,2 = 2.5 Hz, f 𝜈𝐶𝑆𝐴,3 = 8 kHz. Axis Y shows the intensities of the starting and transferred signals between different 204 

operators: 𝐼𝑧2 → 𝐼𝑧2 (the dotted lines); 𝐼𝑧2 → 𝐼𝑧3 (the dashed lines); 𝐼𝑧2 → 𝐼𝑧1 (the solid lines); 𝐼𝑧3 → 𝐼𝑧1 (the dashed-dotted lines). 205 

(a) The black lines represent the signals, simulating with the full dipolar Hamiltonian (Eq. 2.1). The red lines represent the 206 

signals, simulating with the secular model Hamiltonian (Eq. 2.2a). (b) The black lines represent the signals, simulating with the 207 

full dipolar Hamiltonian (Eq. 2.1). The green lines represent the signals, simulating with the scalar product model Hamiltonian 208 

(Eq. 2.2b). The magenta lines represent the signals, simulating with the scalar product model Hamiltonian (Eq. 2.2c). The values 209 

of the dipolar interactions and MAS rate were taken from Ref. [(Bayro et al. 2009)]. XY8 phase cycling was used.      210 

 Considering these three cases, we can conclude that for fp-RFDR, when the difference of the 211 

offset values between spins are significantly smaller with respect to the used MAS rate, the simplified 212 

secular Hamiltonian (Eq. 2.1a) can play a significant role in the transfer. Such a simplified model 213 
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Hamiltonian correctly describes the evolution of the spin systems at specific time points. In the case when 214 

offset values are comparable with the MAS rate, the flip-flop Hamiltonian (Eq. 2.1c) can play a role of 215 

the simplified model Hamiltonian. The second conclusion coincides with the theoretical analysis 216 

previously obtained  with AHT for that sequence(A. E. Bennett et al. 1992; Andrew E. Bennett et al. 217 

1998; Nielsen et al. 1994; Ok et al. 1992; Bayro et al. 2009; Sodickson et al. 1993; Straasø et al. 2016), 218 

whereas the first conclusion diverges – dependence on the zero-quantum dipolar operator(Ishii 2001) for 219 

AHT. The second conclusion allows the transfer of the magnetization between homonuclear spins only, 220 

whereas the first conclusion supposes that a heteronuclear fp-RFDR transfer is also possible.  221 

For the heteronuclear spin system, the full high field dipolar Hamiltonian is secular. The main 222 

difference to the heteronuclear full dipolar Hamiltonian with a homonuclear model Hamiltonian (Eq. 223 

2.1a) is a factor of 1.5. On the basis of the first conclusion, for fully heteronuclear spin systems all dipolar 224 

interactions should be 1.5 times larger with respect to the homonuclear dipolar values to obtain the same 225 

signals as for a fully homonuclear spin system. For a more comprehensive investigation of the behaviors 226 

of the homonuclear and heteronuclear spin systems under fpRFDR, we consider below I2 and IS spin 227 

systems.  228 

 The simulations allow us to consider the evolutions within a Cartesian operator basis set of the 229 

two spin system(Ernst, Bodenhausen, and Wokaun 1987). For the two spin system, the basis set consists 230 

of 16 operators. The evolution of each of them is described by microscopic amplitude: 231 

𝑎𝑘(𝑡𝑚𝑖𝑥) = 𝑇𝑟{𝐾̂𝜌(𝑡𝑚𝑖𝑥)},     Eq. (2.3) 232 

where 𝐾̂ is an operator of the spin system. The macroscopic amplitude is represented as follow: 233 

𝐴𝑘 = ∫𝑑Ω𝑎𝑘(𝑡𝑚𝑖𝑥),                Eq. (2.4) 234 

where the integration is performed over all Euler angles. Summing all amplitudes in squares, the next 235 

condition should be performed: 236 
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∑|𝑎𝑘|
2 (𝑡𝑚𝑖𝑥) = 1     Eq. (2.5) 237 

 Fig. 5 shows the macroscopic amplitudes (Eq. 2.4) of 14 operators under different offset values 238 

for IS (a, c, e, g) and I2 (b, d, f, h) spin systems. In all Figs. the initial operator is Iz for the heteronuclear 239 

case and Iz1 for the homonuclear spin systems and the MAS rate is 10 kHz. The pink dashed lines 240 

represent the sum of the square amplitudes (Eq. (2.5)).    241 

 For the on-resonance condition (Fig. 5a) the evolution of the IS spin system is described with four 242 

operators only: Iz (black line), Sz (green line), 2IxSy (blue line) and 2IySx (red line). The pink dashed line 243 

shows the sum of the squares of amplitudes of these four operators. The other 11 operators are not excited 244 

and have zero amplitudes. For an I2 spin system (Fig. 5b) the evolution is identical as for an IS spin 245 

system, when the measurements are taken every two rotor periods.   246 

With a 3 kHz offset difference between the spins (Fig. 5c), we find the excitation of all 14 247 

operators. However, only six of them have significant amplitudes. Additionally to the previously 248 

mentioned four operators, we see significant amplitudes for 2IxSx (cyan line) and 2IySy (purple line) 249 

operators. Compared to the on-resonance case, the velocity of the transfer of the signal from Iz to Sz 250 

operators (green line) decreased for the IS spin system (Fig. 5c).  For the I2 spin system (Fig. 5d) the 251 

velocity of the transfer of the signal from Iz1 to Iz2 operators (green line) as well as the velocities of the 252 

evolutions of other operators significantly increased.  253 

For a 5 kHz offset difference and heteronuclear IS spins (Fig. 5e), we do not see any transfer of 254 

the signal from Iz operator to Sz operator, whereas for the I2 spin system (Fig. 5f), the velocities of the 255 

excitation of all operators increased more as compared to the previous cases. Also for this case only the 6 256 

previously mentioned operators have significant macroscopic amplitudes.        257 

Under a 9 kHz offset difference and heteronuclear IS spins (Fig. 5g), we see again the transfer of 258 

the signal from Iz operator to Sz operator (Fig. 5g, green line). Also more operators have significant 259 

macroscopic amplitudes. For the I2 spin system (Fig. 5h), the transfer of signal from Iz1 to Iz2 operators 260 
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(green line) has the largest velocity with respect to previous cases. Also here we see more transfer of the 261 

signal from Iz1 to other operators, however with smaller amplitudes in comparison with the IS case.       262 

For negligible offset differences with respect to the MAS rate, the evolution of the operators of IS 263 

and I2 spin systems are the same at specific time points. However, when offsets are comparable with the 264 

MAS rate, we obtain completely different evolution for these systems. With increase of offset difference 265 

the IS spin system passes through specific rotor resonance condition (the difference between offsets equal 266 

to half of the MAS rate), under which the transfer does not occur. For the I2 spin system the velocity of 267 

the transfer increases with increased offset difference.  268 
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Fig. 5 The simulated amplitudes of the operators for IS ((a), (c), (e), (g) – 𝜈𝐷,𝐼𝑆 = 3 kHz, the initial operator is Iz) and I2 ((b), (d), 270 

(f), (h) – 𝜈𝐷,𝐼𝐼 = 2 kHz, the initial operator is Iz1) spin systems under 10 kHz of MAS rate and 65 kHz of rf-field. The pink dashed 271 

line represent the sum of the squared amplitudes (Eq. (2.5)), which are shown in the Figs. Black lines – Iz and Iz1; Green lines – Sz 272 

and Iz2; Blue lines – 2IxSy and 2Ix1Iy2; Red lines – 2IySx and 2Iy1Ix2; Cyan lines – 2IxSx and 2Ix1Ix2; Purple lines – 2IySy and 2Iy1Iy2; 273 

Azure lines –Sx and Ix2; Dark green lines – Sy and Iy1; Orange lines – Ix and Ix1; Grey lines – Iy and Iy1; Crimson red lines – 2IxSz 274 

and 2Ix1Iz2; Brown lines – 2IzSx and 2Iz1Ix2; Jazzberry Jam lines – 2IzSy and 2Iz1Iy2; Indigo lines – 2IySz and 2Iy1Iz2. (a) and (b) – 275 

Offset values in kHz: 0, 0; CSA values in kHz: 0, 0. (c) and (d) – Offset values in kHz: 2, -1; CSA values in kHz: 9.2, 2.5. (e) and 276 

(f) – Offset values in kHz: 2, -3; CSA values in kHz: 9.2, 2.5. (g) and (h) – Offset values in kHz: 2, -7; CSA values in kHz: 9.2, 277 

2.5.      278 

Figs. 5a and b showed the indentical evolutions of the same operators for IS and I2 spin system at 279 

specific time points (every two rotor periods). A more interesting case is a comparison of the evolution of 280 

these operators between specific time points, between 0 and 2TR. Fig. 6 shows the microscopic amplitudes 281 

(Eq. 2.4) of the operators during first two rotor periods. The time scale of that two rotor periods can be 282 

devided into four parts: 𝑡(𝜋𝑥) → 𝑑𝑒𝑙1 → 𝑡(𝜋𝑦) → 𝑑𝑒𝑙2. For increasing the effect of the transfer we 283 

simulated with 15 kHz and 10 kHz for the dipolar interactions for IS and I2 spin systems, respectively.  284 

Regardless the offset values, the evolutions of the operators between specific time points are 285 

completely different for IS (Fig. 6a and c) and I2 spin systems (Fig. 6b and d). For the on-resonance 286 

condition, by the end of the first 𝜋𝑥-pulse only one operator is created for the IS spin system: 2IxSy (Fig. 287 

6a, blue line). During the first delay, 𝑑𝑒𝑙1, there is no evolution of the spin system since [𝐼𝑧, 𝐼𝑧𝑆𝑧] =288 

[𝐼𝑥𝑆𝑦, 𝐼𝑧𝑆𝑧] = 0. At the end of the second 𝜋𝑦-pulse two additional operators have nonzero amplitude: 289 

2IySx (Fig. 6a, red line) and Sz (Fig. 6a, green line). During the second delay, 𝑑𝑒𝑙2, the amplitudes of these 290 

operators are not changed. 291 

Under on-resonance conditions for the I2 spin system (Fig. 6b) all these four operators have 292 

nonzero amplitudes in the end of the first 𝜋𝑥-pulse. The evolution of the I2 spin system during this two 293 

rotor periods is much more complicated as compared to the IS spin system: the amplitudes of these four 294 

operators are changed during the delay times as well. However, at the end of two rotor periods the 295 
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amplitudes of similar operators of IS and I2 spin systems – Iz and Iz1; Sz and Iz2; 2IxSy and 2Ix1Iy2; 2IySx and 296 

2Iy1Ix2 – have the same values.   297 

For a 9 kHz offset difference, in the end of the first 𝜋𝑥-pulse also only one operator is created for 298 

an IS spin system: 2IxSy (Fig. 6c, blue line). However, during the first delay, 𝑑𝑒𝑙1, three operators are 299 

created: 2IySx (Fig. 6c, red line), 2IxSx (Fig. 6c, cyan line) and 2IySy (Fig. 6c, purple line). In the end of the 300 

second 𝜋𝑦-pulse, the operator Sz (Fig. 6c, green line) has nonzero value. However it has a very small 301 

value in comparison with the on resonance case (Fig. 6a).     302 

For a 9 kHz offset difference, the evolution of the I2 spin system is also described with six 303 

operators (Fig. 6d). However, in that case the Iz2 operator has much larger amplitude in the end of two 304 

rotor periods as compared with the on resonce condition (Fig. 6b). 305 

 306 

Fig. 6 The simulated amplitudes of the operators of a single crystal (Euler angles: 184°; 141°; 349°) during first rotor periods for 307 

IS ((a), (c) – 𝜈𝐷,𝐼𝑆 = 15 kHz, the initial operator is Iz) and I2 ((b), (d) – 𝜈𝐷,𝐼𝐼 = 10 kHz, the initial operator is Iz1) spin systems 308 

under 10 kHz of MAS and 65 kHz of rf-field. The pink dashed line represents the sum of the squared amplitudes (Eq. (2.5)), 309 
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which are shown in Figs. Black lines – Iz and Iz1; Green lines – Sz and Iz2; Blue lines – 2IxSy and 2Ix1Iy2; Red lines – 2IySx and 310 

2Iy1Ix2; Cyan lines – 2IxSx and 2Ix1Ix2; Purple lines – 2IySy and 2Iy1Iy2. (a) and (b) – Offset values in kHz: 0, 0; CSA values in kHz: 311 

0, 0. (c) and (d) – Offset values in kHz: 2, -7; CSA values in kHz: 9.2, 2.5. The XY phase cycling was used.   312 

 Figs. 6a and b (heteronuclear and homonuclear, respectively) show completely different behavior 313 

for the amplitudes of four operators – Iz, Sz, 2IxSy, 2IySx for IS and Iz1, Iz2, 2Ix1Iy2, 2Iy1Ix2 for I2 spin systems 314 

– during two rotor periods. However, by the end of two rotor periods, the values are the same again. For 315 

an I2 spin system the signal is transferred to the Iz2 operator gradually during two rotor periods (Fig. 6b 316 

green line). For IS spin system the signal from Iz to Sz is transferred during the second 𝜋𝑦-pulse only. 317 

Therefore, the phase of the second 𝜋-pulse is also the object for investigation. We considered the behavior 318 

of the amplitudes of the operators during two rotor periods when both these pulses had the same phase –  319 

𝑡(𝜋𝑥) → 𝑑𝑒𝑙1 → 𝑡(𝜋𝑥) → 𝑑𝑒𝑙2. Fig. 7 shows the amplitudes of the operators for IS (Fig. 7a) and I2 (Fig. 320 

7b) spin sytems. For an IS spin system (Fig. 7a) only two operators have nonzero amplitudes during the 321 

investigated time: Iz (black line) and 2IxSy (blue line), whereas Sz and 2IySx are not created. For the I2 spin 322 

system (Fig. 7b) we still detect the evalutions of all four operators. However, in the end of two rotor 323 

periods only two operators have nonzero amplitudes, as for the IS spin system. For both cases, there is no 324 

transfer of signal from Iz to Sz (IS spin system) and from Iz1 to Iz2 (I2 spin system), when XX phase cycling 325 

is used. Definitelly, the phase cycling of fp-RFDR sequence plays a crucial role in the transfer of the 326 

signal between different spins.  327 

 328 
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Fig. 7 The simulated amplitudes of the operators of a single crystal (the used Euler angles: 184o; 141o; 349o) during 329 

first rotor periods for IS ((a) – 𝜈𝐷,𝐼𝑆 = 15 kHz, the initial operator is Iz) and I2 ((b) – 𝜈𝐷,𝐼𝐼 = 10 kHz, the initial operator is Iz1) 330 

spin systems under 10 kHz of MAS and 65 kHz of rf-field. The XX phase cycling was used. The pink dashed line represents the 331 

sum of the squared amplitudes (Eq. (2.5)), which are shown in Figs. Black lines – Iz and Iz1; Green lines – Sz and Iz2; Blue lines – 332 

2IxSy and 2Ix1Iy2; Red lines – 2IySx and 2Iy1Ix2; Cyan lines – 2IxSx and 2Ix1Ix2; Purple lines – 2IySy and 2Iy1Iy2. Offset values in 333 

kHz: 0, 0; CSA values in kHz: 0, 0.   334 

To understand the evolution of the IS operators under different phase cyclings, we can consider 335 

their evolutions during the second 𝜋-pulse only (Fig. 8). Fig. 8a shows the amplitudes during a 𝜋-pulse 336 

with y phase. During this pulse two additional operators are created. The signal is transferred from 337 

operator 2IxSy to Sz (Fig. 8a, green line) and from Iz to IySx (Fig. 8b, red dashed line). During the first 338 

pulse with phase x, 2IxSy is created, whereas during the second pulse with 90o phase shifting the signal is 339 

transferred from that operator to Sz. It means that if we consider the evolution of the operators during a 340 

third 𝜋-pulse with the phase x, the transfer of the signal from Iz to operator Sz will be via the operator 341 

2IySx. When the second 𝜋-pulse has the same phase as a first (XX), operators 2IxSy and Sz are not created 342 

and the transfer of the signal from Iz to Sz does not occur. In Appendix B we show the formal proof of 343 

zero transfer signal from Iz1 to Iz2 at specific time points (every one rotor period) when XX phase cycling 344 

is used.          345 

  346 
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Fig. 8 Simulated amplitudes of the operators of an IS spin system (𝜈𝐷,𝐼𝑆 = 15 kHz) for a single crystal (Euler angles: 184°; 141°; 347 

349°) during the second π-pulse with phase y (a) and x (b) under 10 kHz of MAS and with a 65 kHz rf-field. The signal is shown 348 

as a function on the pulse flip angle α. The transfer of the signal between: 2𝐼𝑥𝑆𝑦 → 𝑆𝑧 – green solid lines; 2𝐼𝑥𝑆𝑦 → 𝐼𝑧 – black 349 

solid lines; 𝐼𝑧 → 𝐼𝑧 – black dashed lines; 2𝐼𝑥𝑆𝑦 →  2𝐼𝑥𝑆𝑦 – blue solid lines;  𝐼𝑧 →  2𝐼𝑥𝑆𝑦 – blue dashed lines; 𝐼𝑧 →  2𝐼𝑦𝑆𝑥 – red 350 

dashed lines. Offset values in kHz: 0, 0; CSA values in kHz: 0, 0.  351 

 On the basis of Fig. 6b and d, we conclude that transfer of the signal from Iz1 to Iz2 is more 352 

complicated than from Iz to Sz, although the same results are obtained in the end of two rotor periods. To 353 

define via which operators the homonuclear signal is transferred from one spin to another, we consider 354 

the amplitude of some operator that is generated as a result of another operator and evolution through 355 

pulses or dealys, 𝑡(𝜋𝑥), 𝑑𝑒𝑙1, 𝑡(𝜋𝑦),  and 𝑑𝑒𝑙2 For simplicity, we first consider the IS spin system. Table 356 

1 consists of four subsections, divided with different colors. The first (black color), second (green color), 357 

third (blue color) and fourth (red color) subsections represent the amplitudes of four operators, Iz, Sz, 358 

2IxSy, 2IySx, measured at four points when the initial operators are Iz, Sz, 2IxSy, 2IySx, respectively.  359 

Table 1 The microscopic amplitudes (Euler angles: 184o; 141o; 349o) of the operators (marked with bold font, the first column) in 360 

the end of four time points: 𝜋𝑥 – in the end of first pulse; 𝑑𝑒𝑙1 – in the end of first delay; 𝜋𝑦 – in the end of second pulse; 𝑑𝑒𝑙2 – 361 

in the end of second delay. The black, green, blue and red subsections represent the amplitudes with the initial operators Iz, Sz, 362 

2IxSy, 2IySx, respectively. The used simulated parameters were as in Fig. 7a.   363 

Op  Iz   Sz   2IxSy  2IySx  

 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 

Iz -

0.95 

1 -

0.95 

1 0 0 0 0 0.31 0 0 0 0 0 -

0.31 

0 

Sz 0 0 0 0 -

0.95 

1 -

0.95 

1 0 0 -

0.31 

0 0.31 0 0 0 

2IxSy -

0.31 

0 0 0 0.31 0 0.31 0 -

0.95 

1 -

0.95 

1 0 0 0 0 

2IySx 0 0 0.31 0 0 0 0 0 0 0 0 0 -

0.95 

1 -

0.95 

1 

 364 

For example, the path 𝐼𝑧
𝜋𝑥
→ 𝐼𝑧

𝑑𝑒𝑙1
→  𝐼𝑧

𝜋𝑦
→ 𝐼𝑧

𝑑𝑒𝑙2
→  𝐼𝑧 gives the amplitude of  −0.95 ∙ 1 ∙ (−0.95) ∙ 1 =365 

0.9 (the bold font in the Table 1), which equals to the amplitude of the Iz operator at the end of 2TR in Fig. 366 

6a (black line). The path 𝐼𝑧
𝜋𝑥
→ 𝐼𝑧

𝑑𝑒𝑙1
→  𝐼𝑧

𝜋𝑦
→ 𝐼𝑧

𝑑𝑒𝑙2
→  𝑆𝑧 gives the amplitude of  −0.95 ∙ 1 ∙ (−0.95) ∙ 0 = 0.  367 
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If we analyze all possible 64 paths, we will find only one path, conecting Iz and Sz operators: 𝐼𝑧368 

𝜋𝑥
→ 2𝐼𝑥𝑆𝑦

𝑑𝑒𝑙1
→  2𝐼𝑥𝑆𝑦

𝜋𝑦
→ 𝑆𝑧

𝑑𝑒𝑙2
→  𝑆𝑧 with nonzero amplitude of −0.31 ∙ 1 ∙ (−0.31) ∙ 1 = 0.097.  369 

In the same way we create the table for the I2 spin system (Table 2).  370 

Table 2 The microscopic amplitudes (Euler angles: 184°; 141°; 349°) of the operators (marked with bold font, the first column) 371 

in the end of four time points: 𝜋𝑥 – in the end of first pulse; 𝑑𝑒𝑙1 – in the end of first delay; 𝜋𝑦 – in the end of second pulse; 𝑑𝑒𝑙2 372 

– in the end of second delay. The black, green, blue and red subsections represent the amplitudes with the initial operators Iz1, Iz2, 373 

2Ix1Iy2, 2Iy1Ix2, respectively. The simulated parameters were as in Fig. 7a.   374 

Op Iz1 Iz2 2Ix1Iy2 2Iy1Ix2 

 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 

Iz1 -

0.97 

0.96 -

0.97 

0.96 0.02 0.04 0.02 0.04 0.1 -0.2 -

0.21 

-0.2 0.21 0.2 -0.1 0.2 

Iz2 0.02 0.04 0.02 0.04 -

0.97 

0.96 -

0.97 

0.96 0.21 0.2 -0.1 0.2 0.1 -0.2 -

0.21 

-0.2 

2Ix1Iy2 -0.1 0.21 0.21 0.2 -

0.21 

-0.2 0.1 -0.2 -

0.97 

0.96 -

0.97 

0.96 0.02 0.04 0.02 0.04 

2Iy1Ix2 -

0.21 

-0.2 0.1 -0.2 -0.1 0.2 0.21 0.2 0.02 0.04 0.02 0.04 -

0.97 

0.96 -

0.97 

0.96 

 375 

 Unlike IS spin system, there are 64 paths with nonzero amplitudes via which the signal is 376 

transferred from operator Iz1 to operator Iz2 during the first two rotor periods. 64 paths can be divided into 377 

four groups.  378 

The first group contains eight paths with combinations of Iz1, Iz2 operators only. For example, the 379 

path 𝐼𝑧1
𝜋𝑥
→ 𝐼𝑧1

𝑑𝑒𝑙1
→  𝐼𝑧1

𝜋𝑦
→ 𝐼𝑧1

𝑑𝑒𝑙2
→  𝐼𝑧2 has 0.0393 amplitude, whereas the path 𝐼𝑧1380 

𝜋𝑥
→ 𝐼𝑧2

𝑑𝑒𝑙1
→  𝐼𝑧2

𝜋𝑦
→ 𝐼𝑧2

𝑑𝑒𝑙2
→  𝐼𝑧2 has -0.0195 amplitude. The total amplitude of this group is 0.03920388.  381 

The second group contains 24 paths where each of the paths contains one of the operators 2𝐼𝑥1𝐼𝑦2 382 

or 2𝐼𝑦1𝐼𝑥2. For example, the path 𝐼𝑧1
𝜋𝑥
→ 𝐼𝑧1

𝑑𝑒𝑙1
→  𝐼𝑧1

𝜋𝑦
→ 2𝐼𝑥1𝐼𝑦2

𝑑𝑒𝑙2
→  𝐼𝑧2 has -0.0393 amplitude, whereas the 383 

path 𝐼𝑧1
𝜋𝑥
→ 𝐼𝑧1

𝑑𝑒𝑙1
→  2𝐼𝑥1𝐼𝑦2

𝜋𝑦
→ 𝐼𝑧2

𝑑𝑒𝑙2
→  𝐼𝑧2 has 0.0195 amplitude. The total amplitude of this group is -384 

0.0574702. 385 
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The third group contains 24 paths where each of the paths contains two of the operators 2𝐼𝑥1𝐼𝑦2 386 

or 2𝐼𝑦1𝐼𝑥2. For example, the path 𝐼𝑧1
𝜋𝑥
→ 2𝐼𝑦1𝐼𝑥2

𝑑𝑒𝑙1
→  2𝐼𝑦1𝐼𝑥2

𝜋𝑦
→ 𝐼𝑧2

𝑑𝑒𝑙2
→  𝐼𝑧2 has 0.0393 amplitude, whereas 387 

the path 𝐼𝑧1
𝜋𝑥
→ 2𝐼𝑦1𝐼𝑥2

𝑑𝑒𝑙1
→  𝐼𝑧2

𝜋𝑦
→ 2𝐼𝑦1𝐼𝑥2

𝑑𝑒𝑙2
→  𝐼𝑧2 has -0.000179 amplitude. The total amplitude of this 388 

group is 0.13445302. 389 

The fourth group contains eight paths where each of the paths contains three instances of the 390 

operators 2𝐼𝑥1𝐼𝑦2, 2𝐼𝑦1𝐼𝑥2. For example, the path 𝐼𝑧1
𝜋𝑥
→ 2𝐼𝑦1𝐼𝑥2

𝑑𝑒𝑙1
→  2𝐼𝑦1𝐼𝑥2

𝜋𝑦
→ 2𝐼𝑦1𝐼𝑥2

𝑑𝑒𝑙2
→  𝐼𝑧2 has -391 

0.0393 amplitude, whereas the path 𝐼𝑧1
𝜋𝑥
→ 2𝐼𝑥1𝐼𝑦2

𝑑𝑒𝑙1
→  2𝐼𝑥1𝐼𝑦2

𝜋𝑦
→ 2𝐼𝑥1𝐼𝑦2

𝑑𝑒𝑙2
→  𝐼𝑧2 has 0.0197 amplitude. 392 

The total amplitude of this group is -0.0191567.  393 

The total amplitude of all four groups at the time point 2TR is 0.097, which is the same as for IS 394 

spin system.  395 

Considering the paths of the I2 spin system during 2TR of time, we found a number of paths where 396 

the signal was transferred directly from Iz1 to Iz2 operators and not via Ix1Iy2 and Iy1Ix2 operators. However, 397 

it showed the microscopic amplitude at one time point only. We can calculate the powder amplitude of 398 

these paths, 𝐴𝑍𝑍, as a function of the mixing time and compare with the total transferred signal from Iz1 to 399 

Iz2. For simplicity of the calculations, we take into account the paths where the jump from the operator Iz1 400 

to Iz2 occurs only once:  401 

𝐼𝑧1
𝜋𝑥
→ …𝐼𝑧1

𝑡𝑘
→ 𝐼𝑧2

𝑡𝑘+1
→  …

𝑡𝑁
→ 𝐼𝑧2,  402 

or the paths which contain three jumps between these two operators:  403 

𝐼𝑧1
𝜋𝑥
→ …𝐼𝑧1

𝑡𝑘
→ 𝐼𝑧2

𝑡𝑘+1
→  …𝐼𝑧2

𝑡𝑘+𝑙
→  𝐼𝑧1

𝑡𝑘+𝑙+1
→    …

𝑡𝑘+𝑚
→   𝐼𝑧2

𝑡𝑘+𝑚+1
→     …

𝑡𝑁
→ 𝐼𝑧2. 404 

In Fig. 9 we compare the total transferred signal (solid lines) with the direct transferred signal (dashed 405 

lines). 406 
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Under on resonance condition (Fig. 9, blue lines), the contribution of the direct transferred signal 407 

to the total is very small (Azz, blue dashed line) and reaches ~2% of the starting signal. Addition of offset 408 

values (red lines) increases the contribution of this transfer (red dashed line) to the total signal (red solid 409 

line), where it reaches ~16% of the starting signal. However, as can be seen the major transfer of the 410 

signal from Iz1 to Iz2 occurs via Ix1Iy2 and Iy1Ix2 operators for both cases.    411 

 412 

Fig. 9 The simulated total (solid lines) and the direct (dashed lines) transferred signals from operator Iz1 to Iz2 as a function of the 413 

mixing time. 𝜈𝐷,𝐼𝑆 = 15 kHz, 10 kHz of MAS and 65 kHz of rf-field. Blue lines: Offset values in kHz: 0, 0; CSA values in kHz: 414 

0, 0. Red lines: Offset values in kHz: 2, -7; CSA values in kHz: 9.2, 2.5. The XY8 phase cycling was used.   415 

Experiments 416 

Fig. 10 shows a 1D heteronuclear fp-RFDR sequence. The sequence consists of two π/2-pulses on the 1H 417 

channel, fp-RFDR block, π/2-pulse on the 13C/15N channel and detection with proton decoupling.     418 
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 419 

Fig. 10 1D fp-RFDR pulse sequence. The sequence consists of two π/2-pulses on the 1H channel, fp-RFDR block ( a train of π-420 

pulses every one rotor period on both channels), π/2-pulse on the 13C/15N channel and detection with proton decoupling. The 421 

phases of the π/2-pulses are 𝜑1 = 𝑥; 𝜑2 = −𝑥, 𝑥; 𝜑3 = 𝑥, 𝑥, −𝑥, −𝑥. 𝜑𝑎𝑐𝑞 = 𝑥,−𝑥,−𝑥, 𝑥. π-pulses on the both channels 422 

followthe XY8 scheme(Terry Gullion, Baker, and Conradi 1990). During acquisition, SWf-TPPM decoupling is applied on the 423 

proton channel to narrow the detected resonances(Thakur, Kurur, and Madhu 2006).  424 

Figs. 11, 12, 13 show 1D 1H-{13C} fpRFDR spectra recorded with different values of the mixing 425 

time (thick blue lines), when the carbon refference frequency was set to 172 ppm, 120 ppm and 40 ppm, 426 

respectively. Red lines represent 1H-{13C} cross polarization (CP) spectrum at 0.8 ms of mixing time.  427 

When the carbon reference frequency is set to 172 ppm (Fig. 11), the proton magnetization is 428 

mostly transferred to the carbonyl/carboxyl and alkene/aromatic groups. Under such conditions, the 429 

carbonyl/carboxyl signal is increased with increasing mixing time, whereas the fp-RFDR signals of the 430 

other groups are decreased. The cyan spectrum in Fig. 12c represents the control experiment – π-pulses 431 

were not applied on the 1H channel during fp-RFDR and therefore zero transferred signal was measured.      432 

 433 
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Fig. 11 1D 1D 1H-{13C} ramped CP (rCP) spectrum (red line, 0.8 ms of the mixing time) and fp-RFDR spectra under different 434 

values of the mixing time: 320 us (a), 480 us (b) and 640 us (c). The cyan spectrum in (c) represents fp-RFDR experiment, when 435 

π-pulses were not applied on the 1H channel. The Carbon refference frequency was set up on 172 ppm. 100 kHz MAS was used. 436 

The experimental parameters are shown in Table 3.        437 

When the carbon refference frequency is set to 120 ppm (Fig. 12), the proton magnetization is 438 

also mostly transferred to the carbonyl/carboxyl and alkene/aromatic groups. At 320 us of transfer time, 439 

we observe an asymetry in the excitation of the alkene/aromatic carbons – the fpRFDR peaks between 440 

120 and 110 ppm have smaller intensities compared to CP excitation, whereas the fp-RFDR peaks 441 

between between 135 and 125 ppm have larger intensities (Fig. 12b, inset). In general, the transfer is 442 

competitive with CP for the aromatic region.   443 

 444 
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Fig. 12 13C fpRFDR spectra recorded at different mixing times of 160 us (a), 320 us (b), 480 us (c) and 640 us (d) compared with 445 

0.8 ms CP. The carbon reference frequency was set to 120 ppm. The expansion in (b) shows aromatic signals between 150 and 446 

100 ppm. 100 kHz of MAS was used. The experimental parameters are shown in Table 3.        447 

When the carbon reference frequency is set up on the 40 ppm (Fig. 13), the proton magnetization 448 

is mostly transferred to the aliphatic groups. Short mixing times result in optimal transfer.  449 

 450 

Fig. 13 13C fpRFDR spectra recorded at different mixing times: 160 us (a), 320 us (b) and 480 us (c) compared with 0.8 ms CP. 451 

The carbon reference frequency was set to 40 ppm. 100 kHz of MAS was used. The experimental parameters are shown in 452 

Table 3.         453 

 Fig. 14 shows 1D 1H-{15N} fp-RFDR spectra at different mixing times (thick blue lines), when 454 

the nitrogen reference frequence was set to 118 ppm. Red lines show a 1 ms 1H-{15N} CP spectrum. 455 

Optimal transfer occurs at around 400 microseconds.  456 

 457 

  Fig. 14 15N fp-RFDR spectra at different mixing times: 240 us (a), 400 us (b) and 560 us (c) compared with 1 ms CP. The 458 

nitrogen reference frequency was set to 118 ppm. 100 kHz of MAS was used. The experimental parameters are shown in Table 4.   459 

Conclusion 460 
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The first RFDR experiment via a longitudinal exchange was demonstrated in 1992 by Bennet et 461 

all(A. E. Bennett et al. 1992). It has since become one of the routine MAS solid-state NMR mixing 462 

sequences. Using average Hamiltonian theory, the theoretical and the simulated descriptions of this 463 

sequence were demonstrated in many articles(A. E. Bennett et al. 1992; Ishii 2001; Nishiyama, Zhang, 464 

and Ramamoorthy 2014; R. Zhang et al. 2015; Brinkmann, Schmedt auf der Günne, and Levitt 2002; Ji et 465 

al. 2020). In those theoretical descriptions the width of the duty factor was considered as a main source of 466 

the fp-RFDR transferred signal, whereas a role of the phase cycling was discussed in the context of a 467 

reduction in deleterious effects of resonance offsets and pulse errors(A. E. Bennett et al. 1992; Ishii 468 

2001). Through AHT, the evolution of the spin system under RFDR has been previously calculated at 469 

specific time points.            470 

In this article we showed a numerical investigation of the fpRFDR sequence. Using a three spin 471 

system, we showed that depending on the conditions the total dipolar Hamiltonian could be replaced by 472 

two different simplified model Hamiltonians, which described the same evolution of the spin system at 473 

specific time points as a total dipolar Hamiltonian. For the first case, small differences between offset 474 

values compared with the MAS rate, a good model Hamiltonian was the secular part only, IzrIzs (Eq. 2.2a). 475 

For the second case of larger offsets, the flip-flop Hamitonian (Eq. 2.2c) could be considered as a model 476 

Hamiltonian. The conclusion for the first case indicated the possibility for a heteronuclear fp-RFDR 477 

transfer. Heteronuclear fp-RFDR was demonstrated experimentally for both proton-carbon and proton-478 

nitrogen transfer. While the transfer efficiency was not as high as for ramped CP, a comparable transfer 479 

efficiency was observed for aromatic signals. Since heteronuclear RFDR simultaneously recouples 480 

homonuclear dipolar interactions, it may still be useful where longer relayed transfers are desired.  481 

Using two model spin systems we investigated the macroscopic amplitudes of the heteronuclear 482 

and homonuclear operators and showed that for small offset differences the evolution of the homonuclear 483 

and heteronuclear spin systems could be described with the same set of the operators with the same 484 

amplitudes, if one looks only at the end of two rotor periods. However, the evolutions of the homonuclear 485 

https://doi.org/10.5194/mr-2020-30

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 20 November 2020
c© Author(s) 2020. CC BY 4.0 License.



27 
 

and heteronuclear operators were completely different, when their amplitudes were simulated within the 2 486 

rotor period block.  487 

We demonstrated with simulations and provided the theoretical proof that XY phase cycling of π-488 

pulses has a crucial role in the transfer of the homonuclear and heteronuclear fp-RFDR signals. With 489 

phase cycling of XX or XX̅ the fpRFDR transfer does not occur, except for cases when the offset 490 

differences are comparable with the MAS rate.  491 

We considered the paths and the operators, which were involved in transfer of the signal during 492 

the first two rotor periods. For the heteronuclear spin system we found only one path with nonzero 493 

amplitude, whereas for the homonuclear spin system the signal was transferred via 64 paths with nonzero 494 

amplitudes. However, by the end of two rotor periods the amplitudes of the homonuclear operators 495 

coincided with the amplitudes of the heteronuclear operators.                   496 

Experimental methods 497 

Sample preparation: 100% back bone protonated Transamination (-PET SH3) was prepared by Movellan 498 

with the protocol described in Ref. [(Movellan et al. 2019)].  499 

Simulations: RFDR simulations were performed with in-house MATLAB scripts using numerical solution 500 

of the experiment. The description of the simulations can be found in the ‘Theory’ section of this article.  501 

Solid state NMR spectroscopy: ramped CP and fp-RFDR H{13C} / H{15N} experiments were performed at 502 

a 22.3 T (950 MHz) Bruker Avance III spectrometer using a Bruker 0.7 mm 1H-13C-2D-15N probe. In all 503 

experiments 100 kHz of MAS was used and the temperature was set to 260 K. 18.5 kHz SWf-TPPM  (Thakur, 504 

Kurur, and Madhu 2006) with 25 us pulses was used during the acquisition. Tables 3 and 4 summarize the 505 

applied experimental parameters.  506 

Table 3 Summary of the experimental parameters used in the rCP (the start and the end values are shown) and fpRFDR H{13C} 507 

experiments.  508 
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 CP fpRFDR 
1H (kHz) 120-141 50.2 
13C (kHz) 28.4 47 

transfer time 0.8 ms 160, 320, 480 μs 

NS 1200 1200 

D1 (s) 2 2 

AQ (s) 0.02048 0.02048 

SW (Hz) 100000 100000 
NS – number of scans; D1 – a recycle delay; AQ – the acquisition time; SW – the spectral width.  509 

Table 4 Summary of the experimental parameters used in the rCP (the start and the end values are shown) and fpRFDR H{15N} 510 

experiments.  511 

 rCP fpRFDR 
1H (kHz) 118-139 50.2 

15N (kHz) 30.2 49.31 

transfer time 1 ms 240, 400, 560 μs 

NS 2000 2000 

D1 (s) 10 10 

AQ (s) 0.0135168 0.0135168 

SW (Hz) 75757.58 75757.58 
NS – Number Scans; D1 – a recycle delay; AQ – the acquisition time; SW – the spectral width.  512 

Author Contributions 513 

EN designed the project, performed the simulations, the experiments and wrote the article. KX took a part 514 

in the experiments and in the edition of the article. KTM prepared -PET SH3 sample and packed it. LA 515 

contributed to the simulated and the experimental parts and edited the article.  516 

Competing Interests 517 

The authors declare that they have no conflict of interest. 518 

Acknowledgments 519 

We acknowledge financial support from the MPI for Biophysical Chemistry, and from the Deutsche 520 

Forschungsgemeinschaft (Emmy Noether program Grant AN1316/1- 1)  521 

Appendix A 522 

https://doi.org/10.5194/mr-2020-30

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 20 November 2020
c© Author(s) 2020. CC BY 4.0 License.



29 
 

Fig. A1 shows the fpRFDR signals of the I3 (Fig. A1a and c) and IS2 (Fig. A1b and d) spin systems 523 

obtaining with MATLAB simulations (solid lines) and SIMPSON simulations (grey dashed lines). 524 

MATLAB and SIMPSON simulated curves provide the same behavior of the starting and trasnferred 525 

signals under different experimental conditions: 10 kHz (Fig. A1a and b) and 90 kHz (Fig. A1 c and d) of 526 

MAS rates. IS2 spin system contains the heteronuclear and homonuclear dipolar interactions, whereas I3 527 

spin system contains homonuclear dipolar interactions only. Under slow MAS rate of 10 kHz we detect 528 

low transferred signals between weakly bounded spins – Iz2 and Iz1 (black line) and Iz3 and Iz1 (purple line) 529 

for I3 spin system (Fig. A1a) and much weaker signals for IS2 spin system - Sz2 and Iz1 (black line) and Sz3 530 

and Iz1 (purple line), Fig. A1b. However, under 90 kHz of MAS rate, the simulations provides the same 531 

results for I3 (Fig. A1c) and IS2 (Fig. A1d) spin systems.            532 

 533 

Fig. A1 Simulated I3 (a, c) and IS2 (b, d) spin systems under 10 kHz (a, b) and 90 kHz (c, d) of MAS with 65 kHz of rf-field, 534 

dipolar values of 𝜈12 = 66 Hz, 𝜈13 = 150 Hz, 𝜈23 = 2.15 kHz, the offset values of  Ω1 = −8 kHz, Ω2 = 9 kHz, Ω3 = −7 kHz 535 
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and CSA values of 𝜈𝐶𝑆𝐴,1 = 9.2 Hz, f 𝜈𝐶𝑆𝐴,2 = 2.5 Hz, f 𝜈𝐶𝑆𝐴,3 = 8 kHz. The solid lines represent fp-RFDR starting and 536 

transferred signals obtaining with MATLAB simulations, whereas the dashed signals were obtained with SIMPSON simulations. 537 

(a), (c):  : 𝐼𝑧2 → 𝐼𝑧2 (red lines); 𝐼𝑧2 → 𝐼𝑧3 (blue lines); 𝐼𝑧2 → 𝐼𝑧1 (black lines); 𝐼𝑧3 → 𝐼𝑧1 (purple lines). (b), (d): 𝑆𝑧2 → 𝑆𝑧2 (red 538 

lines); 𝑆𝑧2 → 𝑆𝑧3 (blue lines); 𝑆𝑧2 → 𝐼𝑧1 (black lines); 𝑆𝑧3 → 𝐼𝑧1 (purple lines). The values of the dipolar interactions and 10 kHz 539 

of MAS was taken from Ref. [(Bayro et al. 2009)]. XY8 phase cycling was used.      540 

Fig A2 compares the starting and transferred signals obtained with the full dipolar Hamiltonian (Eq. 2.1) 541 

or simulating with the secular dipolar Hamiltonian (Eq. 2.2a), when CSA values (Fig. A2a) or offset 542 

values (Fig. A2b) are added to the simulations. The CSA values themselves (Fig. A2a) have very small 543 

influence on the evolution of the spin system and therefore the secular dipolar Hamiltonian (red lines) 544 

provides the same evolution of the spin system as the full dipolar Hamiltonian (black lines). The main 545 

influence comes from offset values as shown in Fig. A2b. Under these conditions, the red and black lines 546 

do not coinside.      547 

 548 

Fig. A2 Simulated I3 spin system under 10 kHz of MAS and 65 kHz of rf-field, dipolar coupling values of 𝜈12 = 66 Hz, 𝜈13 =549 

150 Hz, 𝜈23 = 2.15 kHz. Axis Y shows the intensities of the starting and transferred signals between different operators: 𝐼𝑧2 →550 

𝐼𝑧2 (the dotted lines); 𝐼𝑧2 → 𝐼𝑧3 (the dashed lines); 𝐼𝑧2 → 𝐼𝑧1 (the solid lines); 𝐼𝑧3 → 𝐼𝑧1 (the dashed-dotted lines). The black lines 551 

represent the signals, simulating with the full dipolar Hamiltonian (Eq. 2.1) with zero values of offset and CSA. The red lines 552 

represent the signals, simulating with the secular model Hamiltonian (Eq. 2.2a). (a) Offset values: 0; CSA values: 𝜈𝐶𝑆𝐴,1 =553 

9.2 Hz, f 𝜈𝐶𝑆𝐴,2 = 2.5 Hz, f 𝜈𝐶𝑆𝐴,3 = 8 kHz. (b)  Ω1 = −8 kHz, Ω2 = 9 kHz, Ω3 = −7 kHz; CSA values: 0.         554 
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Appendix B 555 

For the theoretical proof of zero fpRFDR signal at specific time points when XX phase cycling is used, 556 

we can consider the transfer of the signal from spin I1 to spin I2 at the end of one rotor period. The 557 

measured operator at this time is described with the Eqn.: 558 

〈𝐼𝑧2〉(𝑇𝑅) = 𝑇𝑟{𝐼𝑧2𝑈(𝑇𝑅)𝐼𝑧1𝑈
−1(𝑇𝑅)}. (B1) 

For simplicity, we take into account the dipolar interaction + rf-field during π-pulse and the dipolar 559 

interaction only during the delay. In that case the unitary operator, 𝑈(𝑇𝑅) is written as follow: 560 

𝑈(𝑇𝑅) = 𝑈2𝑈1:    
𝑈2 = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)(3𝐼𝑧1𝐼𝑧2 − 𝐼1̅𝐼2̅)

𝑇𝑅
𝑡𝑝

}

𝑈1 = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡[𝜔𝐷,12(𝑡)(3𝐼𝑧1𝐼𝑧2 − 𝐼1̅𝐼2̅) + 𝜔𝑟𝑓(𝐼𝑥1 + 𝐼𝑥2)]
𝑡𝑝
0

}
, 

(B2) 

 where 𝑇̂ is a Dyson operator and 𝜔𝐷,12(𝑡) is a periodic dipolar time dependent function(Olejniczak, 561 

Vega, and Griffin 1984) between spins I1 and I2. Firstly, we can simplify Eq. B2 omitting the scalar 562 

product, 𝐼1̅𝐼2̅, since it communicates with other parts of the Hamiltonian:  563 

[𝐼1̅𝐼2̅, 𝐼𝑧1𝐼𝑧2] = [𝐼1̅𝐼2̅, 𝐼𝑥1 + 𝐼𝑥2] = 0, (B3) 

and the dipolar function is periodic –  ∫ 𝑑𝑡𝜔𝐷,12(𝑡)𝐼1̅𝐼2̅
𝑇𝑅
0

= 0. Eq. B2 can be written as follow: 564 

𝑈(𝑇𝑅) = 𝑈2𝑈1:    
𝑈2 = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)3𝐼𝑧1𝐼𝑧2

𝑇𝑅
𝑡𝑝

}

𝑈1 = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡[𝜔𝐷,12(𝑡)3𝐼𝑧1𝐼𝑧2 +𝜔𝑟𝑓(𝐼𝑥1 + 𝐼𝑥2)]
𝑡𝑝
0

}
, 

(B4) 

The next step is the rotation of the all operators by 90o around axis -y: 565 

𝐼𝑧1, 𝐼𝑧2, 𝐼𝑧1𝐼𝑧2, (𝐼𝑥1 + 𝐼𝑥2)  
90−𝑦
→    −𝐼𝑥1, −𝐼𝑥2, 𝐼𝑥1𝐼𝑥2, (𝐼𝑧1 + 𝐼𝑧2). 

(B5) 

Substituting Eq. B5 into Eqs. B1 and B4, the modified Eq. B1 is: 566 

〈𝐼𝑧2〉(𝑇𝑅) = 𝑇𝑟{𝐼𝑥2𝑈(𝑇𝑅)𝐼𝑥1𝑈
−1(𝑇𝑅)}, (B6) 

whereas the modified Eq. B4 is: 567 
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𝑈(𝑇𝑅) = 𝑈2𝑈1:    
𝑈2 = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)3𝐼𝑥1𝐼𝑥2

𝑇𝑅
𝑡𝑝

}

𝑈1 = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡[𝜔𝐷,12(𝑡)3𝐼𝑥1𝐼𝑥2 +𝜔𝑟𝑓(𝐼𝑧1 + 𝐼𝑧2)]
𝑡𝑝
0

}
, 

(B7) 

The operators in Eqs. B6 and B7 can be rewritten with fictitious spin ½ operator formalism(Vega 1978): 568 

2𝐼𝑥1𝐼𝑥2 = 𝐼𝑥
(1,4)

+ 𝐼𝑥
(2,3)

, 

(𝐼𝑧1 + 𝐼𝑧2) = 2𝐼𝑧
(1,4)   . 

(B8) 

 

Therefore, Eqs. B6 and B7 can be written as follow: 569 

〈𝐼𝑧2〉(𝑇𝑅) = 𝑇𝑟{𝐼𝑥2𝑈(𝑇𝑅)𝐼𝑥1𝑈
−1(𝑇𝑅)}, 

𝑈(𝑇𝑅) = 𝑈2𝑈1:   
𝑈2 = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)3 (𝐼𝑥

(1,4) + 𝐼𝑥
(2,3))

𝑇𝑅
𝑡𝑝

}

𝑈1 = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡 [𝜔𝐷,12(𝑡)3 (𝐼𝑥
(1,4)

+ 𝐼𝑥
(2,3)

) + 𝜔𝑟𝑓2𝐼𝑧
(1,4)

]
𝑡𝑝
0

}
. 

 

 

(B9) 

(B10) 

Since the operator 𝐼𝑥
(2,3)

 communicates with other operators and the dipolar function is periodic –  570 

∫ 𝑑𝑡𝜔𝐷,12(𝑡)𝐼𝑥
(2,3)𝑇𝑅

0
= 0 – the Eqs. B9 and B10 can be rewritten as: 571 

〈𝐼𝑧2〉(𝑇𝑅) = 𝑇𝑟 {𝐼𝑥2𝑈
(1,4)(𝑇𝑅)𝐼𝑥1(𝑈

(1,4))
−1
(𝑇𝑅)}, 

𝑈(1,4)(𝑇𝑅) = 𝑈2
(1,4)𝑈1

(1,4):  
𝑈2
(1,4)

= 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)3𝐼𝑥
(1,4)𝑇𝑅

𝑡𝑝
}

𝑈1
(1,4) = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡 [𝜔𝐷,12(𝑡)3𝐼𝑥

(1,4) +𝜔𝑟𝑓2𝐼𝑧
(1,4)

]
𝑡𝑝
0

}
. 

 

 

(B9) 

 

(B10) 

On the basis of the fictitious spin ½ operator formalism(Vega 1978), the next properties are always 572 

performed: 573 

2𝐼𝑥𝑗𝐼𝑥
(1,4)2𝐼𝑥𝑗 = 𝐼𝑥

(2,3)
, 

2𝐼𝑥𝑗𝐼𝑧
(1,4)2𝐼𝑥𝑗 = −𝐼𝑧

(2,3),            j = 1,2. 

(B11) 

 

On the basis of these properties Eqs. B9 and B10 are:  574 

〈𝐼𝑧2〉(𝑇𝑅) = 𝑇𝑟 {𝐼𝑥2𝐼𝑥1𝑈̌
(2,3)(𝑇𝑅)(𝑈

(1,4))
−1
(𝑇𝑅)}, 

𝑈̌(2,3)(𝑇𝑅) = 𝑈̌2
(2,3)𝑈̌1

(2,3):  
𝑈̌2
(2,3) = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)3𝐼𝑥

(2,3)𝑇𝑅
𝑡𝑝

}

𝑈̌1
(2,3) = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡 [𝜔𝐷,12(𝑡)3𝐼𝑥

(2,3) −𝜔𝑟𝑓2𝐼𝑧
(2,3)

]
𝑡𝑝
0

}
. 

 

 

(B12) 

 

(B13) 

On the basic of Eq. B8 the product of 𝐼𝑥2𝐼𝑥1 can be rewritten and therefore Eq. B12 is:  575 
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〈𝐼𝑧2〉(𝑇𝑅) = 0.5𝑇𝑟 {(𝐼𝑥
(1,4)

+ 𝐼𝑥
(2,3)

) 𝑈̌(2,3)(𝑇𝑅)(𝑈
(1,4))

−1
(𝑇𝑅)} = 

=0.5𝑇𝑟 {𝐼𝑥
(2,3)𝑈̌(2,3)(𝑇𝑅)} + 0.5𝑇𝑟 {𝐼𝑥

(1,4)
(𝑈(1,4))

−1
(𝑇𝑅)}. 

 

(B14) 

The next step will be usage of the mentioned properties of fictitious spin ½ operator formalism (Eq. B11): 576 

〈𝐼𝑧2〉(𝑇𝑅) = 0.5𝑇𝑟 {𝐼𝑥
(2,3)𝑈̌(2,3)(𝑇𝑅)} + 0.5𝑇𝑟 {𝐼𝑥

(2,3)
(𝑈̌(2,3))

−1
(𝑇𝑅)}. 

(B15) 

The last step will be the usage the next property: 577 

−2𝐼𝑦
(2,3)𝐼𝑥

(2,3)2𝐼𝑦
(2,3) = 𝐼𝑥

(2,3)
, 

−2𝐼𝑦
(2,3)𝐼𝑧

(2,3)2𝐼𝑦
(2,3) = 𝐼𝑧

(2,3)
. 

(B16) 

 

Substituting Eq. B11 into Eq. B13, then the modified Eq. B13 into Eq. B15 and taking into account that 578 

2𝐼𝑦
(2,3)2𝐼𝑦

(2,3) = 1(2,3), the transferred signal is: 579 

〈𝐼𝑧2〉(𝑇𝑅) = −0.5𝑇𝑟 {𝐼𝑥
(2,3)

(𝑈̌(2,3))
−1
(𝑇𝑅)} + 0.5𝑇𝑟 {𝐼𝑥

(2,3)
(𝑈̌(2,3))

−1
(𝑇𝑅)} = 0. (B17) 

Since the transferred signal is zero at mixing the time of one rotor period, it is always zero at integer 580 

multiples of rotor periods. 581 
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