The authors thank the referees for their comments and suggestions.

Referee #1

1. *the degree of novelty of the method was barely discussed. I think it is beneficial to have a brief statement summarising the originality of the approach so that it can stand out among other attempts.*

Surprisingly, a bibliographic search about signal suppression in ^{13}C NMR did not lead to adequate bibliographic references in this field. This point has been made clear in the revised manuscript.

2. *At first, it was not clear to me at all - and still, it is not entirely - that what is the main purpose of the proposed method: solvent- or artefact suppression? i.e. it is not clear that the suppression of heterodecoupling artefacts is the goal of this study or a rather attractive by-product of it? This point needs to be clarified. Especially if the artefact suppression is the primary goal, then the title itself is a bit misleading and probably should bear an indication of artefact suppression for that matter.*

The initial idea was to remove the observed artefacts. Then came the idea they might be due to decoupling, and that intensity reduction of strong signals would also bring their artefacts much below the noise level. The title has been changed accordingly to "Multiple solvent signal presaturation and decoupling artifact removal in $^{13}\text{C}\{^{1}\text{H}\}$ NMR", a change that also takes into account a suggestion from Referee #2.

A new sentence indicates "The advantage drawn from this operation (saturation) is not only the intensity reduction of the solvent signals but also the elimination of the possible artefacts that arise from the solvent signals in non–optimized decoupling conditions”.

3. *Figure 3 is somewhat confusing; there is no noticeable intensity difference between solvent signals in (a) and (b). The only difference between (a) and (b) that I can see is the disappearance of heterodecoupling artefacts, which is very nice. Still, I expected to see some intensity difference with respect to solvent signals themselves as well.*

Figure 3 has been redrawn and its caption changed accordingly to show the solvent intensity reduction by presaturation.

4. *Some other attempts with regard to multiple solvent suppression are worth mentioning, including (Teodor Parella, 1998) and (Claudio Dalvit, 1998).*

The suggested bibliographic references to works by Parella and Dalvit dealing with multiple presaturation have been added.

Referee #2

- Replace ^{13}C with $^{13}\text{C}\{^{1}\text{H}\}$. This is important because the authors report problems when the decoupler.

"$^{13}\text{C}\{^{1}\text{H}\}$" has been inserted in the title and the text.

- The proton concentration is not 110 M, is around 99 M as biological samples contain around 10% of deuterated water.

The text states now that the concentration of protons in biological samples is close to 100 M.
• It would be nice if the authors comment on the use of decoupler schemes that are tolerant to pulse imperfections.

No other decoupling scheme has been investigated as now stated in the text.

• The authors should clarify whether the problems with the decoupler not being calibrated appear even when the probe is well tuned. Do they have an auto-tuning probe? In some cases, the miscalibration problem can be minimized with auto-tuning probes. In other cases, pulse calibrations are still necessary.

The probe is always auto-tuned. However, even with optimal tuning and matching, the actual length of the 90 degree pulse (whatever the RF channel) may vary depending on the nature of the sample. Moreover, automating tuning and matching in automation mode is not always optimal. A sentence was added to make this point clearer.

• Replace ”Miscalibrations may cause” with ”Decoupler miscalibrations may cause”. Miscalibrations on the carbon channel rarely cause problems.

The sentence that starts with ”Miscalibrations may cause” has been modified according to referee’s proposal.
Multiple solvent signal presaturation and decoupling artifact removal in $^{13}\text{C}^{1}\text{H}$ NMR

Marine Canton1,2, Richard Roe2, Stéphane Poigny2, Jean–Hugues Renault1, and Jean–Marc Nuzillard1
1Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
2Laboratoires Pierre Fabre Dermocosmétique, 3 Avenue Hubert Curien, BP 13562, 31035 Toulouse Cedex, France

Correspondence: M. Canton (marine.canton@univ-reims.fr), J.–M. Nuzillard (jm.nuzillard@univ-reims.fr)

Abstract. The analysis by proton-decoupled carbon-13 nuclear magnetic resonance spectroscopy of samples dissolved in solvents presenting strong multiple resonances can be facilitated by the suppression of these resonances by multi–site presaturation. The advantage drawn from this operation is the elimination of the possible artifacts that arise from the solvent signals in non–optimized decoupling conditions. Solvent presaturation was implemented on glycerol, 1,2–propanediol, 1,3–propanediol, 1,2–butanediol, 1,3–butanediol with at least 94 % on–resonance efficiency and a bandwidth of less than 50 Hz measured at 50 % signal intensity decrease. The experimental measurement of the signal suppression bandwidth leads to unexpected selectivity profiles for frequency close resonances. Computer resolution of the Bloch equations during multi–site presaturation provide an insight into the origin of the observed profile perturbations.

Copyright statement. ©Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

1 Introduction

Nuclear magnetic resonance (NMR) is the only spectroscopic method used for the structural elucidation of organic molecules that produces information at the atomic level. Liquid state NMR of proteins strongly relies on the observation of the amide NH proton resonances and is therefore carried out in a solvent mainly composed of light water. The concentration of hydrogen in protein NMR samples (close to 100 mol L$^{-1}$) compared to the one of the protein itself (1 mmol L$^{-1}$ or less, Zheng and Price, 2010)) forced NMR spectroscopists to create efficient water signal suppression techniques (Lee et al., 2017; Chen et al., 2017; Duarte et al., 2013; Gouilleux et al., 2017). Without them, the water signal would cover a wide band of signals of high structural importance and would also hamper the accurate operation of analog to digital signal conversion devices (Mo and Raftery, 2008) resulting in detection sensitivity reduction. Small molecule NMR also benefits from solvent signal suppression techniques when hyphenated to liquid chromatography in the study of fluids of biological (plasma, urine, ...) or food (fruit juices, alcoholic beverages, ...) interest (Friedbolin, 2011; Kew et al., 2017).

A high signal rejection ratio, a low perturbation of the baseline, and a narrow signal attenuation frequency window define a high quality of a solvent signal suppression technique (Zheng and Price, 2010). A narrow suppression window ensures that the
intensities of resonances close to the one of the solvent will be preserved at best. Solvent resonance presaturation is the oldest of these techniques and consists in the application during the relaxation delay of a low power radiofrequency (RF) field on resonance with the solvent signal (Hoult, 1976) (Ross et al., 2007).

Multiple solvent signal suppression is a necessity in LC-NMR and for (Parella et al., 1998) and was involved in the study of alcoholic beverages by 1H NMR. In the latter case, the interactions of organic solvents with biomolecules (Dalvit, 1998). The suppression methods derived in these two cases from the original excitation sculpting pulse sequence (Hwang and Shaka, 1995) The eight signals produced by water and ethanol can be efficiently attenuated by presaturation for the study of alcoholic beverages by 1H NMR (Monakhova et al., 2011). However, the presence of solvents is not a problem in 13C NMR spectroscopy since their resonance lines are very sharp, relatively to the width of the observation frequency window, and are not likely to overlap those of interest. The context of the present study is the characterization by 13C NMR of compounds within natural extracts (Hubert et al., 2014) (Tsujimoto et al., 2018) (Bakiri et al., 2017). Plant extracts may be conditioned as dry products or as solutions in diverse solvents, possibly prepared from renewable resources and for which evaporation to dryness may be not feasible or not compatible with the chemical integrity of the solutes. Indeed, alcohols like glycerol, propanediols, butanediols and pentanediols are employed for such applications (Chemat et al., 2019) (Shehata et al., 2015). Their boiling points range from 188 °C to 290 °C under atmospheric pressure. The characterization of the solutes by 13C NMR spectroscopy can be carried out on extracts or on fractions obtained by chromatographic methods. The fractions of interest may also contain an important amount of these high boiling point solvents.

NMR data acquisition of series of samples is often carried out in automation mode with standard acquisition parameters. An accurate calibration of pulses on the 1H RF channel is necessary to record 13C–1H spectra in proper decoupling conditions. Miscalibration can cause decoupling artifacts around the intense solvent signals, at a point their intensity is comparable to the one of the signals of interest (Blechta and Schraml, 2015).

Analytically misleading decoupling artifacts were observed during the analysis by 13C NMR of chromatographic fractions containing glycerol. Their elimination, even though the probe was automatically tuned before each spectrum recording. The elimination of decoupling artifacts through the reduction of their parent glycerol signals was achieved by multi–site presaturation, using multiple modulation of the RF field (Patt, 1992). The advantage drawn from this operation is not only the intensity reduction of the solvent signals but also the elimination of the possible artifacts that arise from the solvent signals in non–optimized decoupling conditions. To the best of our knowledge, solvent signal elimination has not been reported in the context of 13C NMR spectroscopy.

The assessment of the method included the determination of the frequency profile of signal attenuation around the presaturation frequencies. Samples that contain 1,2–propanediol show 13C NMR spectra with two close resonance lines, a few Hz apart from each other, depending on concentration. The corresponding saturation profile showed unexpected features that incited us to investigate in detail the underlying spin dynamics by numerical simulation. The apparent interference effect between saturation pulses recalled the one observed for two closely frequency-shifted BURP pulses, as reported in the article entitled "Close encounters between soft pulses" (Kupče and Freeman, 1995). In this article, Ž. Kupče and R. Freeman demonstrated
that when the difference between the two frequency shifts has the same order of magnitude as the selective pulse operation bandwidth, then the resulting operation frequency profile presents a chaotic aspect.

The first part of the following section deals with simple theoretical aspects of presaturation. Experimental results include the study of a sucrose sample diluted in glycerol and show that presaturation is effective for decoupling artefact removal and the handling of other solvents that present up to four resonances such as 1,2–propanediol, 1,3–propanediol, 1,2–butanediol and 1,3–butanediol.

2 Theory

Resonance saturation in NMR occurs when an RF field is continuously applied at a frequency equal to the resonance frequency of a nucleus. The magnetization dynamics of a collection of many identical isolated spins that constitutes a macroscopic sample is governed by the Bloch equations (Bloch, 1946). The components M_x, M_y, and M_z of the macroscopic magnetization M, when observed in the rotating frame of reference, evolve as follows,

$$\frac{dM_x}{dt} = \Omega_0 M_y - \Omega_1 y M_z - R_2 M_x$$

$$\frac{dM_y}{dt} = \Omega_1 x M_z - \Omega_0 x M_x - R_2 M_y$$

$$\frac{dM_z}{dt} = \Omega_1 y M_x - \Omega_1 x M_y - R_1 (M_z - M^{eq}_z)$$ (1)

in which Ω_0 is the precession angular frequency of the nuclei, Ω_1 is the norm of the nutation vector expressed as an angular frequency, and $(\Omega_{1x}, \Omega_{1y})$, the components of the latter on the X and Y axis of the rotating frame. Nuclear spin relaxation is phenomenologically described by the two rate constants R_1 and R_2 defined as the reciprocals of the longitudinal and transverse relaxation times T_1 and T_2, respectively. M^{eq}_z denotes the value of the sample equilibrium nuclear magnetization and intervenes in the description of the longitudinal relaxation. In the case $\Omega_0 = 0$ of an on-resonance constant intensity applied RF field, the components of the magnetization vector tend toward a stationary limit for which

$$M^{stat}_z = \frac{M^{eq}_z}{1 + \Omega_1^2 T_1 T_2}$$ (2)

If $\Omega_1^2 T_1 T_2 \gg 1$, then the stationary magnetization is much lower than the one of equilibrium, corresponding to an equalization of spin state populations induced by the RF field, as expected from saturation.

Solvent signal suppression in NMR spectroscopy can be obtained by selective saturation of one or more solvent signals during the relaxation delay. This technique is named presaturation because it precedes the non–selective excitation of the sample resonances. Presaturation at a single site is easily achieved by continuous wave RF irradiation. Multi–site presaturation relies on multiple–frequency–shifted laminar pulses, a particular species of shaped pulse (Patt, 1992). Such a shaped pulse serves as presaturation module of duration T and is applied repetitively to the sample so that the overall RF irradiation time is equal to the desired relaxation delay. A presaturation module is constituted by N elementary pulses, named slices hereafter, of duration δt so that $T = N \delta t$. The creation of a module requires the definition of T, N, of the number n of presaturation sites,
and of the list of the frequency offsets Ω_k^{sat} associated to each site. The values of Ω_{1x} and Ω_{1y} are obtained from

$$
(\Omega_{1x} + i\Omega_{1y})(t_j) = \frac{\Omega_1}{n} \sum_{k=0}^{n-1} \exp(i\Omega_k^{\text{sat}} \cdot j\delta t) \quad \text{for} \quad 0 \leq j < N
$$

which states that RF field intensities are equally distributed among the n sites and phases arbitrarily are set to zero at $t = 0$.

The Ω_k^{sat} values are calculated relatively to an auxiliary carrier frequency determined as the average of the highest and the lowest offsets of the signals to presaturate. The emission of the presaturation pulse has to take into account the difference between the auxiliary frequency and the actual transmitter frequency, the so-called shaped pulse offset, as described in Fig. 1. The value of δt is chosen so that the highest precession angle $|\Omega_k^{\text{sat}}|\delta t$ for the highest $|\Omega_k^{\text{sat}}|$ during that time must be kept below a small threshold value in the order of $\pi/15$. The value of N should be as high as possible and depends on the memory size available for shaped pulses in the pulse program sequencer. $N = 50,000$ was used throughout the present study. The $N\delta t$ product determines the shaped pulse duration T. Alternatively, T may be chosen so that the highest precession angle during δt falls under the predefined threshold for the retained value of N.

The simulation of a set of saturation profiles like the one in Fig. 2 requires first the creation of a table of N values of Ω_{1x} and Ω_{1y} according to Eqn. (3). Nucleus resonance offset frequencies $\Omega_0/2\pi$ are then repetitively selected for presaturation effect calculation from a set of linearly spaced values comprised between a minimum and a maximum. Starting from a magnetization vector in its equilibrium position, the action it undergoes from the series of presaturation modules is evaluated. The offset frequency and final amount of longitudinal magnetization M_z are printed in a computer file so that a graph of $M_z(\Omega_0/2\pi)$ can be drawn for the chosen set of Ω_0 values. The action of a presaturation module is determined by the action of the series of its
Figure 2. Saturation profiles for presaturation at two sites, at $\pm \Omega_{\text{sat}}/2\pi$ for $\Omega_{\text{sat}}/2\pi = 0, 2, 4, 6, 8, 10, 20, 40$ Hz, corresponding to traces a to h. The relaxation times T_1 and T_2 are both equal to 0.5 s. The relaxation delay lasts 5 s during which 10 presaturation modules of 0.5 s each are applied. Each module is made of 50000 slices, for which Ω_{1x} and Ω_{1y} values are calculated with $\Omega_{1}/2\pi = 50$ Hz.

constituting slices. The action of each shaped pulse slice should be calculated by resolution of the Bloch equation system (Eqn. 1) over duration δt, even though a different method was followed, as explained hereafter.

Exact solutions of the Bloch equations have been reported but bear some degree of complexity (Canet et al., 1994; Madhan and Kumar, 1995). They take account of magnetization precession, nutation and relaxation processes simultaneously. The approach followed here makes use of an easy to implement approximate solution. It relies on the observation that magnetization evolution induced by relaxation alone is slow compared to the one induced by simultaneous precession and nutation. The evolution of M solely under precession and nutation resumes to a rotation at angular frequency Ω_{eff}, the norm of vector $\Omega_{\text{eff}}(\Omega_{1x}, \Omega_{1y}, \Omega_{0})$ when reported in the rotating frame of reference. The rotation axis is defined by the unitary vector $u = \Omega_{\text{eff}} / \Omega_{\text{eff}}$. For practical calculations, one needs to express the elements of the rotation matrix $R_{u, \theta}$ in which $\theta = \Omega_{\text{eff}} \delta t$ and $u(u_x, u_y, u_z)$.

$$R_{u, \theta} = \cos \theta \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + (1 - \cos \theta) \begin{pmatrix} u_x^2 & u_x u_y & u_x u_z \\ u_x u_y & u_y^2 & u_y u_z \\ u_x u_z & u_y u_z & u_z^2 \end{pmatrix} + \sin \theta \begin{pmatrix} 0 & -u_z & u_y \\ u_z & 0 & -u_x \\ -u_y & u_x & 0 \end{pmatrix}$$ \hspace{1cm} (4)

Relaxation alone is taken into account by the following transformation of M.

$$(M_x, M_y, M_z) \longrightarrow (M_x e^{-R_2 \delta t}, M_y e^{-R_2 \delta t}, M_z + (M_z - M_z^{\text{eq}}) e^{-R_1 \delta t})$$ \hspace{1cm} (5)

The evolution of M during a time slice of duration δt is simply calculated by the successive application of rotation and relaxation transformations. The approximation that consists in alternating rotation and relaxation instead of considering them simultaneously improves when δt tends to zero. A given δt time interval can be divided in two (or more) parts and the replace-
ment of rotation(\(\delta t\))–relaxation(\(\delta t\)) by two consecutive rotation(\(\delta t/2\))–relaxation(\(\delta t/2\)) calculations provides a way to evaluate the error induced by the proposed calculation method.

An identical approach to Bloch equations resolution was used for the optimization of band–selective uniform response pulses (BURP) in the presence of relaxation, leading to the design of pulses with silhouette largely unaffected by relaxation processes (SLURP), for which the underlying calculation details were not reported (Nuzillard and Freeman, 1994). The action of relaxation on frequency–domain profiles of BURP pulses were recalculated using exact solutions of the Bloch equations and the results were visually identical to those derived from the approximate treatment (Canet et al., 1994).

3 Results

The unwanted effect on \(^{13}\)C NMR spectra of the presence of glycerol in high concentration was reproduced by the analysis of a solution of sucrose (29 mM) in DMSO–\(d_6\) to which glycerol (3.62 M) was added. This sample constitutes a good approximation of a real case, as industrially prepared plant extracts are often delivered as solutions in high boiling point solvents like glycerol, at metabolite concentrations close to or lower than that of sucrose in our model preparation.

Fig. 3a presents the \(^{13}\)C NMR spectrum of sample sucrose in glycerol and its comparison with the \(^{13}\)C NMR spectrum of sucrose alone in DMSO–\(d_6\). The spectrum in Fig. 3c shows the residual signal of DMSO–\(d_6\) and the twelve peaks from sucrose, two of them at \(\delta 73.13\) and \(\delta 73.15\) being not well resolved. The \(^{13}\)C NMR spectrum of sucrose in glycerol contains supplementary peaks, the two intense ones of glycerol apart. Glycerol clearly introduced unexpected signals in the spectra, some with abnormal phases, but others that may be considered genuine, thus creating confusion in the analysis of unknown samples. A possible origin of the artifact signals was first searched in a possible saturation of the spectrometer receiver or an intermodulation related problem; changing the receiver gain did not influence their position and phase, so that this hypothesis was not further considered (Marshall and Verdun, 1990). Receiver gain was set to its maximum value in all following experiments.

Broadband heteronuclear decoupling constitutes another source of artifacts in \(^{13}\)C–\(^1\)H NMR spectra. A proper adjustment of power in the \(^1\)H channel is required for the recording of an optimal, artifact-free \(^{13}\)C spectrum with WALTZ-16 composite pulse decoupling (Shaka et al., 1983). Slight changes in decoupling RF power resulted in changes of position and phase of artifacts. The strongest signals being by far those of glycerol, their intensity reduction brought the decoupling artifact intensity below the noise level as shown by Fig. 3b. Obviously, a better calibration of the RF pulses in the decoupler channel would also reduce, if not eliminate, the decoupling artifacts. No attempt was undertaken to investigate other decoupling schemes. The recording of series of samples in automation mode with a sample changer does not favor the calibration of decoupler RF pulse on a sample–to–sample basis, so that the study of strong signal reduction was undertaken.

Glycerol signal reduction in \(^{13}\)C NMR was achieved by presaturation. As observed in Fig. 3b, reducing the intensity of solvent signals by double presaturation removed decoupling artifacts and the observed signals only arose from the compounds present in the sample. This procedure was carried out on more than 30 samples of natural extracts diluted in glycerol.
Figure 3. a) 13C NMR spectrum of d(+)–sucrose (24 mM) and glycerol (3.6 M) in DMSO–d$_6$. The "#" sign indicates decoupling artifacts. The "*" sign indicates a signal from a minor compound contained in bio–sourced glycerol; b) Analysis of the same sample as in a) but with multiple presaturation of glycerol signals. The framed insert shows spectra overviews drawn at full vertical scale. In spectrum a) a detailed view of the resonance peaks of DMSO–d$_6$ (the peak at 87.1 and rightmost ones) are much smaller than those of its 13C satellites; glycerol while in b) the latter are hardly visible, drawn without vertical truncation thus demonstrating the efficiency of the glycerol resonance peak elimination. c) 13C NMR spectrum of d(+)–sucrose (24 mM) in DMSO–d$_6$. All acquisitions required the recording of 128 scans preceded by 8 dummy scans.

The characterization of glycerol signal presaturation was further undertaken by means of a sample made only of glycerol in DMSO–d$_6$. The study relied on the pulse sequence in Fig. 4, which is a straightforward adaptation of zgpg from the TopSpin library, in which presaturation is implemented as the repeated emission of an RF shaped pulse. The minimal two–step phase program ensures that peaks are all identically phased and that their height is proportional to the amount of longitudinal magnetization present at the end of the presaturation period. Glycerol, C$_3$H$_8$O$_3$, produces only two 13C NMR signals by symmetry,
located at δ_A 63.7 and δ_B 73.1. Presaturation by continuous wave at a single site, A or B, in both cases resulted in a 99 % signal intensity reduction while simultaneous presaturation at sites A and B caused an attenuation better than than 97 %, as shown in Fig. 5.

Experimental saturation profiles were measured in order to evaluate the width of the frequency band concerned by signal attenuation. For this purpose, the frequency offset of the presaturation pulse was varied in 1 Hz steps around the value that corresponds to the on–resonance RF field application. The presaturation bandwidth is defined by the interval of frequency offsets in which signal intensity is reduced at least by 50 %. The profile of the signal from position A in glycerol presented a bell shape whose full width at half height was 15 Hz for $\Omega_1/2\pi = 11.7$ Hz, that represents a bandwidth of 0.1 ppm at 151 MHz (Fig. 6). A similar width, 0.09 ppm, was measured for the presaturation at the site B. The profiles are those expected for a multi–site presaturation of two very largely separated resonances, such as those of glycerol, with a difference in peak position of 9.43 ppm (or 1424 Hz). Such narrow zones of signal attenuation are compatible with the practical identification of the dissolved compounds.

The power of presaturation RF pulses influences the on–resonance residual longitudinal magnetization and therefore the intensity of the residual signal. This power must be low enough to keep the presaturation band sufficiently narrow and high enough to achieve a useful signal suppression. Five experiments (not shown) were carried out by reducing the power of RF pulse intensity from 58.7 Hz to 5.9 Hz. The intensity of the two residual signals were similar: signal attenuation was always at least 95 %. Based on this result, an intensity of 11.7 Hz was retained for presaturation pulses in all subsequent spectra recordings.

Multiple site presaturation was extended to other heavy solvents used as natural product extractants: 1,2–propanediol, 1,3–propanediol, 1,2–butanediol and 1,3–butanediol. For all but 1,2–propanediol, presaturation reduced solvent signal intensity by at least 94 %. Presaturation was also carried out on samples containing sucrose and each of the heavy solvents mentioned here above. The spectra recorded with and without presaturation as well as the corresponding raw NMR data are available for download. As expected, presaturation has resulted in a strong decrease of targeted signals and the removal of decoupling.
Figure 5. Presaturation of glycerol in DMSO–d$_6$. a) 13C NMR spectrum of glycerol. Signals from sites A and B are located at δ_A 63.7 and δ_B 73.1. b) Effect of single presaturation at site B. c) Effect simultaneous presaturation at sites A and B. The presaturation module last $T = 1$ s and are applied with a maximal intensity $\Omega_1/2\pi$ of 11.7 Hz All acquisitions required the recording of 8 scans preceded by 4 dummy scans.

Table 1 summarizes the results obtained for each heavy solvent, concerning signal attenuation and signal attenuation bandwidth.

The elimination of the 13C resonances of 1,2–propanediol led to an unexpected presaturation profile in the region of two oxygen–bearing carbons, due to their very close chemical shift values, 67.8 ppm and 67.9 ppm, as shown in Fig. 7. The profile showed puzzling irregular features that motivated the undertaking of a numerical simulation work. In this case $\delta\Omega_{sat}/2\pi = 10$ Hz. The simulated profile in Fig. 2f, corresponding to a 10 Hz offset, has similarities with the experimental one as shown in the Fig. 7 zoom frame. Indeed, a wavy effect is also observed at \pm 20 Hz offset around the resonance. This phenomenon generates a bandwidth for the two close signals of 1,2–propanediol (δ 63.8) higher than the one for the isolated signal (δ 20.4), respectively 46 Hz and 20 Hz. However, since 46 Hz corresponds to 0.3 ppm on our spectrometer, this result is still acceptable.
Figure 6. Measurement of the frequency interval width for which presaturation causes a decrease of at least 50% of the signal A intensity ($\delta 63.7$) by changing the auxiliary frequency in 1 Hz steps from -50 Hz to +50 Hz.

Figure 7. Presaturation profile in the region of two oxygen-bearing carbons for the 1,2-propanediol. A focus is made between 0 and -20 Hz to make the wavy part of the profile more visible.

Solvent signal suppression was automated for the five studied solvents by means of computer scripts written in C language. The creation of the shaped pulse of the presaturation module was carried out by recording first a 13C–{1H} spectrum with the zgpg pulse sequence, noting the solvent resonance frequencies by spectrum peak picking, calculating the Ω_{k}sat /2π frequencies and the shaped pulse offset, and generating the corresponding RF waveform definition file.
Table 1. Presaturation characteristics obtained on the selected heavy solvents. The '*' sign indicates a perturbation of the presaturation profile due to frequency–close resonances.

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Chemical shift (ppm)</th>
<th>Attenuation (%)</th>
<th>Bandwidth (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycerol</td>
<td>63.66</td>
<td>97</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>73.09</td>
<td>97</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>20.36</td>
<td>95</td>
<td>20</td>
</tr>
<tr>
<td>1,2–Propanediol</td>
<td>67.83</td>
<td>95</td>
<td>42*</td>
</tr>
<tr>
<td></td>
<td>67.89</td>
<td>95</td>
<td>46*</td>
</tr>
<tr>
<td>1,3–Propanediol</td>
<td>36.24</td>
<td>94</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>58.72</td>
<td>99</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>10.47</td>
<td>98</td>
<td>5</td>
</tr>
<tr>
<td>1,2–Butanediol</td>
<td>26.68</td>
<td>99</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>66.13</td>
<td>99</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>73.13</td>
<td>99</td>
<td>6</td>
</tr>
<tr>
<td>1,3–Butanediol</td>
<td>24.32</td>
<td>98</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>42.40</td>
<td>98</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>58.86</td>
<td>98</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>64.20</td>
<td>96</td>
<td>12</td>
</tr>
</tbody>
</table>

4 Experimental

Glycerol, 1,2–propanediol, 1,3–propanediol, 1,2–butanediol and 1,3–butanediol solutions were prepared by addition of 200 mg of each to 0.6 mL of DMSO–d₆. This corresponds to sample with high concentration: 3.62 M for glycerol, 4.38 M for propandiol, and 3.70 M for butanediols. Glycerol was kindly donated by Pierre Fabre Dermo-Cosmétique. 1,2–propanediol and D(+)–sucrose were purchased from VWR. 1,3–propanediol and 1,3–butanediol were purchased from Alfa Aesar. 1,2–butanediol, was purchased from Sigma Aldrich. The sample containing D(+)–sucrose (29 mM) and glycerol in 0.6 mL of DMSO–d₆ was left overnight at room temperature to obtain a homogeneous solution.

All experiments were performed at 298 K on a Bruker Avance AVIII-600 spectrometer (Karlsruhe, Germany) equipped with a cryoprobe optimized for ¹H detection and with cooled ¹H, ¹³C, and ²H coils and preamplifiers. ¹³C NMR spectra were acquired at 150.91 MHz, with a 36 kHz spectral width and 32 K complex data points recording resulting in a 0.91 s FID
acquisition time. The pulse length for excitation was 13.7 µs and the relaxation delay was 3 s. Spectra were referenced for a central signal of DMSO–d$_6$ at δ 39.52.

The computer source code used in the present study was written in C language; it relied on the libxml2 library for the reading of the input data file (this may be an overkill for such a task, admittedly) and on the libsimu1 library for the calculation of rotation matrices by means of Eqn. (4), as programmed for the design of SLURP pulses. The libsimu1 archive file also contains a proof of Eqn. (4). The computer code for saturation simulations is available from GitHub; its installation was tested with Cygwin in Windows 10 but should be easily carried out on any other platform that provides a C language compiler and UNIX–like tools.

5 Conclusions

The present work provides a method for the saturation of intense solvent resonances in 13C NMR spectroscopy, as those occurring during the analysis of complex plant extracts prepared in high boiling point solvents. The signal reduction of these solvents was successfully achieved using the multi–site presaturation technique.

Numerical simulation therefore helped us to understand the origin of unexpected presaturation profile related to the saturation of frequency close resonances, even though it neither takes into account instrumental shortcomings such as B_0 and B_1 field inhomogeneities nor incomplete relaxation between transient signal recordings. The evolution of the sample magnetization was determined through the use of a simple approximation for the resolution of the Bloch equations that might find applications in other contexts. This approach offers perspectives in signal suppression from other natural sample matrices and in the quantitative 13C NMR analysis of extracts diluted in high boiling point solvents.

Code and data availability. The PresatSimul source code is available from https://github.com/nuzillard/PresatSimul. The libsimu1 source code is available from https://github.com/nuzillard/Libsimu1. The data files, pulse sequence and script from which Figs. 3 and 5 were obtained and a supplementary Figure and caption can be downloaded from https://www.zenodo.org/record/3635970 and temporarily from https://mycore.core-cloud.net/index.php/s/kQHZs7GaUxaZmmr.

Author contributions. MC: Sample preparation, recording of NMR spectra, data processing and analysis, manuscript writing (in part). JMN: Supervision of the project, writing of the computer code for numerical simulation, of the initial code for automated data acquisition, and of the manuscript (in part). SP, RR, and JHR: Manuscript text and figure reviewing. JHR and JMN supervised the PhD thesis work of M. Canton related to methodology developments in plant extract fractionation and NMR. All authors read and approved the final manuscript.

Competing interests. The authors declare that they have no conflict of interest.
Acknowledgements. M. Canton thanks the Laboratoires Pierre Fabre Dermocosmétique for financial support. Financial support by CNRS, Conseil Régional Champagne Ardenne, Conseil Général de la Marne, Ministry of Higher Education and Research (MESR) and EU-programme FEDER to the PlAnTe CPER project is gratefully acknowledged. The authors thank the Association Nationale de la Recherche et de la Technologie for the financial support of the CIFRE grant #2017/1032. A. Martinez and A. Robert from ICMR, are also gratefully acknowledged for their technical support.
References

