This paper describes dissolution DNP-NMR experiments for a variety of reaction schemes using
the Bloch-McConnell equations. The topic of the paper is very timely, given the current intense
interest in DNP approaches; however, in present form, the main contributions of the paper are
difficult to discern.

We thank the reviewer for their supportive words and finding the topic to be of current interest.
We also thank the reviewer for their valuable comments, addressed below, and hope that our
additional analysis helps to clarify the paper.

1. A great deal of the paper recapitulates the work published as:

Kuchel, P. W., and Shishmarev, D.: Dissolution dynamic nuclear polarization NMR studies of
enzyme Kinetics: Setting up differential equations for fitting to spectral time courses, J. Magn.
Reson. Open, 1, 100001, doi.org/10.1016/j.jmro.2020.100001, 2020.

and at least to this reviewer, the novel aspects of the present paper are not clearly distinguished
from the earlier work. This could be addressed by an appropriate summary in the conclusion.

We appreciate that our current paper leads on from that previously published. This was
commented on in our Abstract. We have added the reference in the abstract to clarify this point.
However, our analysis includes a number of aspects not previously considered. Notably, we
extend the analysis to include the influence of enzyme cofactors. We use the framework to
simulate the kinetics of lactate dehydrogenase, not previously reported using this analysis, and
consider the influence of enzyme concentration and the influence of unlabelled lactate on the
kinetics of the hyperpolarized pool. Thus, our work is of direct relevance to ongoing clinical
trials using this method.

| do not understand the statements at line 260-265:

The equilibrium constant was fixed so that K = k,/k_, = 2; hence the system was not at
chemical equilibrium at t = 0 s. The simulations highlight an important point: In the absence of
exchange the Bloch-McConnell equations predict the recovery of the z magnetizations back to
their equilibrium values M7, and M7, while under conditions of fast exchange this no longer
holds, and a nonequilibrium system will rapidly return to its chemical equilibrium, not to its
thermal equilibrium, within the timescale of the NMR experiment; specifically within five T1
values.

If the system is not at chemical equilibrium, M;}eq and Mﬁeq are not constants as represented in

Eq. 19. Rather, these quantities become time-dependent, for example:
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as shown in Eq. 2.4.18 of Ernst et al. (Ernst, R. R., Bodenhausen, G., and Wokaun, A.: Principles
of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford, 1987).
Thus, it is unclear what is shown in Fig. 1 (which the text indicates is based on Eq. 19) and hence
what is meant by the above statement.

This is exactly the point that we were making in Fig. 1. Under conditions of exchange the
longitudinal magnetization returns to its chemical equilibrium as shown in Eq. 2.4.18 of Ernst et
al. not to its initial magnetic equilibrium given by M., and MZ,,. We have modified this
statement as follows and hope this adds clarity to the simulations performed:

“The simulations highlight an important point: In the absence of exchange the Bloch-McConnell
equations predict the recovery of the z magnetizations back to their magnetic equilibrium values
M;}eq and M, while under conditions of fast exchange this no longer holds, and a
nonequilibrium system will rapidly return to its chemical equilibrium, not to its initial thermal
equilibrium MZ,, and M2, ...”

Section 4 of the paper expands the dimensionality of the Bloch-McConnell equations to include
the molecules that are not hyperpolarized by the DNP. Thus A*(t) represents hyperpolarized
species and A(t) represents the unpolarized species, with A*(t) + A(t) = [A(t)] is the total
concentration of A at time t (and similarly for B). The authors then numerically solve the four
coupled differential equations. This is somewhat misleading in my view. Applying a similarity
transformation to Eq. 39 with the matrix:

separates the four equations to two independent sets of equations. One set is a pair of coupled
differential equations for A*(t) (Eq. 37) and B*(t) (Eq. 38), describing the evolution of the
hyperpolarized magnetization and another set (Eq. 40) describing the evolution of [A(t)] and
[B(1)]. That is, the hyperpolarized magnetization just evolves according to the normal Bloch-
McConnell equations and the chemical system evolves to chemical equilibrium, as expected
(note that this situation would be more complicated if time-dependent steady state
magnetizations were included as above, but these terms are small and neglected in this section of
the paper, given the large DNP enhancements). A four-dimensional set of equations do not need
to be solved. I have not checked whether any of the other more complicated schemes presented
in the rest of the paper can be similarly decomposed, but it is essential that the authors clarify
this issue.
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We agree with the Referee that this separation of equations using alternative basis vector is
possible for all the situations considered in our manuscript. We have consequently performed
this transformation throughout in the revised manuscript to clarify this point.



However, the separation of the equations into independent sets of equations only occurs with
first order kinetics. In the first order case, we agree that a four-dimensional set of equations does
not need to be solved; for example the situation of an exchange reaction A* <-> B* reduces to
the standard Bloch McConnell equations and the evolution described by the two-dimension DEs
is identical to the four-dimensional. Similarly, for the first order situation A <> B <> C.

For second order kinetics the transformation can still be performed but the equations are no
longer independent. Considering the example of a hyperpolarized reaction A* + C &> B*+D
and a corresponding non-polarized pool A + C <-> B + D. The pseudo first order rate constants
for A and B are dependent on C and D, and vice versa the pseudo first order rate constants for C
and D are dependent on (A* + A) and (B* + B). Thus the ‘cold’ pool of A and B will influence
the kinetics of A* and B* via the involvement of C and D and cannot be separated in the same
manner as for first order kinetics. The full system of differential equations must be calculated
simultaneously to simulate the kinetics.

We have added a comment highlighting the problem on p25:

“However, we now encounter a problem. The pseudo rate constants for the reactions of [C(t)]
and [D(t)] are now given by k1 (t) = k1 (A*(¢) + A(t)) and k', (t) = k_1(B*(t) + B(1)),
respectively. The time-dependent pseudo first order rate constants are dependent on the
concentrations of both ‘hot” and ‘cold’ pools. In turn the pseudo first order rate constants for
A*(t) and B*(t) are k1 (t) = k,C(t) and k_,(t) = k_,D(t). Thus, the kinetics of the ‘hot’ pools
A*(t) and B*(t) become dependent on the kinetics of the ‘cold’ pools A(t) and B(t). This is of
particular relevance (as highlighted in Kuchel and Shishmarev, 2019) when extending the
equations to describe enzyme Kinetics...”

Minor:

Egs. 19 and 20 seem to be missing a leading minus sign on rhs.

We thank the Referee for spotting this typo, which we have corrected.



