
This paper describes dissolution DNP-NMR experiments for a variety of reaction schemes using 

the Bloch-McConnell equations. The topic of the paper is very timely, given the current intense 

interest in DNP approaches; however, in present form, the main contributions of the paper are 

difficult to discern. 

 

We thank the reviewer for their supportive words and finding the topic to be of current interest. 

We also thank the reviewer for their valuable comments, addressed below, and hope that our 

additional analysis helps to clarify the paper. 

 

1. A great deal of the paper recapitulates the work published as: 

 

Kuchel, P. W., and Shishmarev, D.: Dissolution dynamic nuclear polarization NMR studies of 

enzyme kinetics: Setting up differential equations for fitting to spectral time courses, J. Magn. 

Reson. Open, 1, 100001, doi.org/10.1016/j.jmro.2020.100001, 2020. 

 

and at least to this reviewer, the novel aspects of the present paper are not clearly distinguished 

from the earlier work. This could be addressed by an appropriate summary in the conclusion. 

 

We appreciate that our current paper leads on from that previously published. This was 

commented on in our Abstract. We have added the reference in the abstract to clarify this point. 

However, our analysis includes a number of aspects not previously considered. Notably, we 

extend the analysis to include the influence of enzyme cofactors. We use the framework to 

simulate the kinetics of lactate dehydrogenase, not previously reported using this analysis, and 

consider the influence of enzyme concentration and the influence of unlabelled lactate on the 

kinetics of the hyperpolarized pool. Thus, our work is of direct relevance to ongoing clinical 

trials using this method.  

 

I do not understand the statements at line 260-265: 

 

The equilibrium constant was fixed so that 𝐾 = 𝑘1/𝑘−1 = 2; hence the system was not at 

chemical equilibrium at t = 0 s. The simulations highlight an important point: In the absence of 

exchange the Bloch-McConnell equations predict the recovery of the z magnetizations back to 

their equilibrium values 𝑀𝑧,𝑒𝑞
𝐴  and 𝑀𝑧,𝑒𝑞

𝐵  while under conditions of fast exchange this no longer 

holds, and a nonequilibrium system will rapidly return to its chemical equilibrium, not to its 

thermal equilibrium, within the timescale of the NMR experiment; specifically within five T1 

values. 

 

If the system is not at chemical equilibrium, 𝑀𝑧,𝑒𝑞
𝐴  and 𝑀𝑧,𝑒𝑞

𝐵  are not constants as represented in 

Eq. 19. Rather, these quantities become time-dependent, for example: 

 

 

𝑀𝑧,𝑒𝑞
𝐴 (𝑡) = 𝑀0

[𝐴(𝑡)]

[𝐴(𝑡)] + [𝐵(𝑡)]
 

 



𝑀𝑧,𝑒𝑞
𝐵 (𝑡) = 𝑀0

[𝐵(𝑡)]

[𝐴(𝑡)] + [𝐵(𝑡)]
 

 

as shown in Eq. 2.4.18 of Ernst et al. (Ernst, R. R., Bodenhausen, G., and Wokaun, A.: Principles 

of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford, 1987). 

Thus, it is unclear what is shown in Fig. 1 (which the text indicates is based on Eq. 19) and hence 

what is meant by the above statement. 

 

This is exactly the point that we were making in Fig. 1. Under conditions of exchange the 

longitudinal magnetization returns to its chemical equilibrium as shown in Eq. 2.4.18 of Ernst et 

al. not to its initial magnetic equilibrium given by 𝑀𝑧,𝑒𝑞
𝐴  and 𝑀𝑧,𝑒𝑞

𝐵 . We have modified this 

statement as follows and hope this adds clarity to the simulations performed: 

 

“The simulations highlight an important point: In the absence of exchange the Bloch-McConnell 

equations predict the recovery of the z magnetizations back to their magnetic equilibrium values  

𝑀𝑧,𝑒𝑞
𝐴  and 𝑀𝑧,𝑒𝑞

𝐵  while under conditions of fast exchange this no longer holds, and a 

nonequilibrium system will rapidly return to its chemical equilibrium, not to its initial thermal 

equilibrium 𝑀𝑧,𝑒𝑞
𝐴  and 𝑀𝑧,𝑒𝑞

𝐵 , …” 

 

Section 4 of the paper expands the dimensionality of the Bloch-McConnell equations to include 

the molecules that are not hyperpolarized by the DNP. Thus A*(t) represents hyperpolarized 

species and A(t) represents the unpolarized species, with A*(t) + A(t) = [A(t)] is the total 

concentration of A at time t (and similarly for B). The authors then numerically solve the four 

coupled differential equations. This is somewhat misleading in my view. Applying a similarity 

transformation to Eq. 39 with the matrix: 

 

 

𝑆 = [

1 0
0 1

0 0
0 0

1 0
0 1

1 0
0 1

] 

 
separates the four equations to two independent sets of equations. One set is a pair of coupled 

differential equations for A*(t) (Eq. 37) and B*(t) (Eq. 38), describing the evolution of the 

hyperpolarized magnetization and another set (Eq. 40) describing the evolution of [A(t)] and 

[B(t)]. That is, the hyperpolarized magnetization just evolves according to the normal Bloch- 

McConnell equations and the chemical system evolves to chemical equilibrium, as expected 

(note that this situation would be more complicated if time-dependent steady state 

magnetizations were included as above, but these terms are small and neglected in this section of 

the paper, given the large DNP enhancements). A four-dimensional set of equations do not need 

to be solved. I have not checked whether any of the other more complicated schemes presented 

in the rest of the paper can be similarly decomposed, but it is essential that the authors clarify 

this issue. 

 

We agree with the Referee that this separation of equations using alternative basis vector is 

possible for all the situations considered in our manuscript. We have consequently performed 

this transformation throughout in the revised manuscript to clarify this point.  



However, the separation of the equations into independent sets of equations only occurs with 

first order kinetics. In the first order case, we agree that a four-dimensional set of equations does 

not need to be solved; for example the situation of an exchange reaction A* → B* reduces to 

the standard Bloch McConnell equations and the evolution described by the two-dimension DEs 

is identical to the four-dimensional. Similarly, for the first order situation A → B → C. 

 

For second order kinetics the transformation can still be performed but the equations are no 

longer independent. Considering the example of a hyperpolarized reaction A* + C → B* + D 

and a corresponding non-polarized pool A + C → B + D. The pseudo first order rate constants 

for A and B are dependent on C and D, and vice versa the pseudo first order rate constants for C 

and D are dependent on (A* + A) and (B* + B). Thus the ‘cold’ pool of A and B will influence 

the kinetics of A* and B* via the involvement of C and D and cannot be separated in the same 

manner as for first order kinetics. The full system of differential equations must be calculated 

simultaneously to simulate the kinetics. 

 

We have added a comment highlighting the problem on p25: 

 

“However, we now encounter a problem. The pseudo rate constants for the reactions of [C(t)] 

and [D(t)] are now given by 𝑘1
′ (𝑡) = 𝑘1(𝐴

∗(𝑡) + 𝐴(𝑡)) and 𝑘−1
′ (𝑡) = 𝑘−1(𝐵

∗(𝑡) + 𝐵(𝑡)), 

respectively. The time-dependent pseudo first order rate constants are dependent on the 

concentrations of both ‘hot’ and ‘cold’ pools. In turn the pseudo first order rate constants for 

𝐴∗(𝑡) and 𝐵∗(𝑡) are 𝑘1
′ (𝑡) = 𝑘1𝐶(𝑡) and 𝑘−1

′ (𝑡) = 𝑘−1𝐷(𝑡). Thus, the kinetics of the ‘hot’ pools 

𝐴∗(𝑡) and 𝐵∗(𝑡) become dependent on the kinetics of the ‘cold’ pools 𝐴(𝑡) and 𝐵(𝑡). This is of 

particular relevance (as highlighted in Kuchel and Shishmarev, 2019) when extending the 

equations to describe enzyme kinetics…” 

 

Minor: 

 

Eqs. 19 and 20 seem to be missing a leading minus sign on rhs. 

We thank the Referee for spotting this typo, which we have corrected. 

 


