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Abstract. We describe an approach to formulating the kinetic master equations of the time evolution of NMR 13 

signals in reacting (bio)chemical systems. Special focus is given to studies that employ signal enhancement 14 

(hyperpolarization) methods such as dissolution dynamic nuclear polarization (dDNP) and involving nuclear spin-15 

bearing solutes that undergo reactions mediated by enzymes and membrane transport proteins. We extend the 16 

work given in a recent presentation on this topic (Kuchel and Shishmarev, 2020) to now include enzymes with 17 

two or more substrates and various enzyme reaction mechanisms as classified by Cleland, with particular reference 18 

to non-first order processes. Using this approach, we can address some pressing questions in the field from a 19 

theoretical standpoint. For example, why does binding of a hyperpolarized substrate to an enzyme not cause an 20 

appreciable loss of the signal from the substrate or product? Why does the concentration of an unlabelled pool of 21 

substrate, for example 12C lactate, cause an increase in the rate of exchange of the 13C labelled pool? To what 22 

extent is the equilibrium position of the reaction perturbed during administration of the substrate? The formalism 23 

gives a full mechanistic understanding of the time courses derived and is of relevance to ongoing clinical trials 24 

using these techniques. 25 

  26 

1 Introduction 27 

Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) are widely employed techniques with far-28 

reaching applications in physics, chemistry, medicine and the life sciences. NMR and MRI provide a wealth of 29 

information from structure elucidation, protein dynamics and metabolic profiling through to disease diagnostics 30 

in oncology, cardiology and neurology among others. The technique’s low sensitivity is one of the primary 31 

concerns in the magnetic resonance community and is often a limiting factor in experiments from solid-state NMR 32 

to medical imaging. Recent work has shown that the sensitivity of NMR experiments can be improved by using 33 

non-equilibrium hyperpolarization techniques such as dissolution dynamic nuclear polarization (dDNP) to boost 34 

signal intensities by many orders of magnitude (Ardenkjaer-Larsen et al., 2003). Such techniques have led to new 35 

applications (Golman et al., 2003; Golman et al., 2006; Keshari and Wilson, 2014) and necessitated the 36 

development of acquisition strategies to exploit the hyperpolarized magnetization in a time efficient manner (Yen 37 
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et al., 2009); as well as new tools for signal processing and image reconstruction (Hu et al., 2010). A challenge 38 

with the interpretation of these recordings is that, unlike radiotracers, hyperpolarized MR is a non-tracer technique 39 

requiring the injection of physiological or even supra-physiological concentrations of substrate.  40 

To date there have been many mathematical methods devised for analyzing the kinetic time courses in 41 

dDNP NMR studies (Zierhut et al., 2010; Hill et al., 2013b; Pagès and Kuchel, 2015; Daniels et al., 2016). 42 

However, until recently there has been little consensus on the best methods for analyzing and then interpreting 43 

reaction kinetics measured therein. A theoretical framework has only recently appeared to fully elucidate the 44 

underlying mechanisms (Kuchel and Shishmarev, 2020). One challenge is that the widely used Bloch-McConnell 45 

equations describe the exchange of magnetization of only the MR active nuclei while the reaction kinetics are 46 

subject to a plethora of molecular interactions in a (bio)chemical milieu. Furthermore, in a typical hyperpolarized 47 

MR experiment the initial injection of a non-tracer concentration of substrate causes the reaction system to be 48 

perturbed from its equilibrium state, or quasi-steady state, and therefore the concentrations of the reactants are 49 

time dependent. In this regard, challenges relate to the description of non-linear kinetics, for example second order 50 

reactions, and the involvement of un-observable (non-labelled) metabolites to the overall kinetics, e.g., enzyme 51 

cofactors, co-substrates and natural abundance 12C-containing metabolites (Hill et al., 2013a); as well as explicit 52 

descriptions of enzyme mechanisms e.g., sequential ordered, sequential random, double displacement (ping-pong) 53 

reactions, and allosteric interactions that occur on an enzyme far from its active site. Enzyme activity is also 54 

influenced by inhibitors that can be competitive, non-competitive, or uncompetitive (Cleland, 1967; Cook and 55 

Cleland, 2007). Mathematical models of enzyme systems should agree with standard descriptions of (bio)chemical 56 

kinetics while remaining capable of describing the time evolution of magnetization that is described by the Bloch-57 

McConnell equations (McConnell, 1958).  58 

Here we address these issues in a stepwise manner, by developing a mechanistic approach that combines 59 

the MR interactions with the chemical and/or enzyme mediated reactions described by the Bloch-McConnell 60 

equations. These equations are grounded in the concept of conservation of mass of the species responsible for the 61 

hyperpolarized signal plus its non-hyperpolarized counterpart and the various products; this was recently 62 

highlighted (Kuchel and Shishmarev, 2020) where the MR visible signal decays to produce an MR invisible one. 63 

 64 

1.1 Basic concepts – sensitivity 65 

We begin addressing the problem by defining the signal-to-noise ratio (SNR) in MR. In its most basic form, 66 

sensitivity is described by the ratio of the signal amplitude divided by the root mean square of the amplitude of 67 

the noise. When a signal 𝑆(𝑡) is detected in the NMR receiver coil that surrounds the sample, the magnitude of 68 

the induced current is a function of: (i) the perturbation of nuclear spin populations from thermal equilibrium 69 

𝑆𝑠𝑎𝑚𝑝𝑙𝑒(𝑡); plus (ii) a random contribution from the noise in the electronic circuitry 𝑆𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠(𝑡). Hence: 70 

 71 

𝑆(𝑡) = 𝑆𝑠𝑎𝑚𝑝𝑙𝑒(𝑡) + 𝑆𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠(𝑡)    . (1) 

 72 

The current induced in the coil is time-dependent and proportional to the magnetization that precesses in the x,y-73 

plane. In other words, the signal 𝑆(𝑡) is recorded until decoherence renders 𝑆𝑠𝑎𝑚𝑝𝑙𝑒(𝑡) undetectable against the 74 
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noise, 𝑆𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠(𝑡). The latter is mainly attributed to the radiofrequency (RF) circuitry in the probe head and the 75 

preamplifier(s) (e.g., Johnson noise (Johnson, 1928)) of the spectrometer. If the NMR signal (free induction decay; 76 

FID) that is detected in a subsequent experiment is indistinguishable from the first, and the two are added together, 77 

then the signal amplitude (peak area) will scale linearly with the number of added FIDs, 𝑁. The noise associated 78 

with each experiment is random, and assuming its source remains fixed over time, i.e., stationary noise, then the 79 

amplitude scales with the square root of the number of FIDs, 𝑁1/2. Hence signal summation enhances the SNR 80 

of an NMR experiment in proportion to the square root of the number of FIDs. In other words, to achieve an 81 

enhancement by a factor  requires an increase in experiment duration of  2
. Therefore, unavoidably, FID 82 

summation is a slow process and experiments can sometimes take days or weeks to achieve a sufficient SNR from 83 

a sample of a low sensitivity nuclide or one with a long relaxation time. The amount of attainable signal averaging 84 

is constrained when monitoring dynamic processes by NMR spectroscopy; and an inherently good SNR is 85 

required from the outset for a time course experiment. 86 

 87 

1.2 Thermal effects 88 

The usual way to proceed when calculating the NMR response of a spin system to RF pulse sequences is to solve 89 

the ordinary quantum mechanical master equation that describes the evolution of the spin density operator (Hore 90 

et al., 2015). This is the Liouville-von Neumann equation, that has been extended to include non-coherent 91 

interactions (predominantly relaxation phenomena) (Ernst et al., 1987): 92 

 93 

𝑑

𝑑𝑡
𝜌 = −𝑖�̂�𝜌 − ̂(𝜌 − 𝜌0)    , (2) 

   94 

where �̂� is the commutation superoperator of the coherent Hamiltonian 𝐻 given by �̂�𝜌 = [𝐻, 𝜌], which contains 95 

information on all spin-spin and field-spin interactions; while ̂ is the relaxation superoperator that describes all 96 

longitudinal (𝑇1) and transverse (𝑇2) relaxation processes, as well as any cross-relaxation or cross-correlation 97 

interactions. Note, that in the interests of reducing clutter in equations (for which the operator context should be 98 

clear) hereafter we have omitted carets denoting operators and only used them to denote superoperators.  99 

Our aim here is to describe the kinetics of exchange between different solutes that contain hyperpolarized 100 

nuclei e.g., A  B, in which the relaxation times are constant. In this quest, the first simplifying assumption that 101 

is worth exploring is that all intermolecular interactions, notably, scalar coupling, dipolar coupling, cross-102 

relaxation and cross-correlation between species A and B can be ignored. This applies to non-interacting solute 103 

molecules in solution in which motional averaging occurs; and we focus on thermal effects on the evolution of 104 

the FID.  105 

The so-called Zeeman polarization term describes the sensitivity of 𝑆𝑠𝑎𝑚𝑝𝑙𝑒(𝑡) in Eq. (1) to temperature 106 

and magnetic field in an NMR experiment. Magnetic polarization is described by the equilibrium density operator 107 

𝜌0 that specifies the probability distribution of states. Zeeman polarization corresponds to the magnitude of 108 

normalized longitudinal spin order 𝐼𝑧 that is contained in 𝜌0. Specifically, for an ensemble of spin-½ nuclei this 109 

is given by (Ernst et al., 1987): 110 

 111 
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𝜌0 =
𝑒𝑥𝑝( − ℏ𝐻0/𝑘𝑇)

𝑇𝑟{𝑒𝑥𝑝( − ℏ𝐻0/𝑘𝑇)}
    , (3) 

 112 

where k is the Boltzmann constant and T is the temperature (Kelvin). The Zeeman Hamiltonian 𝐻0 describes the 113 

interaction of the spins with the static magnetic field of magnitude 𝐵0, given by 𝐻0 = 𝜔0𝐼𝑧 , where 𝜔0 is the 114 

Larmor frequency (rad s-1). In the basis of the two eigenstates |𝛼⟩ (“spin-up”) and |𝛽⟩ (“spin-down”), the 115 

equilibrium density operator is written in matrix form as: 116 

 117 

𝜌0 =
1

𝑍
[
𝑒𝑥𝑝( ℏ𝜔0/2𝑘𝑇) 0

0 𝑒𝑥𝑝( − ℏ𝜔0/2𝑘𝑇)
]    , (4) 

 118 

where Z is the partition function, given by 𝑍 = ∑ exp(−𝜀𝑖/𝑘𝑇)𝑀
𝑖=1 , and M is the number of states (M = 2 for an I 119 

= ½ nucleus). In the case of a spin-½ system, the partition function is the sum of the populations 𝑍 =120 

𝑒𝑥𝑝( ℏ𝜔0/2𝑘𝑇) + 𝑒𝑥𝑝( − ℏ𝜔0/2𝑘𝑇) ≈ 2 when 𝜀𝑖 is very small, as is typically the case at thermal equilibrium 121 

in NMR systems. The Zeeman polarization is proportional to the projection of the spin density operator onto the 122 

angular momentum operator. In other words, it is proportional to the expectation value of ⟨𝐼𝑧⟩, and is given by 123 

(Keeler, 2010): 124 

 125 

⟨𝐼𝑧⟩ = 𝑇𝑟[𝜌0 𝐼𝑧] =
1

2𝑍
[𝑒𝑥𝑝( ℏ𝜔0/2𝑘𝑇) − 𝑒𝑥𝑝( − ℏ𝜔0/2𝑘𝑇)]    . 

(5) 

 126 

Hence, the Zeeman polarization for an ensemble of nuclear spins is the normalized imbalance between the 127 

populations of the |𝛼⟩ and |𝛽⟩ states, 𝑝𝛼 and 𝑝𝛽, respectively; in other words, it is the normalized net population 128 

difference that is given by: 129 

 130 

𝑃 =
𝑝𝛼 − 𝑝𝛽

𝑝𝛼 + 𝑝𝛽

    . (6) 

 131 

This normalization is carried out with respect to the total population of the nuclear ensemble such that 𝑝𝛼 + 𝑝𝛽 =132 

1. Therefore, the bounds on the polarization are −1 < 𝑃 < +1. At room temperature (~298 K), and in a field of 133 

11.75 T (500 MHz for 1H nuclei), the thermal equilibrium Zeeman polarization, 𝑃𝑧,𝑒𝑞, is a mere ~4 × 10-5. Thus, 134 

there is only a tiny population difference between the spin states of a nuclear ensemble that implies inherently 135 

weak polarization. It is this small population imbalance which is manipulated in NMR experiments under thermal 136 

equilibrium conditions. This weak polarization is a consequence of the small difference in energy (~0.1 J mol-1) 137 

between nuclear spin energy levels at room temperature (~2.5 kJ mol-1); and it implies only weak alignment of 138 

nuclear spins in the static magnetic field of all contemporary superconducting magnets. 139 

In the usual quantum mechanical analysis of multiple spin systems, the density operator (that describes 140 

the probability density of states) is normalized to 1, meaning that the summed (total) probability density of all 141 

states is 1. This is expressed mathematically as 𝑇𝑟[𝜌] = 1, where Tr denotes the trace of the matrix (Hore et al., 142 

2015). To describe non-equilibrium reactions in terms of solute concentrations requires a scaled density operator 143 

(Kuhne et al., 1979): 144 
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 145 

𝜎𝑖 = [𝐴𝑖]𝜌𝑖     , (7) 

 146 

where 𝜎𝑖 is now proportional to [Ai]. Differentiation of Eq. (7) leads to: 147 

 148 

𝑑𝜎𝑖

𝑑𝑡
= [𝐴𝑖]

𝑑𝜌𝑖

𝑑𝑡
+

𝑑[𝐴𝑖]

𝑑𝑡
𝜌𝑖     . 

(8) 

 149 

Therefore, it follows that for a system at chemical equilibrium 𝑑[𝐴𝑖]/𝑑𝑡 = 0, so the scaled density operator is 150 

directly proportional to the normalised density operator. For non-equilibrium systems the concentrations are time 151 

dependent viz., 𝑑[𝐴𝑖]/𝑑𝑡 ≠ 0 so the two no longer scale in a straightforward manner. 152 

On the other hand, equilibrium magnetization (𝑀𝑧,𝑒𝑞) is a bulk property that is the net magnetic dipole 153 

moment per unit volume; and is proportional to ⟨𝐼𝑧⟩ where the proportionality factor is 𝑁ℏ𝛾. From Eq. (5) this 154 

yields the expression for the magnetization in terms of magnetic field strength, temperature and number of spins 155 

in the sample (or more specifically in the detection volume of the NMR spectrometer): 156 

 157 

𝑀𝑧,𝑒𝑞 =
𝑁ℏ𝛾

2
𝑡𝑎𝑛ℎ (

ℏ𝛾𝐵0

2𝑘𝑇
)    . 

(9) 

 158 

In the so-called ‘high temperature limit’ (room temperature, in the cases addressed here) Eq. (9) simplifies to: 159 

 160 

𝑀𝑧,𝑒𝑞 =
𝑁ℏ2𝛾2𝐵0

4𝑘𝑇
    . 

(10) 

 161 

In words, ‘thermal magnetization’ is proportional to the magnitude of the external magnetic field strength, 𝐵0, 162 

and is inversely proportional to the temperature, T, while being proportional to the number of spins, N. Therefore, 163 

it is proportional to the concentration [Ai] of the solute that bears the NMR-active nucleus.  164 

  165 

2 Equation of motion – the Bloch equations 166 

In the absence of intermolecular binding (however transient), or scalar couplings, the motion (time evolution) of 167 

magnetizations is described by the Bloch equations. Magnetization is explicitly declared to be proportional to 168 

reactant concentrations [A] and [B], as has recently been discussed (Kuchel and Shishmarev, 2020). To explore 169 

this situation, we start with the basic Bloch equations for a single spin-½ ensemble. The equation describes the 170 

time evolution of x, y and z magnetization in the rotating frame, and includes the influence of chemical shift, RF 171 

fields, and transverse (𝑇2) and longitudinal relaxation (𝑇1) time constants. The Bloch equations in their complete 172 

form are described as being inhomogeneous, and they can be written using a matrix and vectors: 173 

 174 

  𝑑

𝑑𝑡
[

𝑀𝑥

𝑀𝑦

𝑀𝑧

] = − [

𝑅2 𝛺 −𝜔𝑦

−𝛺 𝑅2 𝜔𝑥

𝜔𝑦 −𝜔𝑥 𝑅1

] [

𝑀𝑥

𝑀𝑦

𝑀𝑧

] + [

0
0

𝑅1𝑀𝑧,𝑒𝑞

]    , (11) 
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 175 

where 𝛺 = 𝜔0 − 𝜔𝑅𝐹 is the ‘offset frequency’ in the rotating frame;  𝜔0 (rad s-1) is the Larmor frequency;  𝜔𝑅𝐹  176 

(rad s-1) is the RF frequency;  the x component of the RF field (rad s-1) is 𝜔𝑥 = −𝛾𝐵1 𝑐𝑜𝑠(𝜔𝑅𝐹𝑡 + 𝜑); and the y 177 

component is 𝜔𝑦 = −𝛾𝐵1 𝑠𝑖𝑛(𝜔𝑅𝐹𝑡 + 𝜑), where the magnitude of the field strength is 𝐵1, and the phase of the 178 

wave form relative to an internal reference source is 𝜑. The longitudinal relaxation rate constant is denoted by 179 

𝑅1 = 1/𝑇1; the transverse one by 𝑅2 = 1/𝑇2; and the equilibrium magnetization by M𝑧,𝑒𝑞 . 180 

 Equation (11) is tedious to solve analytically, but it is readily solved numerically (Allard et al., 1998; 181 

Helgstrand et al., 2000). On the other hand, by including the identity operator in the basis set and adding a constant 182 

to the equilibrium magnetization (Levitt and Dibari, 1992), we obtain a much more compliant (to analysis) matrix 183 

equation: 184 

 185 

 𝑑

𝑑𝑡

[
 
 
 
 
𝐸

2
𝑀𝑥

𝑀𝑦

𝑀𝑧]
 
 
 
 

= −

[
 
 
 

0 0 0 0
0 𝑅2 𝛺 −𝜔𝑦

0 −𝛺 𝑅2 𝜔𝑥

−2𝛩 𝜔𝑦 −𝜔𝑥 𝑅1 ]
 
 
 

[
 
 
 
 
𝐸

2
𝑀𝑥

𝑀𝑦

𝑀𝑧]
 
 
 
 

    , (12) 

 186 

where E is equal to 1 and the factor 𝛩 = 𝑅1𝑀𝑧,𝑒𝑞  describes the equilibrium magnetization. 187 

 188 

2.1 Chemical exchange kinetics of systems prior to and at equilibrium – the Bloch-McConnell equations  189 

We can extend the system of equations from describing an ensemble of single spins to two or more exchanging 190 

spins. The system of equations now accounts for the magnetization interaction with the lattice and exchange via 191 

the forward and reverse chemical reactions. These are the Bloch-McConnell equations (McConnell, 1958). 192 

First, consider the rate expressions for a simple bi-directional chemical reaction. The coupled differential 193 

equations describing first-order reaction kinetics of solute A becoming solute B and back again, A    B, are 194 

typically expressed in terms of molar concentrations: 195 

 196 

 
𝑑[𝐴(𝑡)]

𝑑𝑡
= −𝑘1[𝐴(𝑡)] + 𝑘−1[𝐵(𝑡)]    , (13) 

 𝑑[𝐵(𝑡)]

𝑑𝑡
= 𝑘1[𝐴(𝑡)] − 𝑘−1[𝐵(𝑡)]    , 

 

(14) 

  197 

that can be expressed in matrix form: 198 

 199 

 𝑑

𝑑𝑡
[
[𝐴(𝑡)]

[𝐵(𝑡)]
] = [

−𝑘1 𝑘−1

𝑘1 −𝑘−1
] [

[𝐴(𝑡)]

[𝐵(𝑡)]
]    . (15) 

 200 

The rate constant for the forward reaction is denoted by k1 while for the reverse reaction it is k-1. The time 201 

dependent concentrations are given by [𝐴(𝑡)] and [𝐵(𝑡)]. As required by the fact that this is a closed system, the 202 

equations must conform to the principle of conservation of mass. Specifically, the sum of the rates of change of 203 
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[𝐴(𝑡)] and [𝐵(𝑡)] given by 𝑑[𝐴(𝑡)]/𝑑𝑡 + 𝑑[𝐵(𝑡)]/𝑑𝑡, is zero. We return to this point below. In other words, 204 

mass is neither created nor destroyed during the reaction in such a closed system. 205 

For the simplest case of two magnetically active solutes, each possessing a single spin-½ nuclide, in 206 

chemical exchange, A  B, the direct product (a mathematical operation used in quantum mechanics to generate 207 

the necessary combinations of states) of the chemical (solute) space {[𝐴], [𝐵]} and the magnetization vector space 208 

{𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧} for each of A and B is given by: 209 

 [
1
1
] ⊗ [

𝑀𝑥

𝑀𝑦

𝑀𝑧

] =

[
 
 
 
 
 
 
𝑀𝑥

𝐴

𝑀𝑦
𝐴

𝑀𝑧
𝐴

𝑀𝑥
𝐵

𝑀𝑥
𝐵

𝑀𝑥
𝐵]
 
 
 
 
 
 

    . (16) 

 210 

A new exchange matrix in the basis of the new magnetization space {𝑀𝑥
𝐴, 𝑀𝑦

𝐴, 𝑀𝑧
𝐴,𝑀𝑥

𝐵 , 𝑀𝑦
𝐵 , 𝑀𝑧

𝐵} is calculated by 211 

taking the direct product of the exchange matrix with the identity operator I that is chosen to have the same 212 

dimensions as the magnetization space. The direct product is given by: 213 

 214 

 [
−𝑘1 𝑘−1

𝑘1 −𝑘−1
] ⊗ [

1 0 0
0 1 0
0 0 1

] =

[
 
 
 
 
 
−𝑘1 0 0 𝑘−1 0 0
0 −𝑘1 0 0 𝑘−1 0
0 0 −𝑘1 0 0 𝑘−1

𝑘1 0 0 −𝑘−1 0 0
0 𝑘1 0 0 −𝑘−1 0
0 0 𝑘1 0 0 −𝑘−1]

 
 
 
 
 

    . (17) 

 215 

Likewise, the matrix describing coherent and incoherent magnetization interactions can be recast in a similar 216 

fashion to give: 217 

 [
1 0
0 1

] ⊗ [

𝑅2 𝛺 −𝜔𝑦

−𝛺 𝑅2 𝜔𝑥

𝜔𝑦 −𝜔𝑥 𝑅1

] =

[
 
 
 
 
 
 

𝑅2
𝐴 Ω𝐴 −𝜔𝑦 0 0 0

−Ω𝐴 𝑅2
𝐴 𝜔𝑥 0 0 0

𝜔𝑦 −𝜔𝑥 𝑅1
𝐴 0 0 0

0 0 0 𝑅2
𝐵 Ω𝐵 −𝜔𝑦

0 0 0 −Ω𝐵 𝑅2
𝐵 𝜔𝑥

0 0 0 𝜔𝑦 −𝜔𝑥 𝑅1
𝐵

]
 
 
 
 
 
 

    . (18) 

 218 

The inhomogeneous form of the Bloch equations can now be constructed to take into account both the coherent 219 

and incoherent interactions, as well as chemical exchange. This yields the inhomogeneous form of the Bloch-220 

McConnell equations, which are written (again in matrix form) as: 221 

 222 

𝑑

𝑑𝑡

[
 
 
 
 
 
 
𝑀𝑥

𝐴

𝑀𝑦
𝐴

𝑀𝑧
𝐴

𝑀𝑥
𝐵

𝑀𝑥
𝐵

𝑀𝑥
𝐵]
 
 
 
 
 
 

= −

[
 
 
 
 
 
 
𝑅2

𝐴 + 𝑘1 Ω𝐴 −𝜔𝑦 −𝑘−1 0 0

−Ω𝐴 𝑅2
𝐴 + 𝑘1 𝜔𝑥 0 −𝑘−1 0

𝜔𝑦 −𝜔𝑥 𝑅1
𝐴 + 𝑘1 0 0 −𝑘−1

−𝑘1 0 0 𝑅2
𝐵 + 𝑘−1 Ω𝐵 −𝜔𝑦

0 −𝑘1 0 −Ω𝐵 𝑅2
𝐵 + 𝑘−1 𝜔𝑥

0 0 −𝑘1 𝜔𝑦 −𝜔𝑥 𝑅1
𝐵 + 𝑘−1]

 
 
 
 
 
 

[
 
 
 
 
 
 
𝑀𝑥

𝐴

𝑀𝑦
𝐴

𝑀𝑧
𝐴

𝑀𝑥
𝐵

𝑀𝑦
𝐵

𝑀𝑧
𝐵]
 
 
 
 
 
 

+

[
 
 
 
 
 

0
0

𝑅1
𝐴𝑀𝑧,𝑒𝑞

𝐴

0
0

𝑅1
𝐵𝑀𝑧,𝑒𝑞

𝐵 ]
 
 
 
 
 

    , 223 

(19) 224 
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where  𝑀𝑧,𝑒𝑞
𝐴  and 𝑀𝑧,𝑒𝑞

𝐵  denote the respective equilibrium magnetizations (hence the subscript eq). 225 

The inhomogeneous form of the Bloch-McConnell equations can similarly be modified by incorporating 226 

the equilibrium magnetization to create a homogeneous form of this master equation: 227 

 228 

𝑑

𝑑𝑡

[
 
 
 
 
 
 
 
 

𝐸

2
𝑀𝑥

𝐴

𝑀𝑦
𝐴

𝑀𝑧
𝐴

𝑀𝑥
𝐵

𝑀𝑦
𝐵

𝑀𝑧
𝐵]
 
 
 
 
 
 
 
 

= −

[
 
 
 
 
 
 0

0
0

−2𝛩𝐴

0
0

−2𝛩𝐵

0
𝑅2

𝐴 + 𝑘1

−Ω𝐴

𝜔𝑦

−𝑘1

0
0

0
Ω𝐴

𝑅2
𝐴 + 𝑘1

−𝜔𝑥

0
−𝑘1

0

0
−𝜔𝑦

𝜔𝑥

𝑅1
𝐴 + 𝑘1

0
0

−𝑘1

0
−𝑘−1

0
0

𝑅2
𝐵 + 𝑘−1

−Ω𝐵

𝜔𝑦

0
0

−𝑘−1

0
Ω𝐵

𝑅2
𝐵 + 𝑘−1

−𝜔𝑥

0
0
0

−𝑘−1
−𝜔𝑦

𝜔𝑥

𝑅1
𝐵 + 𝑘−1]

 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

𝐸

2
𝑀𝑥

𝐴

𝑀𝑦
𝐴

𝑀𝑧
𝐴

𝑀𝑥
𝐵

𝑀𝑦
𝐵

𝑀𝑧
𝐵]
 
 
 
 
 
 
 
 

    . (20) 

 229 

Again, the factors 𝛩𝐴 = 𝑅1
𝐴𝑀𝑧,𝑒𝑞

𝐴  and 𝛩𝐵 = 𝑅1
𝐵𝑀𝑧,𝑒𝑞

𝐵  account for the respective equilibrium magnetizations. 230 

 231 

2.1.1 Simulations of thermal kinetics using Eq. (19) 232 

Next, consider Eq. (19) for simulating the evolution of the x, y, and z components of the magnetization of a 233 

‘thermal magnetization’ (non-hyperpolarized) sample. We seek the NMR spectrum that results from a two-site 234 

exchange reaction between solutes A and B, Fig. 1(a), as conventionally observed in room temperature NMR 235 

experiments. 236 

Simulations were performed in MatLab with equilibrium z magnetizations 𝑀𝑧,𝑒𝑞
𝐴 = 1.0 and 𝑀𝑧,𝑒𝑞

𝐵 = 0.8 237 

and an initial magnetization vector given by 𝐌0 = [0. 0, 1.0, 0, 0, 0.8]. Chemical shifts offsets were  A = 10  238 

2  rad s-1 and  B = 10  2  rad s-1. Relaxation rate constants were 𝑅1
𝐴 = 𝑅1

𝐵 = 1 𝑠−1 and 𝑅2
𝐴 = 𝑅2

𝐵 = 1 𝑠−1. 239 

The influence of an RFy pulse was then calculated with 𝜔𝑥 = −𝛾𝐵1 cos(𝜋 2⁄ ) and 𝜔𝑦 = −𝛾𝐵1 sin(𝜋 2⁄ ) and with 240 

a field strength of 1.5 kHz, corresponding to 𝜔𝑦 = −𝛾𝐵1 = −1500 × 2𝜋 rad s−1 and 𝜔𝑥 = 0. For a 90 RF 241 

nutation (flip) angle the pulse duration is 𝑡𝑝 = 𝜋 2𝜔𝑦⁄ , which gave a transformed magnetization vector after the 242 

pulse of 𝑀(𝑡) = [0.999, 0.007, 0.000, 0.800, −0.005, 0.000]; this was composed mostly of 𝑀𝑥
𝐴 + 𝑀𝑥

𝐵 with a 243 

residual contribution from 𝑀𝑦
𝐴 + 𝑀𝑦

𝐵 arising from evolution of the chemical shift during the RF pulse; and a small 244 

contribution from 𝑀𝑧
𝐴 + 𝑀𝑧

𝐵 due to return of the magnetization to the equilibrium state.  245 

The observable signal (the FID, which is a function of time) is proportional to the complex signal 𝑆(𝑡) =246 

𝑀𝑥
𝐴(𝑡) − 𝑖𝑀𝑦

𝐴(𝑡) + 𝑀𝑥
𝐵(𝑡) − 𝑖𝑀𝑦

𝐵(𝑡). Noise was simulated by adding to the FID a normally distributed complex 247 

random vector with mean = 0 and standard deviation (SD) = 0.1. The spectrum 𝑠(𝜔) was then calculated by taking 248 

the Fourier transform of 𝑆(𝑡). Simulated FIDs 𝑆(𝑡) are shown in Figs. 1(b-e) left panel, the corresponding spectra 249 

𝑠(𝜔) in Figs. 1(b-e) middle panel, and the recovery of the z magnetizations 𝑀𝑧
𝐴(𝑡) and 𝑀𝑧

𝐵(𝑡) are shown in Figs. 250 

1(b-e), right panel. Spectra were simulated for a range of rate constants, where exchange was either absent 𝑘1 =251 

𝑘−1 = 0, Fig. 1(b); or for increasing rates of exchange. Thus, (c) 𝑘1 = 2 𝑠−1, 𝑘−1 = 1 𝑠−1; (d) 𝑘1 = 20 𝑠−1,252 

𝑘−1 = 10 𝑠−1; and (e) 𝑘1 = 2000 𝑠−1, 𝑘−1 = 1000 𝑠−1, corresponding to the slow, intermediate and fast 253 

regimes, respectively.  254 
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The equilibrium constant was fixed so that 𝐾 = 𝑘1/𝑘−1 = 2; hence the system was not at chemical 255 

equilibrium at 𝑡 = 0 𝑠. The simulations highlight an important point: In the absence of exchange the Bloch-256 

McConnell equations predict the recovery of the z magnetizations back to their magnetic equilibrium values 𝑀𝑧,𝑒𝑞
𝐴  257 

and 𝑀𝑧,𝑒𝑞
𝐵  while under conditions of fast exchange this no longer takes place during the experiment. A non-258 

equilibrium system will rapidly recover to its chemical equilibrium but not to its initial thermal equilibrium 𝑀𝑧,𝑒𝑞
𝐴  259 

and 𝑀𝑧,𝑒𝑞
𝐵 ; again in other words, this does not take place within the timescale of the NMR experiment; which is 260 

typically within five 𝑇1 values.  261 

 262 

 

Figure 1 Simulated NMR spectra resulting from a two-site exchange process between thermally polarized solutes, A  

B, shown schematically in (a). Simulated FIDs 𝑆(𝑡) are shown in (b-e) left panel, with corresponding spectra 𝑠(𝜔), middle 

panel, and the recovery of z magnetizations, 𝑀𝑧
𝐴(𝑡) and 𝑀𝑧

𝐵(𝑡), right panel. Spectra were simulated with rate constants, 

(b) 𝑘1 = 𝑘−1 = 0; (c) 𝑘1 = 2 𝑠−1, 𝑘−1 = 1 𝑠−1; (d) 𝑘1 = 20 𝑠−1, 𝑘−1 = 10 𝑠−1; and (e) 𝑘1 = 2000 𝑠−1, 𝑘−1 =

1000 𝑠−1, corresponding to no exchange, slow, intermediate, and fast exchange regimes, respectively. 
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2.2 Describing hyperpolarized kinetics with the Bloch-McConnell equations 263 

We now consider the predictions made by using Eq. (19) when simulating the evolution of the x, y, and z 264 

components of the magnetization of a hyperpolarized sample and the resulting spectrum for a two-site exchange 265 

reaction between solutes A and B. In the previous example the initial condition was 𝑀𝑧
𝐴(0) = 1.0 and 𝑀𝑧

𝐵(0) =266 

0.8. To extend the Bloch-McConnell formalism to be able to predict the dynamics of a hyperpolarized experiment 267 

we recognize that for the same magnitude of noise in the receiver circuit (although this may not be true for a 268 

hyperpolarized sample) the initial hyperpolarized magnetization is given by: 269 

 270 

𝑀𝑧,ℎ𝑦𝑝 = 𝜂𝑀𝑧,𝑒𝑞     , (21) 

 271 

where 𝜂 is the enhancement factor that varies from one hyperpolarization experiment to another. In the case of 272 

dDNP experiments 𝜂  104 is typical, although this depends on the method of hyperpolarization, the solute(s) in 273 

question and a set of physicochemical parameters that are described in detail in e.g., (Ardenkjaer-Larsen et al., 274 

2015). 275 

 276 

2.2.1 Simulations of hyperpolarized kinetics using Eq. (19) 277 

These were performed with equilibrium 𝑧 magnetizations 𝑀𝑧,𝑒𝑞
𝐴 = 1.0 and 𝑀𝑧,𝑒𝑞

𝐵 = 0.8, as used above, but now 278 

with an initial magnetization vector 𝐌(0) = [0. 0, 1.0 × 104, 0, 0, 0]. This situation corresponds to an initial 279 

hyperpolarized magnetization 𝑀𝑧,ℎ𝑦𝑝
𝐴 (0) of only solute A and an enhancement factor of 𝜂 = 104. Chemical shifts 280 

were Ω𝐴 = 10 × 2𝜋 rad s−1 and Ω𝐵 = −10 × 2𝜋 rad s−1, while relaxation times were increased to represent a 281 

hyperpolarized 13C substrate, 𝑅1𝐴 = 𝑅1𝐵 = 1/60𝑠−1 and 𝑅2𝐴 = 𝑅2𝐵 = 1 𝑠−1 with the rate constants representing 282 

an enzyme mediated cell reaction 𝑘1 = 𝑘−1 = 0.005 𝑠−1. Figure 2(a) shows the time evolution of the z-283 

components of the magnetization, displaying the familiar (Day et al., 2007) bi-exponential time dependence of 284 

𝑀𝑧,ℎ𝑦𝑝
𝐴 (𝑡) and 𝑀𝑧,ℎ𝑦𝑝

𝐵 (𝑡) magnetizations.  285 

We next simulate the effect of applying the pulse sequence shown in Fig. 2(b) corresponding to a time 286 

course type of experiment with multiple sampling of the magnetization and acquisition of an FID at each time-287 

point. This is representative of real experiments that have been presented in the literature (Gabellieri et al., 2008; 288 

Hill et al., 2013b). The time delays correspond to a pre-scan delay , the duration of the pulse 𝑡𝑝 and the duration 289 
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of the FID 𝑡𝑎𝑞. The experiment is repeated n times to sample the entire time course where the temporal resolution 290 

is then given by the total repetition time 𝑇𝑅 = 𝜏 + 𝑡𝑝 + 𝑡𝑎𝑞  and the total duration of the experiment is given by 291 

𝑛𝑇𝑅. In this experiment we make the assumption that the transverse magnetization from one experiment to the 292 

next is not recovered by the application of a subsequent pulse. This assumption is reasonable provided the 293 

acquisition time is much longer that the time taken for the FID to decay to zero, namely, 𝑡𝑎𝑞 ≫ 𝑇2
∗. 294 

The influence of this pulse sequence was then calculated, accounting for multiple sampling of the 295 

magnetization. The RF pulse was again specified by 𝜔𝑥 = −𝛾𝐵1 cos(𝜋 2⁄ ) and 𝜔𝑦 = −𝛾𝐵1 sin(𝜋 2⁄ ) with a field 296 

strength of 1.5 kHz, which corresponds to 𝜔𝑦 = −𝛾𝐵1 = −1500 × 2𝜋 rad s−1. Application of an RF pulse tilts 297 

the hyperpolarized magnetization away from the z axis by an angle of  radians. The magnitude of the observable 298 

transverse magnetization is proportional to sin(), and the remaining longitudinal magnetization is proportional 299 

to cos().  300 

 

Figure 2 (a) Simulated evolution of the z-components of the magnetization 𝑀𝑧
𝐴 and 𝑀𝑧

𝐵 for a hyperpolarized solute 

𝑀𝑧
𝐴(0) = 1 × 104 undergoing a two-site exchange reaction, A  B. Longitudinal relaxation rate constants were 𝑅1𝐴 =

𝑅1𝐵 = 1/60𝑠−1 and 𝑅2𝐴 = 𝑅2𝐵 = 1 𝑠−1. Rate constants were 𝑘1 = 𝑘−1 = 0.005 𝑠−1. (b) Simple pulse sequence for 

acquiring a time course experiment with multiple sampling of the magnetization and acquisition of an FID at each 

timepoint. (c-d) Waterfall plots of simulated spectra resulting from sequential application of the pulse sequence in (b) for 

an initial hyperpolarized solute A undergoing two-site exchange with solute B, calculated with a flip angles: (c)  = 1; 

and (d)  = 20.  
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Simulations were performed with the same magnitude of noise as in Fig. 1. The time evolution of the 301 

magnetization was recorded for the pulse sequence shown in Fig. 2(b) with sequential acquisition of 64 spectra, 302 

and a repetition time of 𝑇𝑅 = 4.25 s. The effect of acquiring a time series of spectra with either a flip angle  = 303 

1, Fig. 2(c), or  = 20, Fig. 2(d), are seen in the stack plots. The pulse length (duration) was 𝑡𝑝 = 𝛽 𝜋 180𝜔𝑦⁄ . 304 

After a single  = 1 pulse applied to 𝐌(0) the magnetization vector was tilted to become 𝐌(𝑡) =305 

[0.174, 0.000, 9.998, 0.000, 0.000, 0.000] × 103 prior to acquisition of the FID. This was composed mostly of 306 

𝑀𝑧
𝐴 with a small contribution from 𝑀𝑥

𝐴 that arose from excitation by the  = 1 pulse; or following a  = 20 pulse 307 

the magnetization vector was tilted to become 𝐌(𝑡) = [3.420, 0.004, 9.397, 0.000, 0.000, 0.000] × 103, again 308 

comprised mostly of 𝑀𝑧
𝐴 but with a greater contribution from 𝑀𝑥

𝐴 due to excitation by a pulse with larger value of 309 

. Since the magnetization relaxed to its thermal equilibrium state, the hyperpolarized magnetization was 310 

effectively destroyed during application of the RF (sampling) pulse, and it was not re-generated. This may not be 311 

the outcome when non-linear effects such as radiation damping cause recovery of the hyperpolarized signal 312 

(Weber et al., 2019). 313 

The z magnetization after the application of a single RF pulse and delay 𝑇𝑅 is therefore given by:  314 

 315 

 𝑆(𝑇𝑅) = 𝑆(0) 𝑐𝑜𝑠( 𝜃) 𝑒𝑥𝑝(−𝑅1𝑇𝑅)    . (22) 

 316 

Following the application of a series of 𝑛 RF pulses with a total delay 𝑛 𝑇𝑅 = 𝑡 the signal is given by (Kuchel 317 

and Shishmarev, 2020):  318 

 319 

 
𝑆(𝑡) = 𝑆(0) 𝑐𝑜𝑠𝑛( 𝜃) 𝑒𝑥𝑝(−𝑅1𝑡)    . (23) 

 320 

The apparent relaxation time constant of the hyperpolarized signal, including the influence of both the intrinsic 321 

𝑇1 and flip angle correction, is given by (Hill et al., 2013b; Kuchel and Shishmarev, 2020): 322 

 323 

 𝑒𝑥𝑝(−𝑅1,𝑎𝑝𝑝𝑡) = 𝑐𝑜𝑠𝑛( 𝜃) 𝑒𝑥𝑝(−𝑅1𝑡)    , (24) 

 

 

𝑅1,𝑎𝑝𝑝 = 𝑅1 −
1

𝑇𝑅
𝑙𝑛 𝑐𝑜𝑠( 𝜃)    . 

(25) 

 324 

In the previous examples in Figs. 2(c) and 2(d), with a typical 𝑇1 = 60 𝑠 (Keshari and Wilson, 2014) 325 

corresponding to 𝑅1 = 1.67 × 10−2 s−1 and a 𝑇𝑅 = 4.25 s, the flip angle correction for a  = 1° pulse was 3.58 326 

 10-5, which ‘for all intents and purposes’, is negligible, giving 𝑅1,𝑎𝑝𝑝 = 1.67 × 10−2 s−1
 and 𝑇1,𝑎𝑝𝑝 = 59.87 s. 327 

Hence, the time dependence of the signal shown in Fig. 2(c) is a robust reflection of the 𝑀𝑧(𝑡) seen in Fig. 2(a). 328 

For  = 20° the flip angle correction was 1.46  10-2 giving 𝑅1,𝑎𝑝𝑝 = 3.13 × 10−2 s−1
 and 𝑇1,𝑎𝑝𝑝 = 31.95 s. 329 

Therefore, for the larger flip angle there was a tradeoff between the increased sensitivity and the corresponding 330 

reduction in 𝑇1,𝑎𝑝𝑝 with the more rapid decay of the NMR signal. The time dependence seen in Fig. 2(d) is no 331 

longer a good reflection of the 𝑀𝑧(𝑡) shown in Fig. 2(a). We conclude that when the RF flip angle is small, < 1°, 332 
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and the magnetization is sampled many times, the flip angle correction is negligible; accordingly, it is ignored in 333 

the next sections. 334 

 335 

3 Relaxation of hyperpolarized magnetization in 13C substrates 336 

We now take a detour into relaxation theory to give an overview of the factors that determine the values of 𝑅1 =337 

1/𝑇1 of hyperpolarized 13C solutes in a (bio)chemical system taking into account the main relaxation mechanisms 338 

responsible for the decay of the nuclear magnetization in solution state at temperatures between ~20 to 180°C and 339 

static magnetic field strengths between 1 mT to 23.5 T. The spin interactions discussed here are relevant to the 340 

outcome of numerous dissolution-dynamic nuclear polarization (dDNP) experiments. 341 

A master equation for spin systems far from equilibrium based on a Lindblad dissipator formalism has 342 

recently been presented and shown to correctly predict the spin dynamics of hyperpolarized systems (Bengs and 343 

Levitt, 2020). In brief, Eq. (2) is only valid for the high temperature limit and weak order approximation of a spin 344 

system at thermal equilibrium, and therefore the theory accounts for a dependence of relaxation rate constants on 345 

the extent of hyperpolarization. However, we do not pursue this line of enquiry here because for the enzyme 346 

systems studied thus far with dDNP a constant value of T1 has been statistically satisfactory in regression analyses 347 

of the data (Pagès et al., 2013; Shishmarev et al., 2018b). 348 

Once a sufficiently high level of nuclear spin polarization has been achieved by implementing dDNP 349 

methodologies (often for 13C nuclei PC > 60%) a jet of superheated solvent (e.g., H2O and/or D2O at 150-180°C) 350 

is injected directly onto the hyperpolarized sample (Ardenkjaer-Larsen et al., 2003; Wolber et al., 2004). Upon 351 

contact with the warm solvent, the frozen sample rapidly dissolves and is then transferred under the pressure of 352 

helium gas (6-9 bar) to a separate NMR/MRI spectrometer for the detection of hyperpolarized MRS signals, or to 353 

a collection/quality control point for use in biological applications (Comment and Merritt, 2014). There are several 354 

potential issues related to spin relaxation during these processes; and we focus on nuclear spin relaxation in 355 

solution during the sample transfer stage (i.e., subject to changes in magnetic field strength) or situations where a 356 

solute has an altered rotational correlation time (i.e., dependence on temperature or when bound to a protein). This 357 

requires an understanding of the (potentially) large variety of molecular interactions that give rise to nuclear spin 358 

relaxation. 359 

Dipole-Dipole Couplings (DD). The dominant mechanism for the relaxation of nuclear spin 360 

magnetization is often the stochastic modulation of dipole-dipole interactions (couplings) to other nuclei, either 361 

in the same molecule or other molecules, including the solvent, as the molecule re-orientates in solution by 362 

molecular tumbling. 363 

Chemical Shift Anisotropy (CSA). Nuclear spins resonate at different frequencies depending on the 364 

chemical shielding imparted by the local electronic environment and its orientation (a tensor property). The 365 

modulation of the chemical shift tensor by molecular tumbling in solution has a quadratic dependence on the 366 

strength of the static magnetic field and therefore increases markedly with B0 (Kowalewski and Maler, 2019). 367 

Paramagnetic Sites. Dissolved paramagnetic solutes (often impurities, but they can be purposely added 368 

as required by the experimental design), such as radical agents that remain in the dissolution solvent, molecular 369 

oxygen, and metal ions, which can be deleterious to the nuclear-spin relaxation, particularly in regions of low 370 
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magnetic field (Blumberg, 1960; Pell et al., 2019). However, all species can be easily scavenged by co-dissolving 371 

chelating agents in the dissolution medium (Mieville et al., 2010). 372 

Scalar Relaxation of the Second Kind. This mechanism operates when the nuclei of interest have scalar 373 

couplings to neighbouring nuclei that also relax rapidly (Pileio, 2011; Kubica et al., 2014; Elliott et al., 2019). In 374 

dDNP NMR experiments this relaxation mechanism is often enhanced during sample transfer steps through areas 375 

of low magnetic field (Chiavazza et al., 2013; Kubica et al., 2014). 376 

Spin Rotation. The coupling of nuclear magnetization to that of a whole molecule or to mobile parts of 377 

a molecule, e.g., methyl groups, can act as an efficient relaxation mechanism. This mechanism has an unusual 378 

dependence on temperature with the relaxation rate usually increasing at higher temperatures (Matson, 1977). 379 

Quadrupolar. Many molecules of interest in dDNP experiments contain either 2H or 14N nuclei. NMR 380 

relaxation times of such nuclei are often <1 s, and therefore not sufficiently long to be relevant for dDNP 381 

experiments. However, there are two notable exceptions in 6Li+ and 133Cs+ which have small nuclear quadrupole 382 

moments and therefore have intrinsically long T1 values (van Heeswijk et al., 2009; Kuchel et al., 2019). 383 

 Derivations of relaxation rate expressions are well established and based on plausible physical models. 384 

For simplicity, we skip the majority of these since they are comprehensively presented by several authors 385 

(Kowalewski and Maler, 2019), and instead we focus on the main results of their analyses. Assuming a two spin 386 

system composed of a 13C and 1H, equations for the 13C-1H dipole-dipole and the 13C CSA contributions to the 387 

13C longitudinal relaxation rate constant (R1) are given by Keeler (Keeler, 2010): 388 

 389 

𝑅1,𝐷𝐷 = 𝑏𝐻𝐶
2 [

3

20
𝐽(𝜔𝐶) +

1

20
𝐽(𝜔𝐻 − 𝜔𝐶) +

3

10
𝐽(𝜔𝐻 + 𝜔𝐶)]    ,  (26) 390 

 391 

𝑅1,𝐶𝑆𝐴 = 𝑐2 [
1

15
𝐽(𝜔𝐶)]    ,     (27) 392 

 393 

where 𝑏𝐻𝐶  is the dipole-dipole coupling constant, defined as: 394 

 395 

𝑏𝐻𝐶 =
𝜇0𝛾𝐻𝛾𝐶ℏ

4𝜋𝑟𝐻𝐶
3     ,      (28) 396 

 397 

and c is the magnitude of the CSA assuming an axially symmetric(al) tensor given by: 398 

 399 

𝑐 = 𝛾𝐶𝐵0(𝜎∥ − 𝜎⊥)    ,     (29) 400 

 401 

where 𝛾𝐻 and 𝛾𝐶 are the magnetogyric ratios of the 1H and 13C spins, respectively, rHC is the internuclear distance 402 

between the 1H and 13C atoms and 𝜎∥ and 𝜎⊥ are the parallel and perpendicular components of the axially 403 

symmetric(al) CSA tensor, respectively.  404 

The so-called spectral density function that is a function of the Larmor frequency, 𝜔, is: 405 

 406 

𝐽(𝜔) =
2𝜏𝑐

1+𝜔2𝜏𝑐
2    ,      (30) 407 

 408 
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where 𝜏𝑐 is the rotational correlation time (tumbling motion) of the re-orientating spin-bearing molecule in 409 

solution. The overall longitudinal relaxation rate constant is the sum of these two dominant contributions and is 410 

given by: 411 

𝑅1 = 𝑅1,𝐷𝐷 + 𝑅1,𝐶𝑆𝐴    .     (31) 412 

3.1 Relaxation Analysis 413 

It is important (for experimental design purposes) to note the influence that a nearby 1H spin has on the 13C nuclear 414 

T1. Figure 3(a) shows the calculated 13C T1 for a fixed rotational correlation time of 𝜏𝑐 = 0.4 × 10-11 s (previously 415 

reported for glycine in saline at 310 K (Endre et al., 1983)), 13C CSA 𝜎∥ − 𝜎⊥ = −98ppm (previously reported for 416 

phosphoenolpyruvate (Bechmann et al., 2004)) and a magnetic field strength of B0 = 7 T as a function of the 1H-417 

13C internuclear distance rHC. Biaxiality of the CSA interaction has been ignored here. A rapid rise occurs in T1 as 418 

the 1H-13C internuclear separation increases. In the case of rHC = 1.09 Å, which is typical of a 1H-13C single bond, 419 

the 13C nuclear T1 is predicted to be ~11.4 s. The 1H-13C dipole-dipole coupling constant scales with 420 

𝑟𝐻𝐶
−3, consequently, the presence of a directly bonded proton significantly shortens the relaxation time constant of 421 

the 13C magnetization. Small molecules containing 13C atoms that do not have directly bonded 1H, or at least 1H 422 

 

Figure 3 (a) Simulation of the 13C nuclear T1 for a two-spin 1H-13C system as a function of the internuclear distance (rHC) 

with a rotational correlation time 𝜏𝑐 = 0.4 × 10−11 s, 13C CSA 𝜎∥ − 𝜎⊥ = −98ppm and at a magnetic field strength B 

= 7 T. (b) Dependence of the 13C nuclear T1 as a function of the magnetic field B and the rotational correlation time 𝜏𝑐 . 



16 
 

spins located at significant internuclear distances, are required. Such moieties include the carboxyl group that is 423 

present in many low molecular weight metabolites such as pyruvate, lactate, and methylglyoxal (Shishmarev et 424 

al., 2018a). At the longer 1H-13C internuclear distance of 1.45 Å, implying a 1H-13C dipole-dipole coupling 425 

constant of 𝑏𝐻𝐶/2𝜋 = −10.2 kHz, a 13C nuclear T1 of ~60 s is predicted. At very long distances, the 13C relaxation 426 

time constant will tend to that of the CSA relaxation contribution alone. 427 

The dependence of R1 on temperature and molecular size (e.g., due to binding) scales with the rotational 428 

correlation time. Figure 3(b) shows the dependence of the 13C nuclear T1 (1/R1) as a function of 𝜏𝑐 and B0 for this 429 

2-spin-1/2 system with rHC = 1.45 Å and 𝜎∥ − 𝜎⊥ = −98 ppm. In the extreme narrow limit, i.e., 𝜔2𝜏𝑐
2 ≪ 1, the 430 

following familiar equations describe the relaxation of 13C spins under the dipole-dipole and CSA relaxation 431 

mechanisms (Kowalewski and Maler, 2019): 432 

 433 

𝑅1,𝐷𝐷 = 𝑏𝐻𝐶
2 𝜏𝑐     ,      (32) 434 

𝑅1,𝐶𝑆𝐴 =
2

15
𝑐2𝜏𝑐     .     (33) 435 

 436 

In the extreme narrowing regime the 13C nuclear T1 becomes shorter with increasing magnetic field strength due 437 

to the B0
2 dependence of R1,CSA. At low field strengths, the magnitude of T1 will mostly be attributed to dipole-438 

dipole relaxation with the nearby 1H spin. It is also worth noting that the 13C T1 follows the usual Lorentzian 439 

spectral density functional dependence on the rotational correlation time. This is clearly seen at high magnetic 440 

field. 441 

 442 

3.2 Molecular Considerations 443 

The majority of dDNP experiments used to study biological systems employ H2O/D2O as the dissolution solvent. 444 

Detection of hyperpolarized NMR/MRI signals typically occurs in a magnetic field range of 1.5-9.4 T, thus Fig. 445 

3(b) indicates a 13C nuclear T1 of the order of ~60 s for a carbonyl group, and this is commonly seen in practice 446 

(Shishmarev et al., 2018a). It is important to remember that Eqs. (26-31) provide a greatly simplified picture of 447 

the problem in hand; in reality there are many magnetic nuclei (often within the same molecule) which contribute 448 

to the relaxation of 13C magnetization. The additional dipole-dipole interactions are likely to be responsible for 449 

differences between predicted and measured 13C relaxation times, along with the other (more exotic) signal 450 

attenuation mechanisms that are described above. 451 

In a dDNP experiment the dissolution and transfer process can take as long as 15 s; it depends on the 452 

distance to the point of use from the polarizing source; and in clinical applications an additional 30 s can easily 453 

be added for quality control processes. Such requirements place a bound on the usable time in which 454 

hyperpolarized 13C magnetization must be maintained; and it is typical to expect 45 s to be this limit. Given that 455 

the magnetic field strength “felt” by the hyperpolarized sample can be controlled (to a reasonable extent) 456 

throughout its voyage between the dDNP polarizer and the point of use (Milani et al., 2015), the rotational 457 

correlation time becomes the most important factor that impacts upon the 13C nuclear T1. Figure 3(b) indicates 458 

that even for a rotational correlation time on the order of 𝜏𝑐 = 1 × 10-10 s, such as found in proteins in solution 459 
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(Wilbur et al., 1976), Eq. (26-31) yields 13C nuclear T1 relaxation times which are too short to allow practical use 460 

of such samples, i.e., 5 × T1 ≪ 45 s, in comparison to the overall time required by a dDNP experiment. 461 

A major parameter that controls the magnitude of the rotational correlation time of a spin-bearing 462 

molecule is its molecular weight (Mw). Since 𝜏𝑐 ∝ Mw the rotational correlation time has a noticeable impact on 463 

the 13C nuclear T1 with even the smallest increase in molecular weight. In order to achieve 13C nuclear T1 relaxation 464 

times that are sufficiently long to enable hyperpolarized 13C magnetization to survive the dissolution and transfer 465 

process the 13C NMR signals must be detectable above the spectral noise for ~45 s. Hence, dDNP samples used 466 

in biological experiments are currently restricted to small molecules (or ions (van Heeswijk et al., 2009; Kuchel 467 

et al., 2019)). For example, the estimate of ~60 s for the 13C nuclear T1 of the model system described above was 468 

predicted with a rotational correlation time of 𝜏𝑐 = 0.4 × 10-11 (Endre et al., 1983), and this is sufficiently long for 469 

dDNP experiments. 470 

 471 

3.3 Enzyme Binding 472 

The worst-case scenario for the model system described in Fig. 3(b) would be a moderate rotational correlation 473 

time of the order of 𝜏𝑐 = 1 × 10-8 - 1 × 10-10 s for which 13C nuclear T1 relaxation times in the millisecond regime 474 

are predicted. Such correlation times correspond to a system with a molecular weight comparable to that of an 475 

enzyme. If the small molecule (ligand) or ion becomes bound to the enzyme, then it will assume the rotational 476 

correlation time of the higher mass binding partner. In the case of 𝜏𝑐 = 1 × 10-9 for an enzyme-ligand complex, a 477 

13C substrate will have a predicted nuclear T1 of ~276.4 ms at a static magnetic field strength of 7 T. Such a stark 478 

variation in 13C nuclear T1 values provides good contrast in relaxation-based ligand-protein binding experiments 479 

(Valensin et al., 1982). 480 

 481 

4 Mechanistic description of reaction kinetics of hyperpolarized substrates 482 

We now consider the interpretation of hyperpolarized dynamics for complex chemical reactions. To help tease 483 

apart the key features of the analysis we begin with some simplifying assumptions. First, in the absence of an RF 484 

pulse Eq. (20) becomes block diagonal, since transverse and longitudinal magnetization are not interconverted. 485 

The evolution of the z magnetization is then dependent only on the initial conditions, 𝑇1, and the rate constants 486 

that characterize the chemical exchange. Second, we assume that the z magnetization is sampled many times with 487 

an infinitesimally small flip angle (<<1)  so the longitudinal magnetization decays with its intrinsic 𝑇1  value 488 

rather than an apparent 𝑇1,𝑎𝑝𝑝 value. Finally, the hyperpolarized magnetization decays to zero, i.e., the 489 

enhancement factor 𝜂 (Eq. (21)) is such that M0 is greater than Meq by many orders of magnitude. Thus, the 490 

equilibrium magnetization at t = ∞ is effectively zero and it can be ignored in the analysis of real experimental 491 

data. 492 

To reduce clutter in the equations, for all the discussions that now follows, we drop the subscript z since 493 

we hereafter deal only with longitudinal magnetization and denote 𝑀𝑧,ℎ𝑦𝑝
𝐴  and 𝑀𝑧,ℎ𝑦𝑝

𝐵  as 𝐴∗(𝑡) and 𝐵∗(𝑡) 494 

corresponding to hyperpolarized magnetization (identified with an asterisk *). 495 

 496 
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4.1 Simple first order exchange kinetics of hyperpolarized substrates 497 

Confining our analysis to the physical subspace that is composed of longitudinal magnetizations, which 498 

describe first-order kinetics of a two-site exchange reaction of hyperpolarized substrates, A*  B*, Eq. (20) 499 

simplifies to: 500 

 501 

𝑑

𝑑𝑡
[
𝐴∗(𝑡)

𝐵∗(𝑡)
] = [

−𝑘1 − 𝑅1
𝐴 𝑘−1

𝑘1 −𝑘−1 − 𝑅1
𝐵] [

𝐴∗(𝑡)

𝐵∗(𝑡)
]    . (34) 

 502 

Equivalently, Eq. (34) can be expanded to give: 

 

𝑑𝐴∗(𝑡)

𝑑𝑡
= −𝑘1𝐴

∗(𝑡) + 𝑘−1𝐵
∗(𝑡) − 𝑅1

𝐴𝐴∗(𝑡)    , 

 

(35) 

𝑑𝐵∗(𝑡)

𝑑𝑡
= 𝑘1𝐴

∗(𝑡) − 𝑘−1𝐵
∗(𝑡) − 𝑅1

𝐵𝐵∗(𝑡)    , 
 

(36) 

 503 

where 𝑘1 and 𝑘−1 denote first-order rate constants, and 𝑅1
𝐴 = 1/𝑇1

𝐴 and 𝑅1
𝐵 = 1/𝑇1

𝐵 are the longitudinal relaxation 504 

rate constants of A and B, respectively. 505 

 Since Eqs. (35) and (36) describe the time evolution of the z magnetizations (that is proportional to 506 

concentration/mass) they do not satisfy the conservation of mass requirement because 𝑑[𝐴∗(𝑡) + 𝐵∗(𝑡)]/𝑑𝑡 =507 

 −𝑅1
𝐴𝐴∗(𝑡) − 𝑅1

𝐵𝐵∗(𝑡) and this tends to zero with time. However, the equations can be recast to specify that the 508 

pools of hyperpolarized substrates relax to form pools of non-polarized substrates A  B. These pools are denoted 509 

simply by 𝐴(𝑡) and 𝐵(𝑡) (without the asterisks) as shown in Fig. 4(a). The analogy with radioactive tracers is a 510 

useful one here. A ‘hot’ pool of radioactive material decays with first order kinetics (half-life) to form a ‘cold’ 511 

pool of non-radioactive material with the sum of ‘hot’ and ‘cold’ being constant.   512 

The kinetics of the non-polarized pools are described by: 513 

 514 

𝑑𝐴(𝑡)

𝑑𝑡
= −𝑘1𝐴(𝑡) + 𝑘−1𝐵(𝑡) + 𝑅1

𝐴𝐴∗(𝑡)    , (37) 

 

𝑑𝐵(𝑡)

𝑑𝑡
= 𝑘1𝐴(𝑡) − 𝑘−1𝐵(𝑡) + 𝑅1

𝐵𝐵∗(𝑡)    . 

 

(38) 

 515 

Equations (37) and (38) now satisfy conservation of mass, since the rate of change 𝑑[𝐴∗(𝑡) + 𝐴(𝑡) + 𝐵∗(𝑡) +516 

𝐵(𝑡)]/𝑑𝑡  is always zero. Note that 𝐴(𝑡) and 𝐵(𝑡) are not observed in the dDNP NMR experiment; but they are 517 

the counterparts of real concentrations of solute that would be assayable (bio)chemically.  518 

Equations (35-38) can be written as: 519 

 520 

 𝑑

𝑑𝑡
[

𝐴∗(𝑡)

𝐵∗(𝑡)

𝐴(𝑡)

𝐵(𝑡)

] =

[
 
 
 
 
−𝑘1 − 𝑅1

𝐴 𝑘−1 0 0

𝑘1 −𝑘−1 − 𝑅1
𝐵 0 0

𝑅1
𝐴 0 −𝑘1 𝑘−1

0 𝑅1
𝐵 𝑘1 −𝑘−1]

 
 
 
 

[

𝐴∗(𝑡)

𝐵∗(𝑡)

𝐴(𝑡)

𝐵(𝑡)

]    . (39) 
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Equation (39) can be written: 521 

 522 

𝑑𝑀(𝑡)

𝑑𝑡
= 𝐿𝑀(𝑡)    . (40) 

 523 

We can apply a similarity transform given by: 524 

 525 

𝑈 = [

1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

]    . (41) 

 526 

To yield an equation of motion in a transformed basis vector: 527 

 528 

𝑑𝑀′(𝑡)

𝑑𝑡
= 𝑈𝐿𝑈−1𝑀′(𝑡)    . (42) 

 529 

Given by: 530 

 531 

𝑑

𝑑𝑡
[

𝐴∗(𝑡)

𝐵∗(𝑡)

𝐴∗(𝑡) + 𝐴(𝑡)

𝐵∗(𝑡) + 𝐵(𝑡)

] =

[
 
 
 
−𝑘1 − 𝑅1

𝐴 𝑘−1 0 0

𝑘1 −𝑘−1 − 𝑅1
𝐵 0 0

0 0 −𝑘1 𝑘−1

0 0 𝑘1 −𝑘−1]
 
 
 

[

𝐴∗(𝑡)

𝐵∗(𝑡)

𝐴∗(𝑡) + 𝐴(𝑡)

𝐵∗(𝑡) + 𝐵(𝑡)

]    . 

 

(43) 

 532 

We can now appreciate the equivalence between this formalism and conventional chemical reaction kinetics 533 

written in terms of molecular concentrations. For first order reactions, the hyperpolarized magnetization evolves 534 

according to the Bloch McConnell equations while the concentrations given by the sum of the ‘hot’ and ‘cold’ 535 

pools evolve according to the conventional form of chemical reaction kinetics for a closed system. Therefore, 536 

𝐴∗(𝑡) + 𝐴(𝑡) and 𝐵∗(𝑡) + 𝐵(𝑡) are proportional to [A(t)] and [B(t)], respectively, where the constant of 537 

proportionality depends on the initial experimental conditions, viz., [𝐴]0 and [𝐵]0. In other words, provided 538 

𝐴∗(0) + 𝐴(0) = [𝐴]0 and 𝐵∗(0) + 𝐵(0) = [𝐵]0 then the constant of proportionality is 1 and we can equate 539 

𝐴∗(𝑡) + 𝐴(𝑡) = [𝐴(𝑡)] and 𝐵∗(𝑡) + 𝐵(𝑡) = [𝐵(𝑡)]. This is a crucial point that we return to below.   540 

Figure 4 shows numerical simulations of the time evolution of the system described by Eq. (39) with an 541 

initial magnetization vector 𝐌(0) = [1, 0, 0, 0] that corresponds to only hyperpolarized 𝐴∗(0) = 1 and 542 

longitudinal relaxation rate constants 𝑅1
𝐴 = 𝑅1

𝐵 = 1/60𝑠−1. The time dependence of 𝐴∗(𝑡), 𝐴(𝑡), 𝐵∗(𝑡) and 𝐵(𝑡) 543 

were calculated numerically (left panel) for different rate constants: Fig. 4(b), k1 = 0.01 s-1, k-1 = 0 s-1, 544 

corresponding to a uni-directional reaction; Fig 4(c), k1 = 0.01 s-1, k-1 = 0.005 s-1, corresponding to bi-directional 545 

exchange with an equilibrium constant K = 2; and Fig. 4(d), k1 = 0.01 s-1, k-1 = 0.01 s-1, also corresponding to bi-546 

directional exchange with an equilibrium constant K = 1. The right column shows plots of the time dependence 547 

of 𝐴∗(𝑡) + 𝐴(𝑡) and 𝐵∗(𝑡) + 𝐵(𝑡) that reproduce conventional kinetics of [𝐴(𝑡)] and [𝐵(𝑡)], as required for 548 

mathematical and physical consistency.  549 
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 The approach used here (as laid out in (Kuchel and Shishmarev, 2020)) enables us to create systems of 550 

differential equations that satisfy conservation of mass and therefore allow a study of the influence of non-551 

hyperpolarized pools of substrates on reaction kinetics. The approach enables more complicated reaction 552 

mechanisms to be described to allow the inclusion of MR invisible pools of substrates such as 12C, which are 553 

known to affect the outcome of dDNP experiments in vivo. We consider some of these scenarios next. 554 

  555 

 

Figure 4 Simulated first order two-site exchange kinetics of hyperpolarized solutes, A  B, conforming to conservation 

of mass, assuming initial hyperpolarized magnetization of only solute 𝐴∗(0) = 1. Longitudinal relaxation rate constants 

were 𝑅1
𝐴 = 𝑅1

𝐵 = 1/60 𝑠−1. The time dependence of 𝐴∗(𝑡), 𝐴(𝑡), 𝐵∗(𝑡) and 𝐵(𝑡) (left panel) were calculated numerically 

using Eq. (35-38) with rate constants (b) k1 = 0.01 s-1, k-1 = 0 s-1, corresponding to uni-directional kinetics, (c) k1 = 0.01 s-

1, k-1 = 0.005 s-1 and (d) k1 = 0.01 s-1, k-1 = 0.01 s-1, corresponding to exchange kinetics. The right panel shows plots of the 

time dependence of 𝐴∗(𝑡) + 𝐴(𝑡) = [𝐴(𝑡)] and 𝐵∗(𝑡) + 𝐵(𝑡) = [𝐵(𝑡)]. 
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4.2 Sequential reaction kinetics of hyperpolarized substrates 556 

Equation (39) can be extended to compartmental models of arbitrary complexity: Consider a reaction scheme 557 

involving three substrates A*  B*  C* which relax through 𝑇1 processes to form a pool of non-polarized 558 

substrates A  B  C, as shown in Fig. 5(a). This is analogous to a system where a solution of hyperpolarized 559 

solute A* is introduced into the extracellular medium in a cell suspension, is transported into the cells where it is 560 

denoted by 𝐵∗ and it is subsequently acted upon by an enzyme to form 𝐶∗. The system of differential equations 561 

that describe the kinetics of this scheme is: 562 

 563 

 
𝑑𝐴∗(𝑡)

𝑑𝑡
= −𝑘1𝐴

∗(𝑡) + 𝑘−1𝐵
∗(𝑡) − 𝑅1

𝐴𝐴∗(𝑡)    , (44) 

 
𝑑𝐵∗(𝑡)

𝑑𝑡
= 𝑘1𝐴

∗(𝑡) − 𝑘−1𝐵
∗(𝑡) − 𝑘2𝐵

∗(𝑡) + 𝑘−2𝐶
∗(𝑡) − 𝑅1

𝐵𝐵∗(𝑡)    , (45) 

 
𝑑𝐶∗(𝑡)

𝑑𝑡
= 𝑘2𝐵

∗(𝑡) − 𝑘−2𝐶
∗(𝑡) − 𝑅1

𝐶𝐶∗(𝑡)    , (46) 

 
𝑑𝐴(𝑡)

𝑑𝑡
= −𝑘1𝐴(𝑡) + 𝑘−1𝐵(𝑡) + 𝑅1

𝐴𝐴∗(𝑡)    , (47) 

 
𝑑𝐵(𝑡)

𝑑𝑡
= 𝑘1𝐴(𝑡) − 𝑘−1𝐵(𝑡) − 𝑘2𝐵(𝑡) + 𝑘−2𝐶(𝑡) + 𝑅1

𝐵𝐵∗(𝑡)    ,    (48) 

 𝑑𝐶(𝑡)

𝑑𝑡
= 𝑘2𝐵(𝑡) − 𝑘−2𝐶(𝑡) + 𝑅1

𝐶𝐶∗(𝑡)    , (49) 

 564 

where we have removed the square brackets that denote molar concentration to avoid some of the clutter. 565 

However, it is important to recall that there is a factor that relates magnetization to concentration, and this is 566 

estimated from the known initial experimental conditions. 567 

 Equations (44-49) can be recast in matrix form to give: 568 

 569 

𝑑

𝑑𝑡

[
 
 
 
 
 
𝐴∗(𝑡)

𝐵∗(𝑡)

𝐶∗(𝑡)

𝐴(𝑡)

𝐵(𝑡)

𝐶(𝑡) ]
 
 
 
 
 

=

[
 
 
 
 
 
 
−𝑘1 − 𝑅1

𝐴 𝑘−1 0 0 0 0

𝑘1 −𝑘−1 − 𝑘2 − 𝑅1
𝐵 𝑘−2 0 0 0

0 𝑘2 −𝑘−2 − 𝑅1
𝐶 0 0 0

𝑅1
𝐴 0 0 −𝑘1 𝑘−1 0

0 𝑅1
𝐵 0 𝑘1 −𝑘−1 − 𝑘2 𝑘−2

0 0 𝑅1
𝐶 0 𝑘2 −𝑘−2]

 
 
 
 
 
 

[
 
 
 
 
 
𝐴∗(𝑡)

𝐵∗(𝑡)

𝐶∗(𝑡)

𝐴(𝑡)

𝐵(𝑡)

𝐶(𝑡) ]
 
 
 
 
 

    . (50) 

 570 

It is readily verified that Eq. (50) satisfies conservation of mass, since the rate of change (𝐴∗(𝑡) + 𝐴(𝑡) + 𝐵∗(𝑡) +571 

𝐵(𝑡) + 𝐶∗(𝑡) + 𝐶(𝑡))/𝑑𝑡 = 0.  572 

 We can apply a similarity transform given by: 573 

 574 

 575 
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 576 

 

Figure 5 Simulated first order three-site exchange kinetics of hyperpolarized solutes, A  B  C, conforming to 

conservation of mass, assuming initial hyperpolarized magnetization of only solute 𝐴∗(0) = 1. Longitudinal relaxation 

rate constants were 𝑅1
𝐴 = 𝑅1

𝐵 = 𝑅1
𝐶 = 1/60 𝑠−1. The time dependence of 𝐴∗(𝑡), 𝐴(𝑡), 𝐵∗(𝑡), 𝐵(𝑡), 𝐶∗(𝑡) and 𝐶(𝑡) (left 

panel) were calculated numerically using Eq. (41-46) with rate constants (b) 𝑘1 = 𝑘2 = 0.01 𝑠−1, 𝑘−1 = 𝑘−2 = 0 𝑠−1, 

corresponding to uni-directional kinetics, (c) 𝑘1 = 𝑘2 = 0.01 𝑠−1, 𝑘−1 = 𝑘−2 = 0. 005 𝑠−1 and (d) 𝑘1 = 𝑘2 = 𝑘−1 =

𝑘−2 = 0.01 𝑠−1, corresponding to exchange kinetics. The right panel shows plots of the time dependence of 𝐴∗(𝑡) +

𝐴(𝑡) = [𝐴(𝑡)], 𝐵∗(𝑡) + 𝐵(𝑡) = [𝐵(𝑡)] and 𝐶∗(𝑡) + 𝐶(𝑡) = [𝐶(𝑡)]. 
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𝑈 =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1]

 
 
 
 
 

    . (51) 

 577 

To yield an equation of motion in the transformed basis vector given by: 578 

 579 

𝑑

𝑑𝑡

[
 
 
 
 
 

𝐴∗(𝑡)

𝐵∗(𝑡)

𝐶∗(𝑡)

𝐴∗(𝑡) + 𝐴(𝑡)

𝐵∗(𝑡) + 𝐵(𝑡)

𝐶∗(𝑡) + 𝐶(𝑡)]
 
 
 
 
 

=

[
 
 
 
 
 
 
−𝑘1 − 𝑅1

𝐴 𝑘−1 0 0 0 0

𝑘1 −𝑘−1 − 𝑘2 − 𝑅1
𝐵 𝑘−2 0 0 0

0 𝑘2 −𝑘−2 − 𝑅1
𝐶 0 0 0

0 0 0 −𝑘1 𝑘−1 0
0 0 0 𝑘1 −𝑘−1 − 𝑘2 𝑘−2

0 0 0 0 𝑘2 −𝑘−2]
 
 
 
 
 
 

[
 
 
 
 
 

𝐴∗(𝑡)

𝐵∗(𝑡)

𝐶∗(𝑡)

𝐴∗(𝑡) + 𝐴(𝑡)

𝐵∗(𝑡) + 𝐵(𝑡)

𝐶∗(𝑡) + 𝐶(𝑡)]
 
 
 
 
 

    . 580 

 (52) 

 581 

The hyperpolarized magnetization evolves according to the Bloch McConnell equations while the concentrations 582 

given by the sum of the ‘hot’ and ‘cold’ pools evolve according to the conventional form of chemical reaction 583 

kinetics for a closed system. Therefore, provided 𝐴∗(0) + 𝐴(0) = [𝐴]0, 𝐵∗(0) + 𝐵(0) = [𝐵]0 and 𝐶∗(0) +584 

𝐶(0) = [𝐶]0, then 𝐴∗(𝑡) + 𝐴(𝑡) = [𝐴(𝑡)], 𝐵∗(𝑡) + 𝐵(𝑡) = [𝐵(𝑡)] and 𝐶∗(𝑡) + 𝐶(𝑡) = [𝐶(𝑡)], respectively.  585 

Figure 5 shows the results of numerical integration of Eq. (50) with initial magnetization vector 𝐌(0) =586 

[1, 0, 0, 0, 0, 0] that corresponds to having only hyperpolarized A*(0) = 1 and longitudinal relaxation rate constants 587 

𝑅1
𝐴 = 𝑅1

𝐵 = 𝑅1
𝐶 = 1/60𝑠−1. The time dependence of 𝐴∗(𝑡), 𝐴(𝑡), 𝐵∗(𝑡), 𝐵(𝑡), 𝐶∗(𝑡) and 𝐶(𝑡) were calculated 588 

(left panel) for different rate constants: Fig. 5(b), 𝑘1 = 𝑘2 = 0.01 𝑠−1, 𝑘−1 = 𝑘−2 = 0 𝑠−1, corresponding to uni-589 

directional kinetics; Fig. 5(c), 𝑘1 = 𝑘2 = 0.01 𝑠−1, 𝑘−1 = 𝑘−2 = 0. 005 𝑠−1, corresponding to bi-directional 590 

exchange kinetics; and Fig. 5(d), 𝑘1 = 𝑘2 = 𝑘−1 = 𝑘−2 = 0.01 𝑠−1, also corresponding to bi-directional 591 

exchange kinetics. The right column shows plots of the time dependence of 𝐴∗(𝑡) + 𝐴(𝑡), 𝐵∗(𝑡) + 𝐵(𝑡) and 592 

𝐶∗(𝑡) + 𝐶(𝑡), which reproduce the conventional chemical kinetics of [𝐴(𝑡)], [𝐵(𝑡)] and [𝐶(𝑡)], as required for 593 

mathematical and physical consistency. 594 

 595 

4.3 Second-order kinetics of hyperpolarized substrates 596 

We now describe hyperpolarized substrates 𝐴∗(𝑡) and 𝐵∗(𝑡) reacting with non-hyperpolarized substrates [𝐶(𝑡)] 597 

and [𝐷(𝑡)]. The system of differential equations that describes these second-order kinetics of A* + C  B* + D 598 

with only the hyperpolarized pools relaxing through 𝑇1 processes to form a pool of non-polarized substrates A + 599 

C  B + D. The reactant concentrations [𝐶(𝑡)] and [𝐷(𝑡)] are common to both pools, as shown in Fig. 6(a). The 600 

relevant system of differential equations (again omitting the square brackets that denote concentration) is: 601 

 602 

 
𝑑𝐴∗(𝑡)

𝑑𝑡
= −𝑘1𝐶(𝑡)𝐴∗(𝑡) + 𝑘−1𝐷(𝑡)𝐵∗(𝑡) − 𝑅1

𝐴𝐴∗(𝑡)    , (53) 

 
𝑑𝐵∗(𝑡)

𝑑𝑡
= 𝑘1𝐶(𝑡)𝐴∗(𝑡) − 𝑘−1𝐷(𝑡)𝐵∗(𝑡) − 𝑅1

𝐵𝐵∗(𝑡)    , (54) 
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𝑑𝐴(𝑡)

𝑑𝑡
= −𝑘1𝐶(𝑡)𝐴(𝑡) + 𝑘−1𝐷(𝑡)𝐵(𝑡) + 𝑅1

𝐴𝐴∗(𝑡)    , (55) 

 
𝑑𝐵(𝑡)

𝑑𝑡
= 𝑘1𝐶(𝑡)𝐴(𝑡) − 𝑘−1𝐷(𝑡)𝐵(𝑡) + 𝑅1

𝐵𝐵∗(𝑡)    , (56) 

 
𝑑[𝐶(𝑡)]

𝑑𝑡
= −𝑘1(𝐴

∗(𝑡) + 𝐴(𝑡))𝐶(𝑡) + 𝑘−1(𝐵
∗(𝑡) + 𝐵(𝑡))𝐷(𝑡)    , (57) 

 
𝑑[𝐷](𝑡)

𝑑𝑡
= 𝑘1(𝐴

∗(𝑡) + 𝐴(𝑡))𝐶(𝑡) − 𝑘−1(𝐵
∗(𝑡) + 𝐵(𝑡))𝐷(𝑡)    . (58) 

 603 

Again, mass is conserved as seen by the fact that 𝑑((𝐴∗(𝑡) + 𝐴(𝑡) + 𝐵∗(𝑡) + 𝐵(𝑡))/𝑑𝑡 = 0 and 𝑑(𝐶(𝑡) +604 

𝐷(𝑡))/𝑑𝑡 = 0. Also, recall that provided 𝐴∗(0) + 𝐴(0) = [𝐴]0, 𝐵∗(0) + 𝐵(0) = [𝐵]0, 𝐶(0) = [𝐶]0 and 𝐷(0) =605 

[𝐷]0, then we can make use of the equalities 𝐴∗(𝑡) + 𝐴(𝑡) = [𝐴(𝑡)], 𝐵∗(𝑡) + 𝐵(𝑡) = [𝐵(𝑡)], 𝐶(𝑡) = [𝐶(𝑡)] and 606 

𝐷(𝑡) = [𝐷(𝑡)], respectively. It is now very evident why we must equate the initial signal with the concentration 607 

via an experimentally estimated scaling factor. 608 

Equations (53-58) can be written in matrix vector form as: 609 

 610 

𝑑

𝑑𝑡

[
 
 
 
 
 
𝐴∗(𝑡)

𝐵∗(𝑡)

𝐴(𝑡)

𝐵(𝑡)

𝐶(𝑡)

𝐷(𝑡) ]
 
 
 
 
 

=

[
 
 
 
 
 
 
−𝑘1𝐶(𝑡) − 𝑅1

𝐴 𝑘−1𝐷(𝑡) 0 0 0 0

𝑘1𝐶(𝑡) −𝑘−1𝐷(𝑡) − 𝑅1
𝐵 0 0 0 0

𝑅1
𝐴 0 −𝑘1𝐶(𝑡) 𝑘−1𝐷(𝑡) 0 0

0 𝑅1
𝐵 𝑘1𝐶(𝑡) −𝑘−1𝐷(𝑡) 0 0

−𝑘1𝐶(𝑡) 𝑘−1𝐷(𝑡) −𝑘1𝐶(𝑡) 𝑘−1𝐷(𝑡) 0 0

𝑘1𝐶(𝑡) −𝑘−1𝐷(𝑡) 𝑘1𝐶(𝑡) −𝑘−1𝐷(𝑡) 0 0]
 
 
 
 
 
 

[
 
 
 
 
 
𝐴∗(𝑡)

𝐵∗(𝑡)

𝐴(𝑡)

𝐵(𝑡)

𝐶(𝑡)

𝐷(𝑡) ]
 
 
 
 
 

    . 

 

 

(59) 

 611 

We can apply a similarity transform given by: 612 

 613 

𝑈 =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

    . (60) 

 614 

To yield an equation of motion in the transformed basis vector given by: 615 

 616 

𝑑

𝑑𝑡

[
 
 
 
 
 

𝐴∗(𝑡)

𝐵∗(𝑡)

𝐴∗(𝑡) + 𝐴(𝑡)

𝐵∗(𝑡) + 𝐵(𝑡)

𝐶(𝑡)

𝐷(𝑡) ]
 
 
 
 
 

=

[
 
 
 
 
 
 
−𝑘1𝐶(𝑡) − 𝑅1

𝐴 𝑘−1𝐷(𝑡) 0 0 0 0

𝑘1𝐶(𝑡) 𝑘−1𝐷(𝑡) − 𝑅1
𝐵 0 0 0 0

0 0 −𝑘1𝐶(𝑡) 𝑘−1𝐷(𝑡) 0 0

0 0 𝑘1𝐶(𝑡) −𝑘−1𝐷(𝑡) 0 0

0 0 −𝑘1𝐶(𝑡) 𝑘−1𝐷(𝑡) 0 0

0 0 𝑘1𝐶(𝑡) −𝑘−1𝐷(𝑡) 0 0]
 
 
 
 
 
 

[
 
 
 
 
 

𝐴∗(𝑡)

𝐵∗(𝑡)

𝐴∗(𝑡) + 𝐴(𝑡)

𝐵∗(𝑡) + 𝐵(𝑡)

𝐶(𝑡)

𝐷(𝑡) ]
 
 
 
 
 

    . 617 

(61) 618 

 619 
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Figure 6 shows numerical simulations of the time evolution of the system of Eqs. (53-58) with initial 620 

magnetization corresponding to the hyperpolarized signal A*(0) = 1 and non-polarized substrates 𝐶(0) = 0.95 621 

and 𝐷(0) = 0.05. The longitudinal relaxation rate constants were 𝑅1𝐴 = 𝑅1𝐵 = 1/60𝑠−1. The time dependence 622 

of 𝐴∗(𝑡), 𝐴(𝑡), 𝐵∗(𝑡) and 𝐵(𝑡) are subject to second order kinetics and were calculated numerically (left panel) 623 

for different rate constants: Fig. 6(b), 𝑘1 = 0.01 𝑀−1𝑠−1, 𝑘−1 = 0 𝑀−1𝑠−1, corresponding to unidirectional 624 

kinetics; Fig. 6(c), 𝑘1 = 0.01 𝑀−1𝑠−1, 𝑘−1 = 0.005 𝑀−1𝑠−1, corresponding to bi-directional exchange kinetics 625 

with an equilibrium constant K = 2; and Fig. 6(d) 𝑘1 = 𝑘−1 = 0.01 𝑀−1𝑠−1, with an equilibrium constant K = 1, 626 

also corresponding to bi-directional exchange kinetics. The right column shows plots of the time dependence of 627 

𝐴∗(𝑡) + 𝐴(𝑡), 𝐵∗(𝑡) + 𝐵(𝑡), which capture conventional chemical kinetics of the concentrations of [𝐴(𝑡)] and 628 

[𝐵(𝑡)], as required, as well as the kinetics of the non-polarized reactants [𝐶(𝑡)] and [𝐷(𝑡)].  629 

 630 

4.3.1 An Ersatz solution 631 

The system of differential equations in Eq. (59), describing a second order reaction can be reduced to one with 632 

pseudo first order kinetics by introducing time-dependent rate constants 𝑘1
′ (𝑡) = 𝑘1𝐶(𝑡) and 𝑘−1

′ (𝑡) = 𝑘−1 𝐷(𝑡). 633 

Importantly, the pseudo first order rate constants 𝑘1
′ (𝑡) and 𝑘−1

′ (𝑡) are now time dependent. This approach has 634 

been used previously (Mariotti et al., 2016) but it constitutes a special case of the more general method described 635 

here, which we advocate. 636 

 However, we now encounter a problem. The pseudo first order rate constants for the reactions of [C(t)] 637 

and [D(t)] are now given by 𝑘1
′ (𝑡) = 𝑘1(𝐴

∗(𝑡) + 𝐴(𝑡)) and 𝑘−1
′ (𝑡) = 𝑘−1(𝐵

∗(𝑡) + 𝐵(𝑡)), respectively. The time-638 

dependent pseudo first order rate constants are dependent on the concentrations of both ‘hot’ and ‘cold’ pools. In 639 

turn the pseudo first order rate constants for 𝐴∗(𝑡) and 𝐵∗(𝑡) are 𝑘1
′ (𝑡) = 𝑘1𝐶(𝑡) and 𝑘−1

′ (𝑡) = 𝑘−1𝐷(𝑡). Thus, 640 

the kinetics of the ‘hot’ pools 𝐴∗(𝑡) and 𝐵∗(𝑡) become dependent on the kinetics of the ‘cold’ pools 𝐴(𝑡) and 641 

𝐵(𝑡). This is of particular relevance (as highlighted by Kuchel and Shishmarev, 2019) when extending the 642 

equations to describe enzyme kinetics. It is this that we turn our attention to next. 643 

 644 
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 645 

  646 

 

Figure 6 Simulated second order exchange kinetics of hyperpolarized solutes, A* + C  B* + D, conforming to 

conservation of mass, assuming initial hyperpolarized magnetization of only solute 𝐴∗(0) = 1. Longitudinal relaxation 

rate constants were 𝑅1
𝐴 = 𝑅1

𝐵 = 1/60 𝑠−1. The time dependence of 𝐴∗(𝑡), 𝐴(𝑡), 𝐵∗(𝑡) and 𝐵(𝑡) were simulated (left 

panel) using Eqs. (53-58) with rate constants (b) 𝑘1 = 0.01 𝑀−1
𝑠−1, 𝑘−1 = 0 𝑀−1

𝑠−1, corresponding to uni-directional 

kinetics (c) 𝑘1 = 0.01 𝑀−1
𝑠−1, 𝑘−1 = 0.005 𝑀−1

𝑠−1and (d) 𝑘1 = 𝑘−1 = 0.01 𝑀−1
𝑠−1, corresponding to exchange 

kinetics. The right panel shows plots of the time dependence of 𝐴∗(𝑡) + 𝐴(𝑡) = [𝐴(𝑡)], 𝐵∗(𝑡) + 𝐵(𝑡) = [𝐵(𝑡)] and non-

polarized reactants [𝐶(𝑡)] and [𝐷(𝑡)]. 
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5 Michaelis-Menten equation for a hyperpolarized substrate 647 

Next consider an enzyme catalysed reaction with a hyperpolarized substrate. The simplest model involves a 648 

hyperpolarized substrate 𝑆∗(𝑡) that is in equilibrium with a free enzyme of concentration [𝐸]0 to form a 649 

hyperpolarized enzyme substrate complex 𝐸𝑆∗(𝑡), which then reacts to form a hyperpolarized product P*(t). This 650 

is followed by release of the free enzyme that is then available for further reactions: E + S*  ES*  P* + E. All 651 

hyperpolarized substrates relax through 𝑇1 processes to form non-polarized pools of substrates E + S  ES  P 652 

+ E as shown in Fig. 7(a). The differential equations (again omitting the square brackets denoting concentration) 653 

that describe the reaction kinetics are: 654 

 655 

 
𝑑𝑆∗(𝑡)

𝑑𝑡
= −𝑘1𝐸(𝑡)𝑆∗(𝑡) + 𝑘−1𝐸𝑆∗(𝑡) − 𝑅1

𝑆𝑆∗(𝑡)    , (62) 

 
𝑑𝐸𝑆∗(𝑡)

𝑑𝑡
= 𝑘1𝐸(𝑡)𝑆∗(𝑡) − 𝑘−1𝐸𝑆∗(𝑡) − 𝑘2𝐸𝑆∗(𝑡) + 𝑘−2𝐸(𝑡)𝑃∗(𝑡) − 𝑅1

𝐸𝑆𝐸𝑆∗(𝑡)    , (63) 

 
𝑑𝑃∗(𝑡)

𝑑𝑡
= 𝑘2𝐸𝑆∗(𝑡) − 𝑘−2𝐸(𝑡)𝑃∗(𝑡) − 𝑅1

𝑃𝑃∗(𝑡)    , (64) 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −𝑘1𝐸(𝑡)𝑆(𝑡) + 𝑘−1𝐸𝑆(𝑡) + 𝑅1

𝑆𝑆∗(𝑡)    , (65) 

 
𝑑𝐸𝑆(𝑡)

𝑑𝑡
= 𝑘1𝐸(𝑡)𝑆(𝑡) − 𝑘−1𝐸𝑆(𝑡) − 𝑘2𝐸𝑆(𝑡) + 𝑘−2𝐸(𝑡)𝑃(𝑡) + 𝑅1

𝐸𝑆𝐸𝑆∗(𝑡)    , (66) 

 
𝑑𝑃(𝑡)

𝑑𝑡
= 𝑘2𝐸𝑆(𝑡) − 𝑘−2𝐸(𝑡)𝑃(𝑡) + 𝑅1

𝑃𝑃∗(𝑡)    , (67) 

 
𝑑𝐸(𝑡)

𝑑𝑡
= −𝑘1𝐸(𝑡)(𝑆∗(𝑡) + 𝑆(𝑡)) + (𝑘−1 + 𝑘2)(𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡)) − 𝑘−2𝐸(𝑡)(𝑃∗(𝑡) + 𝑃(𝑡))    , (68) 

 656 

where 𝐸(𝑡) is the free enzyme, 𝐸𝑆(𝑡) is the enzyme-substrate complex, 𝑆(𝑡) is the free substrate and 𝑃(𝑡) is the 657 

free product, with relaxation rate constants 𝑅1
𝑆, 𝑅1

𝐸𝑆 and 𝑅1
𝑃, respectively. Note the appearance of the free enzyme 658 

E(t) as both a reactant and product; it is regenerated through the reactions that are characterized by the rate 659 

constants 𝑘1 and 𝑘−1, and also 𝑘2 and 𝑘−2, thereby being recycled. 660 

Mass is conserved as confirmed by the fact that 𝑑(𝑆∗(𝑡) + 𝑆(𝑡) + 𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡) + 𝑃∗(𝑡) + 𝑃(𝑡))/661 

𝑑𝑡 = 0 and 𝑑(𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡) + 𝐸(𝑡))/𝑑𝑡 = 0. Therefore, provided 𝑆∗(0) + 𝑆(0) = [𝑆]0, 𝐸𝑆∗(0) + 𝐸𝑆(0) =662 

[𝐸𝑆]0 and 𝑃∗(0) + 𝑃(0) = [𝑃]0 then 𝑆∗(𝑡) + 𝑆(𝑡) = [𝑆(𝑡)], 𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡) = [𝐸𝑆(𝑡)] and 𝑃∗(𝑡) + 𝑃(𝑡) =663 

[𝑃(𝑡)], respectively.  664 
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Equations (62-68) can be written in matrix vector form as: 

 

 

𝑑

𝑑𝑡

[
 
 
 
 
 
 
 
𝑆∗(𝑡)

𝐸𝑆∗(𝑡)

𝑃∗(𝑡)

𝑆(𝑡)

𝐸𝑆(𝑡)

𝑃(𝑡)
𝐸(𝑡) ]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 −𝑘1𝐸(𝑡) − 𝑅1

𝑆

𝑘1𝐸(𝑡)
0
𝑅1

𝑆

0
0

−𝑘1𝐸(𝑡)

    

𝑘−1

−𝑘−1 − 𝑘2 − 𝑅1
𝐸𝑆

𝑘2

0
𝑅1

𝐸𝑆

0
𝑘−1 + 𝑘2

    

0
𝑘−2𝐸(𝑡)

−𝑘−2𝐸(𝑡) − 𝑅1
𝑃

0
0
𝑅1

𝑃

−𝑘−2𝐸(𝑡)

    

0
0
0

−𝑘1𝐸(𝑡)

𝑘1𝐸(𝑡)
0

−𝑘1𝐸(𝑡)

    

0
0
0

𝑘−1

−𝑘−1 − 𝑘2

𝑘2

𝑘−1 + 𝑘2

    

0
0
0
0

𝑘−2𝐸(𝑡)

−𝑘−2𝐸(𝑡)

−𝑘−2𝐸(𝑡)

    

0
0
0
0
0
0
0]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑆∗(𝑡)

𝐸𝑆∗(𝑡)

𝑃∗(𝑡)

𝑆(𝑡)

𝐸𝑆(𝑡)

𝑃(𝑡)
𝐸(𝑡) ]

 
 
 
 
 
 
 

    . 

 

 

 

 

 

(69) 

 665 

We can apply a similarity transform given by: 666 

𝑈 =

[
 
 
 
 
 
 
1
0
0
1
0
0
0

     

0
1
0
0
1
0
0

     

0
0
1
0
0
1
0

     

0
0
0
1
0
0
0

     

0
0
0
0
1
0
0

     

0
0
0
0
0
1
0

     

0
0
0
0
0
0
1]
 
 
 
 
 
 

    . (70) 

 667 

To yield an equation of motion in the transformed basis vector given by: 668 

 669 

𝑑

𝑑𝑡

[
 
 
 
 
 
 
 

𝑆∗(𝑡)

𝐸𝑆∗(𝑡)

𝑃∗(𝑡)

𝑆∗(𝑡) + 𝑆(𝑡)

𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡)

𝑃∗(𝑡) + 𝑃(𝑡)
𝐸(𝑡) ]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 −𝑘1𝐸(𝑡) − 𝑅1

𝑆

𝑘1𝐸(𝑡)
0
0
0
0
0

    

𝑘−1

−𝑘−1 − 𝑘2 − 𝑅1
𝐸𝑆

𝑘2

0
0
0
0

    

0
𝑘−2𝐸(𝑡)

−𝑘−2𝐸(𝑡) − 𝑅1
𝑃

0
0
0
0

    

0
0
0

−𝑘1𝐸(𝑡)

𝑘1𝐸(𝑡)
0

−𝑘1𝐸(𝑡)

    

0
0
0

𝑘−1

−𝑘−1 − 𝑘2

𝑘2

𝑘−1 + 𝑘2

    

0
0
0
0

𝑘−2𝐸(𝑡)

−𝑘−2𝐸(𝑡)

−𝑘−2𝐸(𝑡)

    

0
0
0
0
0
0
0]
 
 
 
 
 
 

[
 
 
 
 
 
 
 

𝑆∗(𝑡)

𝐸𝑆∗(𝑡)

𝑃∗(𝑡)

𝑆∗(𝑡) + 𝑆(𝑡)

𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡)

𝑃∗(𝑡) + 𝑃(𝑡)
𝐸(𝑡) ]

 
 
 
 
 
 
 

   . 

 

 

(71) 

 

 670 
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5.1 Steady state of ES complex 671 

A simplified uni-directional enzyme catalysed reaction is described by setting the reverse rate constant 𝑘−2 = 0 672 

(see Fig. 7(a)). If it is assumed that a steady-state of [ES] is attained very rapidly then 𝑑(𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡))/𝑑𝑡 =673 

0 and we obtain (reverting to using square brackets to denote molar concentration): 674 

 675 

 𝑘1[𝐸(𝑡)][𝑆∗(𝑡) + 𝑆(𝑡)] = (𝑘−1 + 𝑘2)[𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡)]    . (72) 

 676 

Rearranging Eq. (72) yields the Michaelis constant in terms of hyperpolarized and non-polarized pools of 677 

substrate: 678 

 679 

 𝐾𝑀 =
(𝑘−1 + 𝑘2)

𝑘1

=
[𝐸(𝑡)][𝑆∗(𝑡) + 𝑆(𝑡)]

[𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡)]
    . (73) 

 680 

Calibrating the signals to molar concentrations is important since the signals now relate to a real parameter (𝐾𝑀) 681 

of the enzyme that has units of concentration (typically mM).  682 

Thus, using conservation of enzyme mass, the free enzyme concentration is given by: 683 

 684 

 [𝐸(𝑡)] = [𝐸]0 − [𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡)]   . (74) 

 685 

Then 686 

 
𝑑([𝑃∗(𝑡) + 𝑃(𝑡)])

𝑑𝑡
=

𝑘2[𝐸]0 [𝑆
∗(𝑡) + 𝑆(𝑡)]

𝐾𝑀 + [𝑆∗(𝑡) + 𝑆(𝑡)]
    . (75) 

 687 

In other words, this is the standard form of the Michaelis-Menten equation written as a function of both polarized 688 

and unpolarized pools of substrate. 689 

 690 

5.2 Simulations of Michaelis-Menten reaction 691 

Figure 7(b-c) shows the results of numerical integration of Eqs. (62-68) with an initial hyperpolarized signal 692 

𝑆∗(0) = 0.001  (corresponding to a concentration [𝑆]0 = 1 mM via the experimentally determined scaling factor, 693 

which here was set to 1) and enzyme concentration [𝐸]0 = 1 × 10−9 M. The assigned longitudinal relaxation rate 694 

constants were 𝑅1𝑆 = 𝑅1𝐸𝑆 = 𝑅1𝑃 = 1/60𝑠−1. In the first instance, we set the longitudinal relaxation times of 695 

substrate, enzyme-substrate complex and product to be equal (this is discussed further below). The reaction rate 696 

constants were 𝑘1 = 1 × 107 𝑀−1𝑠−1, 𝑘−1 = 1 × 102 𝑠−1, 𝑘2 = 5 × 103 𝑠−1, 𝑘−2 = 0 𝑀−1𝑠−1, such that 𝐾𝑀 =697 

5.1 × 10−4 𝑀 and 𝑉𝑚𝑎𝑥 = 5 × 10−6 𝑀 𝑠−1. The time dependences of 𝑆∗(𝑡), 𝑆(𝑡), 𝑃∗(𝑡) and 𝑃(𝑡) are shown in 698 

Fig. 7(b), left panel, subject to standard uni-directional Michaelis-Menten kinetics; and in Fig. 7(c), left panel, the 699 

time dependence of 𝐸𝑆∗(𝑡) and 𝐸𝑆(𝑡). The time dependence of 𝑆∗(𝑡) + 𝑆(𝑡) = [𝑆(𝑡)] and 𝑃∗(𝑡) + 𝑃(𝑡) = [𝑃(𝑡)] 700 

are shown in Fig. 7(b), right panel, and 𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡) = [𝐸𝑆(𝑡)] and [𝐸(𝑡)] are shown in Fig. 7(c), right panel, 701 
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which recapture conventional chemical kinetics of [𝑆(𝑡)], [𝐸𝑆(𝑡)], [𝑃(𝑡)] and [𝐸(𝑡)], as required for 702 

mathematical and physical consistency. 703 

 704 

 

 

 

Figure 7 Simulated Michaelis-Menten kinetics for exchange of hyperpolarized solutes E + S*  ES*  P* + E conforming 

to conservation of mass, assuming initial hyperpolarized magnetization of only solute 𝑆∗(0) = 0.001 and [𝐸]0 =

1 × 10−9 M. Longitudinal relaxation rate constants were 𝑅1𝑆 = 𝑅1𝐸𝑆 = 𝑅1𝑃 = 1/60𝑠−1. The reaction rate constants were 

𝑘1 = 1 × 107 𝑀−1
𝑠−1, 𝑘−1 = 1 × 102 𝑠−1, 𝑘2 = 5 × 103 𝑠−1 and 𝑘−2 = 0 𝑀−1

𝑠−1, such that 𝐾𝑀 = 5.1 × 10−4 𝑀 and 

𝑉𝑚𝑎𝑥 = 5 × 10−6 𝑀 𝑠−1. Left panels: (b) Simulated time dependence of 𝑆∗(𝑡), 𝑆(𝑡), 𝑃∗(𝑡) and 𝑃(𝑡); and (c) simulated 

time dependence of 𝐸𝑆∗(𝑡) and 𝐸𝑆(𝑡). Right panels: (b) simulated time dependence of 𝑆∗(𝑡) + 𝑆(𝑡) = [𝑆(𝑡)] and 𝑃∗(𝑡) +

𝑃(𝑡) = [𝑃(𝑡)]; and (c) 𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡) = [𝐸𝑆(𝑡)] and [𝐸(𝑡)]. 
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It is worth considering some of the consequences of Eq. (75) when studying enzyme mediated reactions 705 

with hyperpolarized substrates. When the substrate concentration [𝑆∗(𝑡) + 𝑆(𝑡)] is much greater than 𝐾𝑀 then the 706 

rate of product formation 𝑑([𝑃∗(𝑡) + 𝑃(𝑡)])/𝑑𝑡 is given by 𝑣 = 𝑘2[𝐸]0 = 𝑉𝑚𝑎𝑥, which is constant (i.e., it is 707 

effectively a zero order reaction with respect to substrate concentration). The enzyme is said to be saturated; its 708 

rate is independent of substrate concentration but 𝑉𝑚𝑎𝑥 is proportional to the enzyme concentration [𝐸]0. When 709 

the substrate concentration [𝑆∗(𝑡) + 𝑆(𝑡)] is much less than 𝐾𝑀 then the rate of product formation 710 

𝑑([𝑃∗(𝑡) + 𝑃(𝑡)])/𝑑𝑡 is given by 𝑉 = 𝑘2[𝐸]0[𝑆
∗(𝑡) + 𝑆(𝑡)]/𝐾𝑀 and the reaction is effectively first order with 711 

respect to substrate concentration. Nevertheless, the rate is still proportional to [𝐸]0. The kinetics of enzyme 712 

systems, and indeed enzyme kinetics in general, are a composite of the two parameters KM
 and Vmax. The influences 713 

on one cannot be distinguished from the other on the basis of time-course experiments alone; separate 714 

measurements that are needed to estimate the total enzyme concentration. 715 

Further simulations were performed to explore the influence of a much shorter value of 𝑇1
𝐸𝑆 for the 716 

enzyme substrate complex, while 𝑇1
𝑆 and 𝑇1

𝑃  were unchanged. Even if it were assumed to be very small viz., 717 

𝑇1
𝐸𝑆 = 276.4 ms the time evolution was indistinguishable from that presented in Fig. 7; the corresponding curves 718 

were superimposable. The signal that resided on the enzyme substrate complex 𝐸𝑆∗ was 6 orders of magnitude 719 

lower than that of the substrate 𝑆∗ and product 𝑃∗. Therefore, the kinetics of signal evolution were dominated by 720 

𝑇1
𝑆 and 𝑇1

𝑃 while changes in 𝑇1
𝐸𝑆 could be ignored. An exception to this analysis might occur if the active site were 721 

next to a paramagnetic centre, such as is found in metalloproteins for which 𝑇1
𝐸𝑆 could be very much shorter than 722 

predicted (see the relaxation theory section above}. 723 

 724 

5.3 Enzyme inhibition and hyperpolarized substrate kinetics 725 

Our formalism can be readily extended to account for the influence of a ligand/solute to inhibit an enzyme. The 726 

simplest case is when a solute binds reversibly to the free enzyme E to form an enzyme inhibitor complex EI; 727 

hence, the enzyme becomes unable to bind and react with its substrate S. To describe this scenario, Eq. (68) is 728 

modified to include an additional pathway for the loss of free enzyme: 729 

 730 

 
𝑑[𝐸(𝑡)]

𝑑𝑡
= −𝑘1[𝐸(𝑡)][𝑆∗(𝑡) + 𝑆(𝑡)] + (𝑘−1 + 𝑘2)[𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡)] − 𝑘−2[𝐸(𝑡)][𝑃∗(𝑡) + 𝑃(𝑡)]

− 𝑘3[𝐸(𝑡)][𝐼(𝑡)] + 𝑘−3[𝐸𝐼(𝑡)]    . 

(76) 

 731 

The model is now extended to include differential equations describing the concentration of the inhibitor [𝐼(𝑡)] 732 

and the enzyme-inhibitor complex [𝐸𝐼(𝑡)]: 733 

 734 

 
𝑑[𝐼(𝑡)]

𝑑𝑡
= −𝑘3[𝐸(𝑡)][𝐼(𝑡)] + 𝑘−3[𝐸𝐼(𝑡)]    , 

  

 

 
𝑑[𝐸𝐼(𝑡)]

𝑑𝑡
= 𝑘3[𝐸(𝑡)][𝐼(𝑡)] − 𝑘−3[𝐸𝐼(𝑡)]    . 

 (77) 

 

Such equations can be incorporated into the Michaelis-Menten equations and we develop this next. 
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5.3.1 Types of enzyme inhibition 735 

There are three commonly encountered types of reversible enzyme inhibition (Kuchel, 2009): (i) a competitive 736 

inhibitor is structurally similar to the substrate and binds preferentially in the active site of the free enzyme, E, 737 

thus preventing the substrate from binding and reacting; (ii) an uncompetitive inhibitor binds only to the enzyme-738 

substrate complex and therefore causes substrate-concentration dependent inhibition; and (iii), a non-competitive 739 

inhibitor binds to both the free enzyme and to the enzyme-substrate complex; it causes a conformational change 740 

at the active site that inhibits (or even enhances) the reaction. Such an effect is referred to as allosteric inhibition 741 

(or activation). 742 

Accounting for all three scenarios, the free enzyme concentration is given by: 743 

 744 

 [𝐸(𝑡)] = [𝐸]0 − [𝐸𝐼(𝑡)] − [𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡)] − [𝐸𝑆𝐼∗(𝑡) + 𝐸𝑆𝐼(𝑡)]   . (78) 

 745 

Substituting:  746 

 747 

 
𝛼 = 1 +

[𝐼(𝑡)]

𝐾𝐼

   and   𝛼′ = 1 +
[𝐼(𝑡)]

𝐾𝐼′
    , (79) 

 748 

where 𝐾𝐼 = [𝐸(𝑡)][𝐼(𝑡)]/[𝐸𝐼(𝑡)] and 𝐾𝐼
′ = [𝐸𝑆(𝑡)][𝐼(𝑡)]/[𝐸𝑆𝐼(𝑡)], yields: 749 

 750 

 

 

𝑑([𝑃∗(𝑡) + 𝑃(𝑡)])

𝑑𝑡
=

𝑘2[𝐸]0[𝑆
∗(𝑡) + 𝑆(𝑡)]

𝛼𝐾𝑀 + 𝛼′[𝑆∗(𝑡) + 𝑆(𝑡)]
    . (80) 

 751 

The three types of enzyme inhibition can be distinguished by their influence on the kinetic parameters that are 752 

estimated in specially designed experiments performed on the enzyme over a range of substrate and inhibitor 753 

concentrations (Kuchel, 2009): (i) competitive inhibitors cause an increase in apparent KM value while Vmax is 754 

unchanged; (ii) uncompetitive inhibitors cause a reduction in 𝑉𝑚𝑎𝑥 while the apparent 𝐾𝑀 is unchanged; and (iii) 755 

non-competitive inhibitors cause both a reduction in 𝑉𝑚𝑎𝑥 and an increase in apparent 𝐾𝑀.  756 

An additional effect that can be considered is where either the substrate of the reaction [𝑆(𝑡)], or the 757 

product of the reaction, [𝑃(𝑡)], acts as the inhibitor, called unsurprisingly ‘substrate inhibition’ and ‘product 758 

inhibition’, respectively. The relevant enzyme kinetic equations are composed by substituting [𝐼(𝑡)] =759 

[𝑆∗(𝑡) + 𝑆(𝑡)] or [𝐼(𝑡)] = [𝑃∗(𝑡) + 𝑃(𝑡)] in the above equations. 760 

 761 

  762 
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6 Cofactors and unlabelled pools – Lactate Dehydrogenase 763 

We now consider a real system that is of contemporary interest for in vivo clinical studies using dDNP. It is lactate 764 

dehydrogenase (E.C. 1.1.1.27). Consider the LDH catalysed reaction of a hyperpolarized substrate; it follows an 765 

ordered sequential reaction in which E + NADH  E·NADH + Pyr*  E·NAD + Lac*  E + NAD+. Again, we 766 

assume that relaxation of magnetization occurs through T1 processes to form a pool of reactants E + NADH  767 

E·NADH + Pyr  E·NAD + Lac  E + NAD+ as shown in Fig. 8(a). The relevant differential equations used to 768 

describe the kinetics are (omitting the square brackets that denote concentration): 769 

 770 

 
𝑑𝑃𝑦𝑟∗(𝑡)

𝑑𝑡
= −𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)𝑃𝑦𝑟∗(𝑡) + 𝑘−2𝐸.𝑁𝐴𝐷(𝑡)𝐿𝑎𝑐∗(𝑡) − 𝑅1

𝑃𝑃𝑦𝑟∗(𝑡)    , (81) 

 
𝑑𝐿𝑎𝑐∗(𝑡)

𝑑𝑡
= 𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)𝑃𝑦𝑟∗(𝑡) − 𝑘−2𝐸.𝑁𝐴𝐷(𝑡)𝐿𝑎𝑐∗(𝑡) − 𝑅1

𝐿𝐿𝑎𝑐∗(𝑡)    , (82) 

 
𝑑𝑃𝑦𝑟(𝑡)

𝑑𝑡
= −𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)𝑃𝑦𝑟(𝑡) + 𝑘−2𝐸.𝑁𝐴𝐷(𝑡)𝐿𝑎𝑐(𝑡) + 𝑅1

𝑃𝑃𝑦𝑟∗(𝑡)    , (83) 

 
𝑑𝐿𝑎𝑐(𝑡)

𝑑𝑡
= 𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)𝑃𝑦𝑟(𝑡) − 𝑘−2𝐸.𝑁𝐴𝐷(𝑡)𝐿𝑎𝑐(𝑡) + 𝑅1

𝐿𝐿𝑎𝑐∗(𝑡)    , (84) 

 
𝑑𝑁𝐴𝐷𝐻(𝑡)

𝑑𝑡
= −𝑘1𝐸(𝑡)𝑁𝐴𝐷𝐻(𝑡) + 𝑘−1𝐸.𝑁𝐴𝐷𝐻(𝑡)    , (85) 

𝑑𝑁𝐴𝐷(𝑡)

𝑑𝑡
= 𝑘3𝐸.𝑁𝐴𝐷(𝑡) − 𝑘−3𝐸(𝑡)𝑁𝐴𝐷(𝑡)    , (86) 

𝑑𝐸.𝑁𝐴𝐷𝐻(𝑡)

𝑑𝑡
= 𝑘1𝐸(𝑡)𝑁𝐴𝐷𝐻(𝑡) − 𝑘−1𝐸.𝑁𝐴𝐷𝐻(𝑡) − 𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)(𝑃𝑦𝑟∗(𝑡) + 𝑃𝑦𝑟(𝑡))

+ 𝑘−2𝐸.𝑁𝐴𝐷(𝑡)(𝐿𝑎𝑐∗(𝑡) + 𝐿𝑎𝑐(𝑡))    , 

(87) 

𝑑𝐸.𝑁𝐴𝐷(𝑡)

𝑑𝑡
= 𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)(𝑃𝑦𝑟∗(𝑡) + 𝑃𝑦𝑟(𝑡)) − 𝑘−2𝐸.𝑁𝐴𝐷(𝑡)(𝐿𝑎𝑐∗(𝑡) + 𝐿𝑎𝑐(𝑡))

− 𝑘3𝐸.𝑁𝐴𝐷(𝑡) + 𝑘−3𝐸(𝑡)𝑁𝐴𝐷(𝑡)    , 

(88) 

𝑑𝐸(𝑡)

𝑑𝑡
= −𝑘1𝐸(𝑡)𝑁𝐴𝐷𝐻(𝑡) + 𝑘−1𝐸.𝑁𝐴𝐷𝐻(𝑡) + 𝑘3𝐸.𝑁𝐴𝐷(𝑡) − 𝑘−3𝐸(𝑡)𝑁𝐴𝐷(𝑡)    , (89) 

 771 

where 𝐸(𝑡) is the concentration of free enzyme, 𝑁𝐴𝐷(𝑡) and 𝑁𝐴𝐷𝐻(𝑡) are the concentrations of the free co-772 

factors, 𝐸.𝑁𝐴𝐷(𝑡) and 𝐸.𝑁𝐴𝐷𝐻(𝑡) are the concentrations of the enzyme-cofactor complexes and 𝑃𝑦𝑟(𝑡) and 773 

𝐿𝑎𝑐(𝑡) are the free substrates with relaxation rate constants 𝑅1
𝑃 and 𝑅1

𝐿, respectively. 774 

Mass is conserved as is confirmed by the fact that 𝑑(𝑃𝑦𝑟∗(𝑡) + 𝑃𝑦𝑟(𝑡) + 𝐿𝑎𝑐∗(𝑡) + 𝐿𝑎𝑐(𝑡))/𝑑𝑡 = 0. 775 

Enzyme concentration is conserved as is confirmed by 𝑑(𝐸. 𝑁𝐴𝐷𝐻(𝑡) + 𝐸.𝑁𝐴𝐷(𝑡) + 𝐸(𝑡))/𝑑𝑡 = 0 and 776 

cofactor pools are conserved as is confirmed by 𝑑(𝑁𝐴𝐷𝐻(𝑡) + 𝑁𝐴𝐷(𝑡) + 𝐸.𝑁𝐴𝐷𝐻(𝑡) + 𝐸.𝑁𝐴𝐷(𝑡))/𝑑𝑡 = 0. 777 

Therefore, provided 𝑃𝑦𝑟∗(0) + 𝑃𝑦𝑟(0) = [𝑃𝑦𝑟]0 and 𝐿𝑎𝑐∗(0) + 𝐿𝑎𝑐(0) = [𝐿𝑎𝑐]0 then 𝑃𝑦𝑟∗(𝑡) + 𝑃𝑦𝑟(𝑡) =778 

[𝑃𝑦𝑟(𝑡)] and  𝐿𝑎𝑐∗(𝑡) + 𝐿𝑎𝑐(𝑡) = [𝐿𝑎𝑐(𝑡)], respectively. 779 
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Equations (81-89) can be written in matrix vector form as: 

 

𝑑

𝑑𝑡

[
 
 
 
 
 
 
 
 
 

𝑃𝑦𝑟∗(𝑡)

𝐿𝑎𝑐∗(𝑡)
𝑃𝑦𝑟(𝑡)
𝐿𝑎𝑐(𝑡)

𝑁𝐴𝐷𝐻(𝑡)
𝑁𝐴𝐷(𝑡)

𝐸.𝑁𝐴𝐷𝐻(𝑡)
𝐸.𝑁𝐴𝐷(𝑡)

𝐸(𝑡) ]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 −𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡) − 𝑅1

𝑃

𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)

𝑅1
𝑃

0
0
0

−𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)
𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)

0

  

𝑘−2𝐸.𝑁𝐴𝐷(𝑡)

−𝑘−2𝐸.𝑁𝐴𝐷(𝑡) − 𝑅1
𝐿

0
𝑅1

𝐿

0
0

𝑘−2𝐸.𝑁𝐴𝐷(𝑡)
−𝑘−2𝐸.𝑁𝐴𝐷(𝑡)

0

  

0
0

−𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)
𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)

0
0

−𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)
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 780 

We can apply a similarity transform given by: 781 

𝑈 =
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 782 

To yield an equation of motion in the transformed basis vector given by: 783 

 784 

𝑑

𝑑𝑡

[
 
 
 
 
 
 
 
 
 

𝑃𝑦𝑟∗(𝑡)

𝐿𝑎𝑐∗(𝑡)

𝑃𝑦𝑟∗(𝑡) + 𝑃𝑦𝑟(𝑡)

𝐿𝑎𝑐∗(𝑡) + 𝐿𝑎𝑐(𝑡)

𝑁𝐴𝐷𝐻(𝑡)

𝑁𝐴𝐷(𝑡)

𝐸. 𝑁𝐴𝐷𝐻(𝑡)

𝐸. 𝑁𝐴𝐷(𝑡)

𝐸(𝑡) ]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 −𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡) − 𝑅1

𝑃

𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)
0
0
0
0
0
0
0

  

𝑘−2𝐸.𝑁𝐴𝐷(𝑡)

−𝑘−2𝐸.𝑁𝐴𝐷(𝑡) − 𝑅1
𝐿

0
0
0
0
0
0
0

  

0
0

−𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)

𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)
0
0

−𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)

𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)
0

    

0
0

𝑘−2𝐸.𝑁𝐴𝐷(𝑡)

−𝑘−2𝐸.𝑁𝐴𝐷(𝑡)
0
0

𝑘−2𝐸.𝑁𝐴𝐷(𝑡)

−𝑘−2𝐸.𝑁𝐴𝐷(𝑡)
0

  

0
0
0
0

−𝑘1𝐸(𝑡)
0

𝑘1𝐸(𝑡)
0

𝑘1𝐸(𝑡)

  

0
0
0
0
0

−𝑘−3𝐸(𝑡)

𝑘−3𝐸(𝑡)
0

−𝑘−3𝐸(𝑡)

  

0
0
0
0

𝑘−1

0
−𝑘−1

0
𝑘−1

  

0
0
0
0
0
𝑘3

0
−𝑘3

𝑘3

  

0
0
0
0
0
0
0
0
0]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 

𝑃𝑦𝑟∗(𝑡)

𝐿𝑎𝑐∗(𝑡)

𝑃𝑦𝑟∗(𝑡) + 𝑃𝑦𝑟(𝑡)

𝐿𝑎𝑐∗(𝑡) + 𝐿𝑎𝑐(𝑡)

𝑁𝐴𝐷𝐻(𝑡)

𝑁𝐴𝐷(𝑡)

𝐸.𝑁𝐴𝐷𝐻(𝑡)

𝐸. 𝑁𝐴𝐷(𝑡)

𝐸(𝑡) ]
 
 
 
 
 
 
 
 
 

    . 

 

 

 

(92) 

  785 



35 
 

 786 
 

 

 

Figure 8 Simulated kinetics of lactate dehydrogenase for exchange of solutes, E + NADH  E·NADH + Pyr*  E·NAD 

+ Lac*  E + NAD+, conforming to conservation of mass, assuming initial hyperpolarized magnetization of only solute 

𝑃𝑦𝑟∗(0) = 0.001 and [𝐸]0 = 1.2 × 10−9 M. Longitudinal relaxation rate constants were 𝑅1
𝑃 = 𝑅1

𝐿 = 1/60 s−1. Rate 

constants were 𝑘1 = 1.03 × 108 𝑀−1
𝑠−1, 𝑘−1 = 549 𝑠−1, 𝑘2 = 6.72 × 106 𝑀−1

𝑠−1, 𝑘−2 = 3.44 × 104 𝑀−1
𝑠−1, 𝑘3 =

842 𝑠−1 and 𝑘−3 = 9.12 × 105 𝑀−1
𝑠−1. Initial cofactor concentrations were [𝑁𝐴𝐷𝐻(0)] = 1.0 × 10−4 M and 

[𝑁𝐴𝐷(0)] = 1.0 × 10−3 M. (b) Simulated time dependence 𝑃𝑦𝑟∗(𝑡), 𝑃𝑦𝑟(𝑡), 𝐿𝑎𝑐∗(𝑡) and 𝐿𝑎𝑐(𝑡) left panel, [𝐸(𝑡)], 

[𝐸.𝑁𝐴𝐷(𝑡)] and [𝐸.𝑁𝐴𝐷𝐻(𝑡)], middle panel, and 𝑃𝑦𝑟∗(𝑡) + 𝑃𝑦𝑟(𝑡) = [𝑃𝑦𝑟(𝑡)], 𝐿𝑎𝑐∗(𝑡) + 𝐿𝑎𝑐(𝑡) = [𝐿𝑎𝑐(𝑡)], 

[𝑁𝐴𝐷(𝑡)] and [𝑁𝐴𝐷𝐻(𝑡)], right panel. (c) Simulations of the time dependence of 𝐿𝑎𝑐∗(𝑡) under the conditions that: 

[𝐸]0 = (i) 0.6 × 10−9 M; (ii) 1.2 × 10−9 M; and (iii) 2.4 × 10−9 M, while all other parameters remained unchanged. (d) 

Simulations of the time dependence of 𝐿𝑎𝑐∗(𝑡) under the conditions that: 𝐿𝑎𝑐(0) = (i) 0 mM; (ii) 20 mM; and (iii) 40 

mM, while all other parameters remained unchanged. 
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Figure 8(b) shows numerical simulations of the time evolution of the system that is described by Eqs. 787 

(81-89) with initial hyperpolarized signal/concentration (see above for a comment on this aspect) 𝑃𝑦𝑟∗(𝑡) =788 

0.001 and longitudinal relaxation rate constants 𝑅1
𝑃 = 𝑅1

𝐿 = 1/60s−1. The kinetic parameters used for lactate 789 

dehydrogenase were as previously published (Zewe and Fromm, 1962; Witney et al., 2011) for the rabbit muscle  790 

enzyme. Enzyme concentration was [𝐸]0 = 1.2 × 10−9 M and rate constants 𝑘1 = 1.03 × 108 𝑀−1𝑠−1, 𝑘−1 =791 

549 𝑠−1, 𝑘2 = 6.72 × 106 𝑀−1𝑠−1, 𝑘−2 = 3.44 × 104 𝑀−1𝑠−1, 𝑘3 = 842 𝑠−1, and 𝑘−3 = 9.12 × 105 𝑀−1𝑠−1.  792 

The computed time dependence of polarized and unpolarized pools 𝑃𝑦𝑟∗(𝑡), 𝑃𝑦𝑟(𝑡), 𝐿𝑎𝑐∗(𝑡) and 793 

𝐿𝑎𝑐(𝑡) are shown in Fig. 8(b), left panel. The time dependence of [𝐸(𝑡)], [𝐸.𝑁𝐴𝐷(𝑡)] and [𝐸.𝑁𝐴𝐷𝐻(𝑡)] are 794 

shown in Fig. 8(b), middle panel. The time dependence of 𝑃𝑦𝑟∗(𝑡) + 𝑃𝑦𝑟(𝑡) = [𝑃𝑦𝑟(𝑡)], 𝐿𝑎𝑐∗(𝑡) + 𝐿𝑎𝑐(𝑡) =795 

[𝐿𝑎𝑐(𝑡)], [𝑁𝐴𝐷(𝑡)] and [𝑁𝐴𝐷𝐻(𝑡)] are shown in Fig. 8(b), right panel. Several interesting features are evident. 796 

First, the model predicted the expected time dependences of both hyperpolarized pyruvate 𝑃𝑦𝑟∗(𝑡) and its 797 

conversion to 𝐿𝑎𝑐∗(𝑡). Under the conditions of the simulation, the free enzyme [𝐸(𝑡)] was rapidly depleted to 798 

form an equilibrium of [𝐸.𝑁𝐴𝐷(𝑡)] and [𝐸.𝑁𝐴𝐷𝐻(𝑡)]. During the reaction with 𝑃𝑦𝑟∗(𝑡), the equilibrium 799 

position of the enzyme was altered to give a final equilibrium position that could then be appreciated from the 800 

total pools of 𝑃𝑦𝑟∗(𝑡) + 𝑃𝑦𝑟(𝑡) = [𝑃𝑦𝑟(𝑡)] and  𝐿𝑎𝑐∗(𝑡) + 𝐿𝑎𝑐(𝑡) = [𝐿𝑎𝑐(𝑡)], which predicts a net conversion 801 

of [𝑃𝑦𝑟(𝑡)] to [𝐿𝑎𝑐(𝑡)] of ~10%. Also note, from this simulation, the activity of the LDH switches off at t = 200s 802 

since the concentration of [NADH(t)] is limiting in this simulation i.e. it becomes depleted. This does not happen 803 

if [NADH(t)] is increased. In a normal cellular context NADH would be regenerated by glyceraldehyde 3-804 

phosphate dehydrogenase during glycolysis. 805 

Finally, we consider real case scenarios that are reported in the literature i.e., measurement of 806 

hyperpolarized [1-13C] pyruvate kinetics in living cells (Andersson et al., 2007; Day et al., 2007; Karlsson et al., 807 

2007; Hill et al., 2013a; Hill et al., 2013b; Lin et al., 2014; Pagès et al., 2014; Beloueche-Babari et al., 2017). 808 

Figure 8(c) shows the situation where the LDH expression level is altered, e.g., by the progression of disease 809 

(LDH expression is known to be upregulated in more aggressive cancer phenotypes (Albers et al., 2008) or down 810 

regulated during therapy (Ward et al., 2010), which can be explored through the value of [𝐸]0. Figure 8(c) shows 811 

simulations of the 𝐿𝑎𝑐∗(𝑡) signal under the conditions that: [𝐸]0 = (i) 0.6 × 10−9 M; (ii) 1.2 × 10−9 M; and (iii) 812 

2.4 × 10−9 M, while all other parameters remained unchanged, relative to those used for Fig. 8(b). It is apparent 813 

that increased enzyme expression leads to an increase in the apparent rate of conversion of 𝑃𝑦𝑟∗(𝑡) to 𝐿𝑎𝑐∗(𝑡) 814 

even in the absence of a change in enzyme activity, as seen in real experiments. Another situation that is frequently 815 

encountered is the change in the pool size of endogenous lactate, for example in response to hypoxia, which can 816 

be explored through the parameter 𝐿𝑎𝑐(0). Figure 8(d) shows simulations of the 𝐿𝑎𝑐∗(𝑡) signal under the 817 

conditions that: 𝐿𝑎𝑐(0) = (i) 0 mM; (ii) 20 mM; and (iii) 40 mM, while all other parameters remained unchanged, 818 

relative to those used to generate Fig. 8(b). The model therefore predicts that an increased pool of endogenous 819 

unpolarized lactate leads to an increase in the rate of conversion of 𝑃𝑦𝑟∗(𝑡) to 𝐿𝑎𝑐∗(𝑡), as reported widely in the 820 

literature (Day et al., 2007). 821 

 822 

  823 
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7 Conclusions 824 

We have described an approach to formulating the kinetic master equations that describe the time evolution of 825 

hyperpolarized 13C NMR signals in reacting (bio)chemical systems, including enzymes with two or more 826 

substrates, and various enzyme reaction mechanisms as classified by Cleland. The modelling can be the basis of 827 

simulating many pertinent features that are seen in dDNP experiments. Derivation of the Michaelis-Menten 828 

equation in the context of dDNP experiments illustrates why formation of a hyperpolarized enzyme-substrate 829 

complex does not cause an appreciable loss of the signal from the substrate or product. It was also able to answer 830 

why the concentration of an unlabelled pool of substrate, for example 12C lactate, causes an increase in the rate of 831 

exchange of the 13C labelled pool, and to what extent the equilibrium position of an enzyme-catalyzed reaction, 832 

for example LDH, is altered upon adding hyperpolarized substrate. The formalism described here should 833 

contribute to a fuller mechanistic understanding of the time courses derived from dDNP experiments and will be 834 

relevant to ongoing clinical applications using dDNP. 835 
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