1	Supporting Information
2 3	Small-molecule inhibitors of the PDZ domain of Dishevelled proteins interrupt Wnt signalling
4	
5	Nestor Kamdem ^{1,2} , Yvette Roske ³ , Dmytro Kovalskyy ^{4,6} Maxim O. Platonov ^{4,6} , Oleksii Balinskyi
6	^{4,6} , Annika Kreuchwig ^{1,2} , Jörn Saupe ^{1,2} , Liang Fang ^{2,3} , Anne Diehl ¹ , Peter Schmieder ¹ , Gerd Krause
7	¹ , Jörg Rademann ^{1,5} , Udo Heinemann ^{2,3} , Walter Birchmeier ³ and Hartmut Oschkinat ^{1,2} .
8	
9 10	Leibniz Forschungeingtitut für Meleladere Dhermelederie, Debert Dögele Streße 10, 12125 Derlin, Cormony
10	² Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Germany
12	³ Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
13	⁴ Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
14	⁵ Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
15	⁶ Taras Shevchenko National University, 62 Volodymyrska, Kyiv 01033, Ukraine
10 17	
18	Corresponding Author *Mail: oschkinat@fmp-berlin.de; phone: +49 030 94793160
19 20	Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
21	Tables of contents
23	1. Structure-based alignment of the amino acid sequences of Dvl-1,2,3 PDZ ; PSD95-PDZ-1,2,3 ; Af-
24	6 and Syn PDZ domains. (S.2)
25	2. 1H-15N HSQC spectra of Dvl-3 PDZ domain alone and in the presence of varying concentrations of
26	compound 3. (S.3)
27	3. Detailed views of diverse compounds bound to the Dvl-3 PDZ domain. (S.4)
28	4. Cell viability assays of compounds 3, 7,8, 9, 10, (A) and 18, 20, 21 (B). (S.5)
29	5. ITC binding assays of compound 18 with Dvl-3 PDZ (A) and with Dvl-1 PDZ (B). (S.5)
30	6. Structures of selected compounds used for comparison to our compounds. (S.6)
31	7. ITC data of selected compounds used for comparison to our compounds. (S.7)
32	8. Definition of PDZ binding site. (S.8)
33	9. Purity check of compounds. (S.9)
34	– Purity check of NPL-1011 compound. (S.9)
35	– Purity check of Sulindac compound. (S.10)

36 –	Purity check of CalBioChe	m-322338 compound. (S.11)
------	---------------------------	---------------------------

- 37 Purity check of NSC668036 compound. (S.12)
- 38 LCMS of intermediate compound 8. (S.13)
- 39 LCMS of intermediate compound 14. (S.13)
- **10.** Chemical shift perturbation values of Dvl-3 PDZ and Dvl-1 PDZ for compounds (3-21). (S.14)
- **11.** Data collection and refinement statistics of compounds 3, 5, 6, 7. (S.15)
- **12.** Data collection and refinement statistics of compounds 11, 12, 18. (S.16)
- 43 13. Selectivity of ligands derived from chemical shift perturbation of compounds tested at other PDZ
- 44 domains. (S.17)
- **14.** Details of Multifilter routines. (S.17)
- **15.** Smiles codes and Compounds ID. (S.18)
- **16.** NMR characterization of synthesized compounds (8, 11, 13, 14, 15, 16, 17). (S.21)

50
51 1. Structure-based alignment of the amino acid sequences of Dvl-1,2,3 PDZ ; PSD95-PDZ-1,2,3 ;
52 Af-6 and Syn PDZ domains.

55	hDVL1	TVTLNMERHH <mark>FLGI</mark> SIVGQS NDRGDGGIYI GSIMKGGAVA ADGRIEPGDM
56	hDVL2	TVTLNMEKYN FLGISIVGQS NERGDGGIYI GSIMKGGAVA ADGRIEPGDM
57	hDVL3	TVTLNMEKYN FLGISIVGQS NERGDGGIYI GSIMKGGAVA ADGRIEPGDM
58	PSD-95 PDZ1	EITLERGN-S GLGFSIAGGT DNPHIGDDPSIFI TKIIPGGAAA QDGRLRVNDS
59	PSD-95 PDZ2	EIKLIKGP-K GLGFSIAGGV GNQHIPGDNSIYV TKIIEGGAAH KDGRLQIGDK
60	PSD-95 PDZ3	RIVIHRGS-T GLGFNIVGGEDGEGIFI SFILAGGPAD LSGELRKGDQ
61	hAF6 -	ITVTLKKQN GMGLSIVAAK GAGQDKLGIYV KSVVKGGAAD VDGRLAAGDQ
62	h_alpha_Syn l	PDZ RVTVRKADAG GLGISIKGGRENKMPILI SKIFKGLAAD QTEALFVGDA
63	mShank3 PDZ	VAILQKRDHE GFGFVLRGAK AETPIEEFTP TPAFPALQYL ESVDVEGVAW RAG-LRTGDF
64		
65	hDVL1	LLQVNDVNFE NMSNDDAVRV LREIVSQTGP ISLTVAKCWD PT
66	hDVL2	LLQVNDMNFE NMSNDDAVRV LRDIVHKPGP IVLTVAKCWD PS
67	hDVL3	LLQVNEINFE NMSNDDAVRV LREIVHKPGP ITLTVAKCWD PS
68	PSD-95 PDZ1	ILFVNEVDVR EVTHSAAVEA LKEAGSI VRLYVMRR
69	PSD-95 PDZ2	ILAVNSVGLE DVMHEDAVAA LKNTYDV VYLKVAKP
70	PSD-95 PDZ3	ILSVNGVDLR NASHEQAAIA LKNAGQT VTIIAQYK
71	hAF6	LLSVDGRSLV GLSQERAAEL MTRTSSV VTLEVAKQG
72	h_alpha_Syn l	PDZ ILSVNGEDLS SATHDEAVQV LKKTGKE VVLEVKYMK
73	mShank3 PDZ	LIEVNGVNVV KVGHKQVVGL IRQGGNR LVMKVVSVT
74		
75	Figure S1: St	ructure-based alignment of the amino acid sequences of Dv11,2 and 3 PDZ, Psd-1,2,3 PDZ, Af-6 and
76	Svn PDZ don	nains. For Dvl PDZ, differences are highlighted in blue and similarities are highlighted in purple.
77	UNIPROT co	des: 014640 (Dvl-1 PDZ): 014641 (Dvl-2 PDZ): 092997 (Dvl-3 PDZ) P78352 (Psd-1 Psd-2 Psd-
., 78	3 PD7): 013/	124 (Alpha-1 Svtr PDZ); P55196 (Af6 PDZ); O4ACU6
70	(mShople 2 D)	77)

(mShank-3 PDZ)

2. 1H-15N HSQC spectra of Dvl-3 PDZ domain alone and in the presence of varying concentrations of compound 3

Figure S2: ¹H-¹⁵N HSQC spectra of Dvl-3 PDZ domain alone and in the presence of varying concentrations of
 compound 1. The zoom shows the gradual increase of shifts with residues surrounding the binding pocket of
 Dvl-3 PDZ.

3. Detailed views of diverse compounds bound to the Dvl-3 PDZ domain

Figure S3: Detailed views of diverse compounds bound to the Dvl-3 PDZ domain. A) Surface representation of the Dvl-3 PDZ binding pocket with bound compound **3**. Positively charged amino acids are highlighted in blue and negatively charged amino acids in red. The hydrophobic Dvl-3 residues, contributing to compound binding, are colored yellow. B-E), G) and I) show detailed views of the binding pocket with bound compounds 3 (B), 5 (C), 6 (D), 7 (E), and 12 (G). Here, all Dvl-3 PDZ molecules per AU with their bound compounds are superimposed per species to demonstrate the binding variations per compound. Panels F and H present the additional unspecific compound binding to the Dvl-3 PDZ complex structures observed with compound 11 (F) and compound 12 (H). Compound 18 (I) The non-specifically bound compounds are presented with grey sticks for covalent bonds to carbon atoms, and compounds bound to the canonical binding pocket of Dvl-3 PDZ domain are shown as green stick models enclosed in 2Fo-Fc electron density contoured at 1 sigma. >>>

Figure S4: Cell viability assays of compounds 3, 7,8, 9, 10, (A) and 18, 20, 21 (B).

Figure S5: ITC binding assays of compound 18 with Dvl-3 PDZ (A) and with Dvl-1 PDZ (B). A 200 μM ligand
 solution containing 2% DMSO was injected 30 times in 10 μL aliquots at 120 s intervals with a stirring speed of

134 6. Structures of selected compounds used for comparison to our compounds

- Figure S6: Structures of selected compounds used for comparison to our compounds.

147 7. ITC data of selected compounds used for comparison to our compounds

148

149

150Figure S7: ITC data of A) NPL-101116i; B) Sulindac16d; C) CBC-322338/3289-862516e and D)151NSC66803616a A) NPL-101116i revealed a binding of 79.7 ± 53.3 μM to DVL3-PDZ with N= 0.90 ±1520.08, $\Delta H = -2.7 \pm 1.2$ kcal/mol, ΔG -5.5 kcal/mol, $-t\Delta S = -2.8$ kcal/mol, whereas Sulindac16d shown in153B) displayed an KD = 8.3 ± 2.5 μM with N=0.97 ± 0.14, $\Delta H1 = -31.9 \pm 5.3$ kcal/mol, $-t\Delta S1 = 24.9$ 154kcal/mol. C) Compound CBC-322338/3289-862516e and D) NSC66803616a did not show any binding to155the DVL3-PDZ domain.

156

158 8. Definition of PDZ binding site

Figure S8: Definition of PDZ binding site. The center of the binding site (blue sphere) is defined as the geometric

S. 9

204 Figure S9b : Purity check of Sulindac compound

Figure S9d : Purity check of NSC668036 compound

Figure S9e: LCMS of intermediate compound 8 : Peak at 1.1 refer to the instrumental signal prior to sample injection

Figure S9f: LCMS of intermediate compound 14 : Peak at 1.1 refer to the instrumental signal prior to sample injection

	ID	R_{I}	R_2	∆CSP(ppm) Dvl-3PDZ	ΔCSP(ppm) Dvl-1 PDZ
	2	F	o=	0.18	0.2
			ĊH ₃		
	3	F		0.27	0.086
	4	F	$\langle \gamma \gamma^{\star} \rangle$	0.26	0.3
	5	F	Т) ^х	0.23	0.15
	6	F	CH ₃	0.11	
	7	Br	()	0.23	0.3
	8	CF ₃		0.38	0.26
	9	Cl	$\tilde{\Omega}$	0.28	0.34
0 # .0	10	CH ₃	$\tilde{\Omega}^{\lambda}$	0.26	0.31
2 ² NH O	11	Br		0.31	0.18
ОН	12	Br		0.21	0.29
\mathbf{Y}	13	Br		0.2	0.22
Ŕ ₁	14	Br	Ŭ,	0.31	0.26
	15	CF ₃		0.28	0.24
	16 CF ₃	CF ₃	ČQ.	0.36	0.08
	17	CF ₃	Ŭ,	0.21	0.23
	18	CH ₃		0.30	0.36
	19	CH ₃		0.36	0.32
	20	CH ₃		0.35	0.36
	21	CH ₃		0.34	0.34

227 10. Chemical shift perturbation values of Dvl-3 PDZ and Dvl-1 PDZ for compounds (3-21)

Table S1: Chemical shift perturbation values of Dvl-3 PDZ and Dvl-1 PDZ for compounds (3 - 21). Δ CSP is the mean value of 3 amino acid residues showing strong chemical shift perturbations.

11. Data collection and refinement statistics of compounds 3, 5, 6, 7

236 237

Dvl3 with	3	5	6	7	
compound					
Data collection					
Space group	I4	P2 ₁ 2 ₁ 2 ₁	P61	I4	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	76.3, 76.3, 72.4	56.8, 70.0, 87.2	87.3, 87.3, 57.8	76.3, 76.3, 72.6	
α, β, γ (°)	90.0, 90.0, 90.0	90.0, 90.0, 90.0	90.0, 90.0, 120.0	90.0, 90.0, 90.0	
Resolution (Å)*	30.0-1.43 (1.47-1.43)	34.6-1.60 (1.64-1.60)	34.8-1.67 (1.71- 1.67)	30.9-1.85 (1.90- 1.85)	
R _{meas} *	4.4 (57.9)	3.8 (80.0)	5.5 (77.4)	5.8 (105.0)	
$< I / \sigma(I) > *$	22.1 (3.2)	23.6 (2.3)	19.1 (2.5)	20.5 (2.1)	
Completeness (%)*	100 (100)	99.7(99.8)	99.9 (100)	99.8 (99.6)	
Redundancy*	5.4 (5.3)	4.8 (4.8)	5.7 (5.7)	7.4 (7.3)	
Refinement					
No. total reflections	207003 (15053)	223464 (16344)	165069 (12220)	133118 (9391)	
No. unique reflections	38358 (2826)	46555 (3405)	29202 (2161)	17796 (1282)	
R _{work} / R _{free}	0.160 / 0.204	0.199/0.249	0.179/0.218	0.197/0.246	
Mean B factor $(Å^2)$	16.1	24.3	21.4	20.6	
Bond lengths (Å)	0.016	0.017	0.018	0.018	
Bond angles (°)	1.867	1.753	1.762	1.805	
Molecules in AU	2	4	2	2	
Ramachandran					
Favoured region (%)	97.0	98.0	96.6	96.4	
Outlier region (%)	0	0.3	0	0	

238

Data in highest resolution shell are indicated in parenthesis. *

239 240 Table S2: Data collection and refinement statistics.

241 242 12. Data collection and refinement statistics of compounds 11, 12, 18

Dvl3 with	11	12	18
compound			
Data collection			
Space group	I422	P61	P6422
<i>a</i> , <i>b</i> , <i>c</i> (Å)	78.6, 78.6, 77.8	85.3, 85.3, 58.9	89.3, 89.3, 131.6
α, β, γ (°)	90.0, 90.0, 90.0	90.0, 90.0, 120.0	90.0, 90.0, 120.0
Resolution (Å)*	32.0-1.58 (1.62- 1.58)	34.6-1.48 (1.52-1.48)	34.8-2.76 2.76)
R _{meas} *	6.4 (69.0)	6.7 (80.5)	14.2 (82.6)
$< I / \sigma(I) > *$	18.1 (2.9)	18.4 (3.2)	21.4 (4.1)
Completeness (%)*	99.5 (100)	100 (100)	99.9 (100)
Redundancy*	7.1 (7.2)	8.0 (8.0)	12.6 (13.3)
Refinement			
No. total reflections	120373.4 (8848.8)	326040 (24096)	107037 (8073)
No. unique reflections	16954 (1229)	40755 (3012)	8495 (607)
$R_{\rm work}/R_{\rm free}$	0.182 / 0.221	0.148/0.178	0.242/0.299
Mean B factor (Å ²)	23.0	22.7	36.6
Bond lengths (Å)	0.021	0.019	0.013
Bond angles (°)	2.028	1.933	1.442
Molecules in AU	1	2	2
Favoured region (%)	98.0	97.8	98.0

0.0

243

Data in highest resolution shell are indicated in parenthesis.

0

244 245 Table S3: Data collection and refinement statistics.

Outlier region (%)

0

(2.83-

246 13. Selectivity of ligands derived from chemical shift perturbation of compounds tested at other

247 PDZ domains

CP Id	PDZ									
	Dvl-1 Dvl	-3 PSD	95-1 PSD9	5-2 PSD9	5-3 Shank	α-1-S	yn AF-6			
18	0.32 0.30	0.05	0.1	0.05	0.01	0.08	0.01			
20	0.3 0.36	0.06	0.09	0.06	0.05	0.07	0.01			
21	0.3 0.36	0.07	0.09	0.1	0.05	0.08	0.01			

Table S4: Selectivity of ligands derived from chemical shift perturbation of compounds tested at other PDZ domains. The PDZ domain set includes PSD95-1, PSD95-2, PSD95-3, Shank-3, α -1 Syn and AF-6. Δ CSP is the mean value of 3 amino-acid residues showing chemical shift perturbation

255 14. Details of Multifilter routines

	Distance fr	om a ligand ator	H-bond	Resulting	
PDB structure ID	DB structure ID 2.5 Å			threshold	number of compounds
20s6, model 8	Gly21 HN	Leu22 HN	Leu22 CD1	3	228
2dlu, model 1	Gly29 HN Phe30 HN		Phe30 CE1	4	204
202t, chain B	Gly149 HN Phe150 HN		Phe150 CE1	4	332
1va8, model 3	Gly40 HN	Ala41 HN	Leu93 CG	4	284
1uhp, model 8	Gly22 HN	Phe23 HN	Phe86 CD2	3	329
3lnx, chain A	Leu18 HN	Gly19 HN	Ile20 CG1	4	220

S. 17

Table S5: Details of Multifilter routines.

- 280 281 282 283 15. Smiles codes and Compounds ID

STRUCTURE / ID in paper	MOLECULE	MW	COMPANY	SMILES CODE
	C ₁₆ H ₁₃ FN ₂ O ₅ S	364,3	ENAMINE T58 630 40	CN1C(=O)CC2=C1C=CC(=C2)S(=O)(=O)NC3=C(C=C(C=C3)F)C(=O)O
S NH O F 3	C ₁₇ H ₁₆ FNO ₄ S	349.4	ENAMINE T6324911	O=C(O)c1cc(F)ccc1NS(=O)(=O)c3ccc2CCCCc2c3
	C ₁₆ H ₁₄ FNO ₄ S	335.4	ENAMINE T6324915	O=C(O)c1cc(F)ccc1NS(=O)(=O)c3ccc2CCCc2c3
S NH O F 5	C ₁₇ H ₁₆ FNO ₄ S	349.4	ENAMINE T6305470	C1CCC2=C(C1)C=CC(=C2)S(=O)(=O)NC3=C(C=C(C=C3)F)C(=O)O
	C ₈ H ₈ FNO ₄ S	233.22	FMP	CS(=O)(=O)Nc1ccc(F)cc1C(=O)O
о S NH O H H O H Br 7	C17H16BrNO4S	410.3	ENMINE 28744264	O=C(O)c1cc(Br)ccc1NS(=O)(=O)c3ccc2CCCCc2c3
S NH O F F 8	C18H16F3NO4S	399,383	FMP	O=C(O)c1cc(C(F)(F)F)ccc1NS(=O)(=O)c3ccc2CCCCc2c3
	C17H16CINO4S	365.8	ENAMINE 28775339	O=C(O)c1cc(Cl)ccc1NS(=O)(=O)c3ccc2CCCCc2c3

9				
о о о о о о о о о о о о о о	C ₁₈ H ₁₉ NO4S	345.4	ENAMINE 233895416	Cc3ccc(NS(=O)(=O)c2ccc1CCCCc1c2)c(C(=O)O)c3
о S NH O Br	C ₁₇ H ₁₂ BrNO4S	406.3	FMP	O=C(O)c1cc(Br)ccc1NS(=O)(=O)c3ccc2cccc2c3
о о S NH O H O H H O H	C14H12BrNO4S	370.22	FMP	O=C(O)c1cc(Br)ccc1NS(=O)(=O)Cc2ccccc2
Br 13	C ₂₀ H ₁₆ BrNO ₅ S	462.314 1	FMP	O=C(O)c1cc(Br)ccc1NS(=O)(=O)c3ccc(COc2cccc2)cc3
о о о о о о о о о о о о о о	C ₁₆ H ₁₆ BrNO ₄ S	398.3	FMP	Cc2cc(C)c(S(=O)(=O)Nc1ccc(Br)cc1C(=O)O)c(C)c2
	C16H12F3NO5S	387.329 7	FMP	CC(=O)c2ccc(S(=O)(=O)Nc1ccc(C(F)(F)F)cc1C(=O)O)cc2
	C16H12F3NO6S	403,329	FMP	O=C(O)c1cc(C(F)(F)F)ccc1NS(=O)(=O)c3ccc2OCCOc2c3
	C17H16F3NO4S	387,372	FMP	Cc2cc(C)c(S(=O)(=O)Nc1ccc(C(F)(F)F)cc1C(=O)O)c(C)c2

	C23H19ClN4O5S	498,939	ENAMINE 71098340488	Cc4ccc(NS(=O)(=O)c3ccc(CNC(=O)c1n[nH]c2ccccc12)c(C1)c3)c(C(=O)O)c4
			21070340400	
N NH O				
ОН				
19				
10	C24H20ClN3O5S	497,952	ENAMINE	Cc4ccc(NS(=O)(=O)c3ccc(CNC(=O)c1c[nH]c2ccccc12)c(Cl)c3)c(C(=O)O)c4
			Z1098340555	
H S NH O				
ОН				
	C20H17BrClN3O5S	526,788	ENAMINE	Cc3ccc(NS(=O)(=O)c2ccc(CNC(=O)c1cc(Br)c[nH]1)c(Cl)c2)c(C(=O)O)c3
H S NH O			Z1098340559	
ОН				
20				
	C20H17Cl2N3O5S	482,337	ENAMINE	Cc3ccc(NS(=O)(=O)c2ccc(CNC(=O)c1cc(Cl)c[nH]1)c(Cl)c2)c(C(=O)O)c3
NH O			21098540500	
ОН				
21				
ОН	$C_{20}H_{16}N_2O_8S_2$	476.5	ENAMINE EN300 -245381	C1=CC=C(C(=C1)C(=O)O)NS(=O)(=O)C2=CC=CC(=C2)NS(=O)(=O)C3=C C=CC(=C3)C(=O)O
O, NH O				
o H So				
HOSSO				
	C ₂₂ H ₁₈ N ₂ O ₄	374.4	MERCK	C1=CC=C(C=C1)CC(=O)NC2=CC=CC(=C2)C(=O)NC3=CC=CC=C3C(=O)
N N N			322338-10MG	0
CBC-322338/3289-8625 ^{16e,i}				
	CarHacNaOa	460.5	SIGMA	
	C2111361N2O9	400.5	SML0046	C)C
NSC668036 ^{16a}	C ₂₀ H ₁₇ FO ₃ S	356.4	SIGMA	CC1=C(C2=C(C1=CC3=CC=C(C=C3)S(=O)C)C=CC(=C2)F)CC(=O)O
o=s	-2017 5		S8139-5G	
F' V V				
OH Sulindac ^{16d}				

- 288
- 289

290 2-(5,6,7,8-tetrahydronaphthalene-2-sulfonamido)- 5- (trifluoromethyl) benzoic acid (8)

OH

 $C_{18}H_{16}F_3NO_4S$

M=399,4 g/mol

- 291
- 292

293 294

297

6.90 [d, ³J_{3,4} = 7.1Hz, 1H, 3-H_{Ar}] 2.73 (m, 4H, CH₂); 1.6 (m, 4H, CH₂);-¹³C-NMR (75 MHz, DMSO-298 S. 21

- 299 d6): $\delta = 169.1(C, C_{Ar}-8]$, 152.7(C, C_{Ar}-2), 143.8 (C, C_{Ar}-4a'), 138.7(C, C_{Ar}-2'), 135.9 (C, C_{Ar}-8a'), 300 130.4(CH, C_{Ar}-4), 128.7 (CH, C_{Ar}-6), 127.5 (CH, C_{Ar}-1'), 124.0 (CH, C_{Ar}-4'), 121.6 (C, C-6), 118.2 (C, 301 C_{Ar}-5), 116.9 (C, C_{Ar}-3), 29.0 (CH₂, C-8'), 28.8 (CH₂, C-5'), 22.3 (CH₂, C-6'), 22.2 (CH₂, C-7'); mp: 302 177°C; MS (ESI) *m*/z:calcd. for C₁₈H₁₆F₃NO₄S, 399; found 400 [M+H]⁺.
- 303

304 **5-bromo-2-(naphthalene-2-sulfonamido) benzoic acid (11)**

305

306 307

308

- 311 312 (0.13 g, 67% yield)¹**H-NMR** (300 MHz, DMSO-d6): $\delta = 10.2 \text{ [s}, 1\text{H}, COOH$], 9.8 [s, 1H, NH] 8.59 [d, 313 ${}^{4}J_{1',3'} = 1.4$ Hz, 1 H, 1'-H_{Ar}], 8.17 [d, ${}^{3}J_{8',7'} = 7.8$ Hz, 1 H, 8'-H_{Ar}], 8.10 [d, ${}^{3}J_{4'3'} = 8.8$ Hz, 1 H, 4'-H_{Ar}], 314 8.02 [d, ${}^{3}J_{5',6'}$ = 7.8 Hz, 1 H, 5'-H_{Ar}], 7.93 [d, ${}^{4}J_{6,4}$ = 2.4 Hz, 1 H, 6-H_{Ar}], 7.77 [dd, ${}^{3}J_{3',4'}$ = 8.8 Hz, ${}^{4}J_{3',1'}$ 315 = 1.4Hz, 1 H, 3'-H_{Ar}], 7.72 – 7.65 [m, 3 H, 4-H_{Ar}, 6'-H_{Ar}, 7'-H_{Ar}], 7.51 [d, ${}^{3}J_{3,4} = 8.9$ Hz, 1 H, 3-H_{Ar}]. – 316 ¹³C-NMR (75 MHz, DMSO-d6): δ = 168.2 (C, C-7), 138.8 (C, C_{Ar}-2), 136.8 (CH, C_{Ar}-4), 135.3 (C, C_{Ar}-317 4a'),134.4 (C, CAr-8a'),133.4 (CH, CAr-6),131.4 (CH, CAr-6'), 129.3 (CH, CAr-4'),128.5 (CH, CAr-318 8'),127.8 (2xCH, C_{Ar}-5', C_{Ar}-7') 121.6 (CH, C_{Ar}-3'),120.6 (CH, C_{Ar}-3),119.0 (C, C_{Ar}-1),114.9 (C, C_{Ar}-319 5). Mp: 199°C; (ESI) m/z: calcd for C₁₇H₁₁BrNO₄S⁻; 403.9560; found 403.9613 [M-H]⁻.
- 320

322 323

326 $(0.07g, 42\% \text{ yield})^{1}$ H-NMR (300 MHz, DMSO-d6): $\delta = 10.57$ [s, 1 H, COO*H*], 8.05 [d, ${}^{4}J_{6,4} = 2.4$ Hz, 327 1 H, 6-H_{Ar}], 7.75 [dd, ${}^{3}J_{4,3} = 8.9$ Hz, ${}^{4}J_{4,6} = 2.4$ Hz, 1 H, H-4_{Ar}], 7.49 [d, ${}^{3}J_{3,4} = 8.9$ Hz, 1 H, 3-H_{Ar}], 7.33 – 328 7.28 [m, 3 H, 3'-H_{Ar}, 5'-H_{Ar}], 7.23 – 7.20 [m, 2 H, 4'-H_{Ar}], 5.75 [s, 1 H, N*H*], 4.72 [s, 2 H, 1'-H] 13 C-329 NMR (75 MHz, DMSO-d6): $\delta = 168.3$ (C, C-7), 139.9 (C, C_{Ar}-2), 137(CH, C_{Ar}-4), 133.4 (CH, C_{Ar}-6), 330 130.7 (CH, C_{Ar}-3'), 128.6 (C, C_{Ar}-2'), 128.4 (CH, C_{Ar}-5'), 128.3 (CH, C_{Ar}-4'), 119.5 (CH, C_{Ar}-3), 331 117.5 (C, C_{Ar}-1), 113.9 (C, C_{Ar}-5), 57.4 (CH₂, C-1'). Mp: 216°C; (ESI) *m*/z: calcd.for C₁₄H₁₁BrNO4S⁻ 332 367.9860; found 367.9878 [M-H]⁻.

333

334 5-bromo-2-(4-(phenoxymethyl)phenylsulfonamido)benzoic acid (13)

C20H16BrNO5S

M=462.3 g/mol

335

336

337

338 (0.6 g, 29% yield) 1H-NMR (300 MHz, DMSO-d6): $\delta = 7.97$ [d, ${}^{4}J_{6,4} = 2.4$ Hz, 1 H, 6-H_{Ar}), 7.85 (d, 339 ${}^{3}J_{2',3'} = 8.3$ Hz, 2 H, 3'-H_{Ar}), 7.73 [dd, ${}^{3}J_{4,3} = 8.9$ Hz, ${}^{4}J_{4,6} = 2.4$ Hz, 1 H,4-H_{Ar}], 7.63 [d, ${}^{3}J_{2',3'} = 8.3$ Hz, 2 340 H, 2'-H_{Ar}], 7.47 [d, ${}^{3}J_{3,4} = 8.9$ Hz, 1 H, 3-H_{Ar}], 7.29 [dd, ${}^{3}J_{3",2"} = {}^{3}J_{3",4"} = 7.3$ Hz, 2 H, 3"-H_{Ar}], 7.00 – 6.92 341 [m, 3 H, 4"-H_{Ar}, 2"-H_{Ar}], 5.17 [s, H, 5'-H]. – **13C-NMR** (75 MHz, DMSO-d6): $\delta = 168.2$ (C, C-7) , 342 157.9 (C, C_{Ar}-1"), 143.2 (C, C_{Ar}-4'), 138.8 (C, C_{Ar}-2), 137.5 (C, C_{Ar}-1'), 136.9 (CH, C_{Ar}-4) 133.5 (CH, 343 C_{Ar}-6), 129.4(CH, C_{Ar}-3"), 128.1(CH, C_{Ar}-2'),127.0 (CH, C_{Ar}-3'), 120.9 (CH, C_{Ar}-4"), 120.5 (CH, C_{Ar}-4")

- 344 3), 119.0 (C, C_{Ar}-1), 114.9(CH, C_{Ar}-5), 114.7 (CH, C_{Ar}-2"), 68.0 (CH₂, C-5') Mp: 175°C; (ESI) m/z:
- 345 calcd for C20H15BrNO5S- 459.9860 found 459.9878 [M-H]-.
- 346 5-bromo-2-(2,4,6-trimethylphenylsulfoamido)benzoic acid (14)347

351 (0.6 g, 78% yield) ¹H-NMR (300 MHz, DMSO-d₆): $\delta = 11.77$ [s,1H, *COOH*], 9.98 [s, 1H, *NH*], 7.68

352 [d, ${}^{3}J_{6,4} = 7.4$ Hz, 1H, 6-H_{Ar}], 7.51[dd, ${}^{3}J_{4,3} = 7.1$ Hz, ${}^{4}J_{4,6} = 7.4$ Hz, 1H 4-H_{Ar}], 7.17 [d, 2H, 4'-H_{Ar}, 6'-

353 H_{Ar}], 7.14 [d, ${}^{3}J_{3,4}$ = 1H,3- H_{Ar}], 2.56 [s, 6H, CH₃, 9'-H, 7'-H], 2.21 [s, 3H, CH₃, 8'-H];- 13 C-NMR (300

354 MHz, DMSO-d₆): δ = 168.8 (C, C-7), 143.3 (C, C_{Ar}-2), 139.5 (C, C_{Ar}-2'), 139.0 and 139.0 (2xC, C_{Ar}-2'), 139.0 and 139.0 and 139.0 (2xC, C_{Ar}-2'), 139.0 and 139.0 and

355 3', C_{Ar}-1') 137.3 (CH, C_{Ar}-4), 134.0 (CH, C_{Ar}-6'), 133.0 (CH, C_{Ar}-6), 132.5 and 132.5 (2XCH, C_{Ar}-4',

- 356 C_{Ar}-6') 119.1(CH, C_{Ar}-3), 117.9(C, C_{Ar}-5), 114.3 (C, C_{Ar}-1), 22.5 and 22.5 (2 x CH₃, C-7', C-9') 20.7
- 357 (CH₃, C-8'); mp: 185; MS (ESI): m/z 399 [M+H]+.
- 358

359 2-(4-acetylphenylsulfoamido)-5-(trifluoromethyl)benzoic acid (15)

360 361

362

- 368 (75 MHz, DMSO-d6): δ = 197.9 (C, C-7'), 169.1(C, C-8), 151.8 (C, C_{Ar}-2) 143.5 (C, C_{Ar}-1'), 142.5 (C, C, C) = 100.100 (C, C) = 100.1
- $369 \qquad C_{Ar}-4'), 140.6 \ (CH, \ C_{Ar}-4), 131.4 \ (CH, \ C_{Ar}-7), 129.6 \ (2XCH, \ C_{Ar}-3', \ C_{Ar}-5'), 128.6 \ (2xCH, \ C_{Ar}-2', \ C_{A$
- 370 6'), 127.6 (C, C_{Ar}-6), 123.0 (C, C-_{Ar}-5), 118.7 (CH, C_{Ar}-3), 27.3 (CH₃, C-8'); mp: 170°C; MS (ESI) *m*/z
- $\label{eq:2.1} 371 \qquad : \mbox{calcd. for $C_{16}H_{12}F_3NO_5S. 387$; found 388 $[M+H]^+$.}$
- 372 2-(2,3-dihydrobenzo[b][1,4]dioxine-6-sulfonamido)-5-(trifluoromethyl)benzoic acid (16)

375 376

377 (0.4 g, 65% yield) ¹**H-NMR** (300 MHz, DMSO-d6): $\delta = 11.48$ [s, 1H, *COOH*], 8.13[s, 1H, *NH*], 7.89

378 $[d, {}^{4}J_{6,4} = 3,9 \text{ Hz}, 1\text{H}, 6\text{-H}_{Ar}]$ 7.66 $[dd, {}^{3}J_{4,3} = 7.2 \text{ Hz}, {}^{4}J_{4,6} = 4.3 \text{ Hz}, 1\text{H}, 4\text{-H}_{Ar}],$

 $379 \quad 7.23 \text{ [d, } {}^{3}J_{4,3} = 7,2 \text{ Hz 1H, } 3-\text{H}_{\text{Ar}}\text{]}, \quad 7.11 \text{ [dd, } {}^{3}J_{2',3'} = 7.3\text{Hz}, \\ {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 2'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 2'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 2'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 2'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 2'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 2'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 2'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 2'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 2'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 2'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 2'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 2'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 2'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 3'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 3'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 3'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 3'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 3'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 3'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 3'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 3'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 3'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 3'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 3'-\text{HAr} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 3'-\text{HA} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 3'-\text{HA} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 3'-\text{HA} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1\text{H}, 3'-\text{HA} \text{] } 6.95 \text{ [d, } {}^{4}J_{2',8'} = 3.2\text{Hz}, \\ 1$

380 3.2 Hz, 1H, 8'-H_{Ar}] 4.23 – 4.31 [m, 4H, 5'-H, 6'-H]; - ¹³C-NMR (75-MHz, DMSO-d6): δ = 168.9(C, C)

381 C-8), 148.3(C, C-4'), 143.8 (C, C-2), 143.5 (C, C-7'), 131.3 (C, C-1'), 130.8 (CH, C-4), 128.6(CH, C-

382 6), 125.7 (C, C-7), 122.1 (C, C-5), 120.9 (CH, C-2'), 118.3 (CH, C-3), 118.1 (CH, C-3'), 116.8 (CH, C-

383 8'), 64.7(CH₂, C-5') 64.3 (CH₂, C-6'); mp: 178°C; MS (ESI) *m*/z: calcd. for C₁₆H₁₂F₃NO₆S. 403; found
384 404 [M+H]⁺.

385

386

387

388

- 389
- 200

390

396 397 (0.38 g, 62% yield) ¹**H-NMR** (300 MHz, DMSO-d6): $\delta = 12.28 \text{ [s, 1H, } COOH \text{], } 11.60 \text{ [s, 1H, } NH \text{], }$ 398 8.15 [d, ${}^{4}J_{6,4}$ = 4.3 Hz, 1H, 6-H_{Ar}] 7.92 [dd, ${}^{3}J_{4,3}$ = 7.9 Hz, ${}^{4}J_{4,6}$ = 2.1 Hz, 1H, 4-H_{Ar}] 7.87 [d, ${}^{4}J_{6,4}$ = 1.9 Hz, 399 2H, 4'-H_{Ar}, 6'-H_{Ar}], 7.48 [d, ³J_{3,4} = 7.9 Hz, 1H, 3-H_{Ar}], 2.60 [s, 6H, CH₃, 9'-H, 7'-H], 2.23 [s, 3H, 400 CH₃, 8'-H]; - ¹³C-NMR (75 MHz, DMSO-d6): δ = 169.3 (C, C-7), 154.2 (C, C-2), 143.6 (C, C-2'), 401 139.1 and 139.1 (2xC, C-1', C-3') 132.9 (C, C-5'), 132.5 (CH, C-4), 131.5 and 131.5 (2xCH, C-4', C-402 6'), 130.1(CH, C-6), 128.7 (C, C-8), 122.5 (C, C-5), 117.0 (CH, C-3), 109.0 (C, C-1), 22.4 and 22.4 403 (2xCH₃,C-7', C-9'), 20.8 (CH₃, C-8'); mp:184°C; MS (ESI) *m*/z: calcd. for C₁₇H₁₆F₃NO₄S; 387: found 404 388 [M+H]⁺.