Solid-State ¹H Spin Polarimetry by ¹³CH₃ Nuclear Magnetic Resonance

Stuart J. Elliott ^{1,2} , Quentin Stern ¹ and Sami Jannin ¹	Deleted: Chappuis ¹
¹ Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - FRE 2034 Université de Lyon / CNRS / Université Claude Bernard Lyon 1 / ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France	
² Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom	Deleted: Crown Street,
Correspondence to: Stuart J. Elliott (Stuart.Elliott@liverpool.ac.uk)	Deleted: stuart-james.elliott@univ-lyon1.fr
Abstract. Dissolution-dynamic nuclear polarization is used to prepare proton polarizations approaching unity. At present, ¹ H	Deleted: emerging as a promising means
polarization quantification remains fastidious due to the requirement of measuring thermal equilibrium signals. Lineshape	
polarimetry of solid-state nuclear magnetic resonance spectra is used to determine <u>several</u> useful properties regarding the spin	Deleted: a number of
system under investigation. In the case of highly polarized nuclear spins, such as those prepared under the conditions of dissolution-	
dynamic nuclear polarization experiments, the absolute polarization of a particular isotopic species within the sample may be	Deleted: can
directly inferred from the characteristics of the corresponding resonance lineshape. In situations where direct measurements of	
polarization are complicated by deleterious phenomena, indirect estimates of polarization using coupled heteronuclear spins prove	
informative. We present a simple analysis of the ¹³ C spectral lineshape of [2- ¹³ C]sodium acetate based on the normalized deviation	Deleted: asymmetry
of the centre of gravity of the ¹³ C peaks, which can be used to indirectly evaluate the proton polarization of the methyl group moiety,	Deleted: relative peak intensities
and very likely the entire sample in the case of rapid and homogeneous ¹ H- ¹ H spin diffusion. For the case of positive microwave	Deleted: ,
irradiation, ¹ H polarization was found to increase with an increasing normalized centre of gravity deviation. These results suggest	Deleted: ¹ H polarizations greater than ~10-25% (depending on
that, as a dopant, [2-13C]sodium acetate could be used to indirectly gauge ¹ H polarizations in standard sample formulations, which	Deleted: sign
is potentially advantageous for: (i) samples polarized in commercial dissolution-dynamic nuclear polarization devices that lack ¹ H	Deleted: the
radiofrequency hardware; (ii) measurements that are deleteriously influenced by radiation damping or complicated by the presence	Deleted:) were
of large background signals; and (iii) situations where the acquisition of a thermal equilibrium spectrum is not feasible,	Deleted: be linearly proportional to the ¹³ C peak asymmetry, which responds differently to positive or negative microwave irradiation
1 Introduction	Deleted: ,
	Deleted: which
Classical nuclear magnetic resonance (NMR) experiments produce inherently weak signals. The severely limiting low intrinsic	Deleted: ,
sensitivity of the technique can be enhanced by up to four orders of magnitude by employing a wide range of routinely used	Formatted: Font: Not Bold, English (UK)
hyperpolarization methodologies (Ardenkjær-Larsen et al., 2003; Hirsch et al., 2015; Dale and Wedge, 2016; Meier 2018; Kouřil	Formatted: Font colour: Text 1
et al, 2019). The significantly boosted NMR signal intensities from metabolites hyperpolarized by implementing a dissolution-	Formatted: English (US)
dynamic nuclear polarization (dDNP) approach have been used in the clinical diagnostics of cancer in human patients (Nelson et	Deleted: Hirsch et al., 2015; Ardenkjær-Larsen et al., 2016;
al, 2013; Chen et al, 2020; Gallagher et al, 2020).	Formatted: Font colour: Text 1
To hyperpolarize nuclear spins via the <i>d</i> DNP approach, the spin system of interest is co-frozen in a mixture of aqueous solvents	Deleted: Barskiy et al, 2017; Salnikov et al, 2017; Ardenkjær-Larsen et al., 2018; Kovtunov et al., 2018;
and glassing agents with a carefully chosen paramagnetic radical species (Abragam and Goldman, 1978). The dDNP-compatible	Deleted: Jannin and Kurzbach, 2018; Ardenkjær-Larsen
solution is subsequently frozen at liquid helium temperatures, where the solvent matrix forms a glass, inside a magnetic field and	Formatted: English (UK), Kern at 18 pt
is irradiated with slightly non-resonant microwave irradiation, which transfers the high electron spin polarization to the nuclear	Deleted: put to use
spins of interest (Kundu et al, 2019).	Deleted: Day et al, 2007; Brindle et al, 2011;

Hyperpolarization of methyl group moieties by *d*DNP has led to some unusual effects including the generation of long-lived spin order, which is revealed in the liquid-state upon dissolution of the material from cryogenic conditions (Meier et al, 2013; Roy et al, 2015; Dumez et al, 2017; Elliott et al, 2018). Solid-state NMR of highly polarized nuclear spins has previously been utilized to infer the sample polarization level and, in suitable cases, the quantity of long-lived spin order established (Elliott et al, 2018; Waugh et al, 1987; Kuhns et al, 1989; Marohn et al, 1995; Kuzma et al, 2013; Mammoli et al, 2015; Willmering et al, 2017;

(Deleted: polarimetry
~(Deleted: spin-1/2 pairs
-(Deleted: Meier et al, 2013; Roy et al, 2015; Dumez et al, 2017;

Deleted: Jannin et al, 2019).

shown any significant features which may be used for a clear lineshape analysis. In this Communication, we propose that the ¹³C NMR lineshape of [2-¹³C]sodium acetate can be used to indirectly quantify the ¹H polarization of the methyl group spins. Furthermore, since ¹H-¹H spin diffusion rapidly achieves a homogeneous proton polarization across the entire sample, the ¹H polarization level of the whole sample is therefore likely to be reflected by the ¹H polarization of the methyl group moiety. We analyse the experimental ¹³C NMR spectra acquired for different ¹H polarizations, and herein present a straightforward approach to indirectly quantify the ¹H polarization based on the $\frac{1^3C}{1000}$ NMR peak normalized deviation of the centre of gravity (CoG). ¹H polarization was observed to increase with an increasing ¹³C NMR peak CoG deviation (case of positive microwave irradiation).

2.1. Sample Preparation

A solution of 3 M [2- 13 C]sodium acetate in the glass-forming mixture H₂O/D₂O/glycerol-d₈ (1/3/6 $\nu/\nu/\nu$) was doped with 50 mM TEMPOL radical (all compounds purchased from Sigma Aldrich) and sonicated for ~10 minutes. Paramagnetic TEMPOL radicals were chosen to polarize ¹H spins most efficiently under our *d*DNP conditions.

2.2. Sample Freezing

A 100 μ L volume of the above sample was pipetted into a Kel-F sample cup and inserted into a 7.05 T prototype *Bruker Biospin* polarizer equipped with a specialized dDNP probe, including a background-free radiofrequency (rf) coil insert (Elliott et al, 2021). running TopSpin 3.5 software. The sample temperature was reduced to 1.2 K by submerging the sample in liquid helium and reducing the pressure of the variable temperature insert (VTI) towards ~0.7 mbar.

2.3. Dynamic Nuclear Polarization

The 100 μ L of sample was polarized by applying microwave irradiation at $f_{\mu w}$ = 197.616 GHz (positive lobe of the DNP enhancement profile) or $f_{\mu\nu}$ = 198.192 GHz (negative lobe of the DNP enhancement profile) with triangular frequency modulation (Bornet et al, 2014) of amplitude $\Delta f_{\mu\nu} = \pm 136$ MHz or $\Delta f_{\mu\nu} = \pm 112$ MHz, respectively, and rate $f_{mod} = 0.5$ kHz at a power of ca. J25 mW at the output of the microwave source (value given by the provider of our microwave source VDI/AMC 705) and ca. 30 mW reaching the DNP cavity (evaluated by monitoring the helium bath pressure, see Section 2.4), which were optimized prior to commencing experiments to achieve the highest possible level of ¹H polarization.

2.4. Microwave Power Evaluation

The microwave power reaching the DNP cavity was determined by comparison with the heating from a resistor in the liquid helium bath and calibrating how much the bath pressure increases vs. microwave power. In practice, the measurement was performed as

(i) The VTI was filled with liquid helium and pumped down to 0.65 mbar, corresponding to 1.2 K;

(ii) The change of pressure when turning on a resistive heater or the microwave source for 120 s was monitored. The pressure plateaus after approximatively 60 s;

Deleted:	Until	now

-(Deleted: analyze the asymmetry of
1	Deleted: ,
-(Deleted: relative intensities of the ¹³ C peaks. The ¹³ C
Y	Deleted: asymmetry
1	Formatted: Pattern: Clear (White)
ľ,	Deleted: found to behave differently under positive or negative microwave frequencies, and ¹ H polarizations (exceeding ~10-25%) were
Ì	Deleted: decrease linearly
Ì	Deleted: asymmetries (depending on the sign
Ì	Deleted: the

Deleted: This sample is referred to as I from here onwards. Deleted: most efficiently

Deleted: I	
Formatted: Font: Not Bold	
Deleted: Ceillier	

(Deleted: of I
(Deleted: $P_{\mu w} =$
-(Deleted: $P_{\mu\nu} =$
(Deleted: best

(*iii*) The pressure difference between the base pressure and that under the effect of the resistive heater or the microwave source ΔP_{mbar} is calculated.

All measurements were performed ensuring that the liquid helium level in the VTI was not varying by more than a few centimetres: the microwave cavity was immersed under 5-10 cm of liquid helium. The measurements performed using the resistive heater with power P_{heater} are used to plot a calibration curve P_{heater} vs. ΔP_{mbar} with slope *a*. The deposited microwave power in the cavity is then obtained by computing $P_{\text{microwave}} = a\Delta P_{\text{mbar}}$.

2.5. Polarization Build-Ups

.38 .39

0

1

.42 .43

.44 .45 .46

.47	To monitor ¹³ C NMR spectral lineshapes with satisfactory signal-to-noise ratios (SNRs), ¹³ C polarization must first be built-up by		Deleted: In order to	
.48	using a succession of optimized cross-polarization (CP) contact rf -pulses. Then, to observe changes in the lineshape of ¹³ C NMR			
.49	spectra acquired as the ¹ H polarization builds up from the thermal to DNP equilibrium, we employed a series of ¹ H saturating rf-		Deleted: -	
.50	pulses followed by microwave activation, a small flip-angle <u>rf-pulse and</u> ¹³ C NMR signal detection, as shown by the <u>rf-pulse</u> .	≤ 1	Deleted: equilibria	
.51	sequence in Figure 1. The build-up of ¹³ C polarization throughout the microwave irradiation period was tracked by engaging the	VX	Deleted: crusher	
.52	following experimental procedure:	$\langle \rangle \rangle$	Deleted: and	
.53	(i) A <u>saturating</u> sequence of 90° rf-pulses with alternating phases separated by a short delay (typ. 11 ms) repeated n times (typ.	1	Deleted: rf-pulse	
.54	n = 50) kills residual magnetization on both <i>rf</i> -channels;	$ \searrow $	Deleted: for sample I	
.55	(<i>ii</i>) The microwave source becomes active and ¹ H polarization builds _{up} ;	Y	Deleted: crusher	
.56	(<i>iii</i>) The ¹³ C Zeeman magnetization trajectory is minimally perturbed by the application of a small flip-angle <i>rf</i> -pulse (typ. β =	(Deleted: -	
.57	3.5°) used for detection, which is then followed by a short acquisition period (typ. $t_{FID} = 1$ ms);		Deleted: with	
.58	(<i>iv</i>) ¹ H DNP builds up during a time t_{DNP}^1 (typ. $t_{\text{DNP}}^1 = 30$ s);		Deleted:) used for detection;	
.59	(v) Stages <i>iii-iv</i> are cycled m times (typ. $m = 6$) in order to monitor the evolution of the ¹³ C polarization (between CP steps);		Deleted: -	
.60	(vi) The microwave source is gated and a delay of duration $t_G = 0.5$ s occurs, see Section 2.6, thus permitting the electron spins		Deleted: 5	
.61	to relax to their highly polarized thermal equilibrium state before the next CP step (Bornet et al, 2016);			
.62	(vii) Two synchronized adiabatic half-passages (AHPs) simultaneously produce transverse magnetization for all pulsed spin			
.63	species;			
.64	(viii) The nuclear magnetization is subsequently spin-locked on both rf-channels (typically by a high power rf-pulse with a			
.65	nutation frequency on the order of 15 kHz and a duration between 1-10 ms) and ¹ H→ ¹³ C polarization transfer occurs (Bornet et al,		Deleted:),	
.66	2016);			
.67	(ix) A second pair of harmonized AHPs (operating with reverse chronology) restores Zeeman magnetization on each rf-channel;			
.68	(x) Stages <i>ii-ix</i> are repeated in L units (typ. $L = 8$) to periodically transfer ¹ H Zeeman polarization to ¹³ C nuclear spins;			
.69	(xi) A second saturating sequence of 90° rf-pulses with alternating phases separated by a short delay (typ. 11 ms) repeated n		Deleted: crusher	
.70	times (typ. $n = 50$) kills residual magnetization on the ¹ H <i>rf</i> -channel only;			
.71	(xii) The microwave source reactivates;			
.72	(xiii) The 13 C Zeeman magnetization trajectory is minimally perturbed by the application of a small flip-angle rf-pulse (typ. β			
.73	= 3.5°) used for detection, which is then followed by a short acquisition period (typ. $t_{FID} = 1 \text{ ms}$);		Deleted: with	
.74	(<i>xiv</i>) ¹ H DNP builds up during a time t_{DNP}^2 (typ. $t_{DNP}^2 = 5$ s);		Deleted:) used for detection;	
.75	(xv) Stages xiii-xiv are cycled p times (typ. $p = 80$) to monitor the evolution of the ¹³ C NMR spectra as a function of the ¹ H		Deleted: -	
.76	polarization build-up with sufficient SNR.			
.77	Further details regarding multiple-contact CP rf-pulse sequence operation are given elsewhere (Elliott et al, 2021b). It should		Deleted: Bornet et al, 2016	
.78	be stressed that the use of CP is purely optional, and in most cases its use will be dictated by the rf-hardware available. We use CP			

here simply as a means to offer greater SNRs for ¹³C NMR signal detection. Given the level of sample deuteration, at 6.7 T and

with microwave modulation suitable SNRs can also be achieved with direct ¹³C DNP (Chen et al., 2013).

Since it is unlikely that the ¹³C NMR lineshape is significantly influenced by the ¹³C polarization, we can afford not to diminish the ¹³C NMR signal intensity by a sequence of ¹³C saturating *rf*-pulses on the ¹³C *rf*-channel at stage *xi* to maintain high SNRs. The small *rf*-pulse flip angles are necessary to preserve the ¹H and ¹³C polarizations throughout the course of the build-up experiment.

Figure 1: Schematic representation of the *rf*-pulse sequence used to accrue ¹³C polarizations, and monitor ¹³C lineshapes as a function of the ¹H polarization. The experiments used the following key parameters chosen to maximize the efficiency of the *rf*-pulse sequence: n = 50; $\beta = 3.5^{\circ}$; m = 6; $t_{DNP}^{1} = 30$ s; L = 8; $t_{G} = 0.5$ s; p = 80; and $t_{DNP}^{2} = 5$ s. AHP = adiabatic half-passage. AHP sweep width = 100 kHz. The $\pi/2$ caturating *rf*-pulses used an empirically optimized thirteen-step phase cycle to remove residual magnetization at the beginning of each experiment: $\{0, \pi/18, 5\pi/18, \pi/2, 4\pi/9, 5\pi/18, 8\pi/9, \pi, 10\pi/9, 13\pi/9, \pi/18, 5\pi/3, 35\pi/18\}$. The resonance offset was placed at the most intense peak of the ¹H and ¹³C NMR spectra.

	0_							
	μw	taan	t	t ¹	L + +	t	t	t
Deleted:	time		< ^{(FID} ×	'DNP		< ^{'CP}	→ →	CRUSH
D-1-4-4.								

2.6. Microwave Gating

Microwave gating was employed shortly before and during CP experiments to allow the electron spin ensemble to return to a highly polarized state, which happens on the timescale of the longitudinal electron relaxation time (typ. $T_{le} = 100$ ms with $P_e = 99.93\%$ under our <u>experimental</u> *d*DNP conditions) (Bornet et al, 2016). Microwave gating hence provides a way to strongly attenuate paramagnetic relaxation, and consequently the ¹H and ¹³C $T_{1\rho}$ relaxation time constants in the presence of an *rf*-field are extended by orders of magnitude. This allows spin-locking *rf*-pulses to be much longer, which significantly increases the efficiency of nuclear polarization transfer.

3. Results

3.1. ¹³C CP Build-Ups and Decays

The CP build-up curves for the ¹³C polarizations P_{C} as a function of the ¹H DNP time *t* DNP for both positive and negative microwave irradiation are shown in Figure 2. The ¹³C polarizations P_{C} were accrued by employing the *rf*-pulse sequence shown in Figure 1. The ¹³C polarizations P_{C} ultimately reached $P_{C} \simeq 40.6\%$ and $P_{C} \simeq -46.8\%$ after § CP transfers and 24 minutes of positive and negative microwave irradiation, respectively. The achieved levels of ¹³C polarization P_{C} are lower than those previously reported in the literature (Bornet et al, 2016), but were not further optimized since only the ¹³C NMR lineshape was of interest in this study as a probe for absolute ¹H polarization. This is inconsequential for the current study since sufficient SNRs on the order of ~965 and ~1244 were achieved for the cases of positive and negative microwave irradiation, respectively. After this point, *i.e.*, beyond the vertical dashed line (¹H DNP time = 24 mins), a slow and partial decay in the ¹³C NMR signal intensity towards a pseudo-equilibrium is observed, see Figure 2. This ¹³C NMR signal decay is not a problem in general since the ¹³C NMR signal remains sufficiently intense as to allow clear measurement of the ¹³C NMR lineshape with high accuracy. Deleted: 5

Deleted: .

Deleted: crusher

Deleted: of I Deleted: For sample I, the

Deleted: numerous

Deleted: After this point, *i.e.* beyond the dashed line at ¹H DNP time = 24 mins, a slow and partial decay in the ¹³C NMR signal intensity towards a pseudo-equilibrium is observed, see Figure 2. This is not a problem in itself as the ¹³C NMR signal remains sufficiently intense as to allow clear measurement of the ¹³C NMR lineshape with high accuracy.⁴ This decay of ¹³C polarization during the ¹H DNP build-up interval t_{DNP}^2 is a combination of two factors: (*i*) the microwaves are active and hence polarization is diminishing towards the low DNP equilibrium of the ¹³C nuclear spins are being actively pulsed, although minimally, every 5 s, which leads to an accumulative loss of ¹³C NMR signal intensity over many minutes.⁴

29

30

1

2

33

4

00

02

Figure 2: Experimental ¹³C polarization *P*_C CP build-up curves and subsequent ¹³C signal decays as a function of ¹H DNP time acquired at 7.05 T (¹H nuclear Larmor frequency = 300.13 MHz, ¹³C nuclear Larmor frequency = 75.47 MHz) and 1.2 K with a single transient per data point. The presented data were acquired by using the *rf*-pulse sequence depicted in Figure 1. Black filled squares: Positive microwave irradiation; Black empty squares: Negative microwave irradiation. The <u>vertical</u> dashed line denotes the ¹H DNP time at which the ¹H NMR signal was destroyed by a second series of <u>saturating</u> *rf*-pulses (as shown by the *rf*-pulse sequence <u>dilustrated</u> in Figure 1).

3.2. ¹³C NMR Spectra

Figure 3 shows the relevant part of the experimental ¹³C NMR spectra acquired with a small flip angle *rf*-pulse ($\beta = 3.5^{\circ}$) at two / different ¹H DNP times. The ¹³C NMR spectra in Figure 3 were acquired by using the *rf*-pulse sequence shown in Figure 1. The initial ¹³C NMR spectrum (acquired at 24 mins) is a single peak with a linewidth at full-width half-maximum height (FWHM) of / ~ 10.9 kHz. The ¹³C NMR lineshape is relatively symmetrical and has no obvious defining features, see Figure 3a, Small peak / contributions to the ¹³C NMR spectrum are observed towards the baseline, including one environment shifted as much as ca. - 300ppm. This spectrum corresponds to a low Jevel of ¹H polarization (|*P*_H| $\approx 0\%$).

However, the ¹³C NMR spectra become more complicated and gain sharper spectral features at extended ¹H DNP times, see Figures 3b and <u>3c</u>. At ~30.6 mins, the ¹³C NMR spectra are comprised of (at least) two <u>main</u> resonances with differing NMR signal intensities. In the case of positive microwave irradiation (Figure 3b), the frequency separation between the two most intense ¹³C NMR peaks is ~8.4 kHz and the linewidth at FWHM is ~17.7 kHz. It is interesting to note that the ¹³C NMR spectra acquired in the cases of positive (Figure 3b) and negative (Figure <u>3c</u>) microwave irradiation <u>do</u> not have the same overall profile at long ¹H DNP times. These spectra correspond to much higher levels of ¹H polarization ($|P_H| \gtrsim 55\%$).

De	eleted: for I
De	eleted: crusher
De	eleted: depicted
De	eleted: for sample I
De	eleted: spectra
De	eleted: are
De	eleted: peaks which are
De	eleted: have
De	eleted: Figures
De	eleted: and 3c. These spectra correspond
De	eleted: levels
De of	leted: 3d. These spectra correspond to much higher levels ¹ H polarization ($ P_{\rm H} \gtrsim 60\%$), see Figure 4.
De	eleted: separate
De	eleted: 3d
De	eleted: are

Deleted: mirror images of each other

Deleted: The difference in 13 C NMR signal integrals for positive and negative microwave irradiation is associated with the ¹H polarization build-ups and the performance efficiency of the multiple-contact CP *tf*-pulses, see the Supplement. However, this is inconsequential for the current study since sufficient SNRs on the order of -965 and ~1244 were achieved for the cases of positive and negative microwave irradiation, respectively.⁴

Figure 3: Relevant portions of the experimental ¹³C NMR spectra belonging to the ¹³C-labelled methyl <u>group</u> (¹³CH₃) *o*f <u>1</u>2⁻¹³C]sodium acetate acquired at 7.05 T (¹H nuclear Larmor frequency = 300.13 MHz, ¹³C nuclear Larmor frequency = 75.47 MHz) and 1.2 K with a single transient (*rf*-pulse flip angle = 3.5°) at two different ¹H DNP times. The labels indicate the ¹H DNP times at which the spectra were recorded. The timings coincide with those shown in Figure 2. The ¹³C NMR spectra were acquired by using the *rf*-pulse sequence depicted in Figure 1. (a<u>No microwave irradiation; (b)</u> Positive microwave irradiation; and (*Q*) Negative microwave irradiation_aAll ¹³C NMR spectra have been scaled to yield the same maximum intensity.

3.3. ¹³C NMR Peak <u>Normalized Centre of Gravity Deviation</u> vs. ¹H Polarization

 Deleted: group

 Deleted: I

 Deleted: ,

 Deleted: ,d

 Deleted: Ja

 Deleted: Deleted: Ja

 Deleted: Ja

 Deleted: Deleted: Ja

 Deleted: Deleted: Ja

 Deleted: Eletted: Deletee

 Deleted: Deleted: Ja

 Deleted: Deleted: Deletee

 Deleted: Deletee

 Deleted: Deletee

 Deletee

 Deletee

Deleted: Asymmetry

33			
34	The DNP build-up curve for the ¹ H polarization P_{H_a} as a function of the ¹ H DNP time for positive microwave irradiation is shown		Deleted: of I
35	in Figure 4. More details regarding how to acquire such build-up curves are given in the following reference (Bornet et al, 2016).		
36	The ¹ H polarization build-up curve was found to have a stretched exponential behaviour, and the experimental data are well fitted		
7	with a stretched exponential function using a ¹ H DNP build-up time constant denoted τ_{pup}^+ . Stretched exponential function: A(1-		Deleted: sole
۲ 20	$(t/(t^+ \lambda^{\beta}))$ where A is a constant t^+ is the ¹ U DND huild up time constant extracted from the above fitting presedure		Jinter Sole
30	$\exp\{-(t/t_{\text{DNP}})^{2}\}$, where A is a constant, t_{DNP} is the H DNP build-up time constant extracted from the above fitting procedure		
39	and β is the breadth of the distribution of 'H DNP build-up time constants. The mean 'H DNP build-up time constant $\langle \tau_{DNP} \rangle$ is		
40	calculated as follows: $\langle \tau_{DNP}^+ \rangle = \tau_{DNP}^+ \Gamma(1/\beta)/\beta$, where $\Gamma(1/\beta)$ is the gamma function. A similar 'H polarization build-up curve		
41	for the case of negative microwave irradiation, with parameters τ_{DNP} and (τ_{DNP}) , is shown in the Supplement.		
42	The sample polarized to $P_{\rm H} \simeq -77.3\%$ (¹ H DNP time $\simeq 30.6$ mins) by employing negative microwave irradiation with a ¹ H	(Deleted: Sample I polarizes
43	DNP build-up time constant of $(\tau_{DNP}) = 122.0 \pm 0.4$ s ($\beta = 0.87$). A reduced ¹ H polarization of $P_{\rm H} \simeq 58.1\%$ was reached (at ¹ H	(Deleted: at
44	DNP time ≈ 30.6 mins) by using positive microwave irradiation. The ¹ H DNP build-up time constant was much shorter in this	(Deleted: .
45	case: $(\tau_{\text{DNP}}^{+}) = 80.2 \pm 0.3 \text{ s}_{\bullet}(\beta = 0.77).$		Deleted: .
46	The ¹³ C NMR lineshapes presented in Figure 3 are complicated and so it is desirable to construct a parameter which can describe	(Deleted: Figure 4
47	the ¹ H polarization <i>P</i> _H , be robust with respect to field inhomogeneities and easily applied to any lineshane. Figure 4 therefore also		
8	displays the ¹³ C NMR neak CoG deviation δ for sample Las a function of the ¹ H DNP time for the case of positive microwave	(Deleted: asymmetry A _{sym}
	usplays un C have peak <u>coordination</u> $\sigma_{\mu\mu}$ to sample 1 as a function of the Tr DAT time to the case of positive interformate.	(Deleted: .
49	<u>irradiation</u> . The ¹³ C NMR peak <u>CoG normalized deviation</u> δ_{ω_0} is defined as:	(Formatted: Indent: First line: 0 cm
50			Formatted: English (US)
51	$\delta_{\omega_0} = \frac{M_{asym}}{IW_{asym}} (1)$		Deleted: A _{sym} is defined
52	200		Formatted: English (US)
-2 -2	where $M_{\rm constant}$ is denoted as the first moment of asymmetry and corresponds to the following quantity:		Formatted: Left
	where <i>m</i> _{asym} is denoted as the first moment of asymmetry and corresponds to the following quantity.		Deleted: $A_{\text{sym}} = \text{Sign}(P_{\text{C}}) \frac{I_l - I_h}{I_l + I_h} \rightarrow \rightarrow$
54			1
55	$M_{asym} = \int_{-\infty}^{\infty} (\omega - \omega_0 (P_H = 0\%)) f(\omega) d\omega (2)$	(Formatted: English (UK)
56		[Deleted: I _h and I _l are
57	The first moment of asymmetry M_{asym} is based on a calculation whereby the CoG of the ¹³ C NMR peak ω_0 is held constant at	{	Formatted: English (UK)
58	$\omega_0(P_H = 0\%)$, <i>i.e.</i> , the ¹³ C NMR peak CoG corresponding to when the ¹ H polarization $P_{\rm H}$ is zero. The CoG of the ¹³ C NMR peak	{	Deleted: maximum
59	ω_0 is calculated as:	1	Formatted: English (UK)
60	•		Deleted: high and low frequency
	$\alpha = \frac{\alpha}{2} \alpha f \alpha d\alpha(2)$		Formatted: English (UK)
62	$\psi_0 = \int_{-\infty}^{\infty} w f(w) dw \underline{(3)}$		Deleted: , respectively, see Figure 3. <i>I</i> _h and <i>I</i> _l are extracted from
63	where the intensities of the ¹³ C NMR peaks are normalized:	/ /	Formatted: English (UK)
64			Deleted: ¹³ C NMR spectra in Figure 3, and those similar to it, by searching for
65	$\int_{-\infty}^{\infty} f(\omega) \ d\omega = 1 \underline{(4)}$		Deleted: most intense data point either side of the vertical dashed line.
66		// /	Formatted: English (UK)
67	where ω is the resonance frequency and $f(\omega)$ is the peak intensity at ω_a . The procedure outlined above ensures that $M_{asym} = 0$ at β_a	(Deleted: frequency
68	$P_{\rm H} = 0\%$ such that the described approach can be readily generalized to any lineshape. The quantity LW_0 is a measure of the	(Formatted: English (UK)
69	linewidth of the $\frac{13}{C}$ NMR peak in the case of $P_{\rm H} = 0\%$:	\leq (Deleted: dashed line corresponds to the minimum between
70		(Deleted: two peaks at high levels
	$I_{\rm M} = \begin{bmatrix} 0 & (D - 0)(1) & (D - 0)(1) & 2 & (D - 0)(1) & 1 & (D - 0)(1$	////	Formatted: English (UK)
1	$LW_0 = \iint_{-\infty} (\omega(P_H = 0\%) - \omega_0(P_H = 0\%))^2 f(\omega(P_H = 0\%)) d\omega(\underline{5})$)//(Formatted: Font: Italic
72	Y		Deleted: ¹ H polarization $P_{\rm H}$, see Figures 3b and 3d.
I		(Formatted: English (UK)

i.e., the square root of the second moment at $P_{\rm H} = 0\%$. This factor establishes a ¹³C NMR peak CoG deviation δ_{ω_0} (defined in Equation 1) which is a normalized and dimensionless quantity.

Figure 4 indicates that at longer ¹H DNP times, where the ¹H polarization $P_{\rm H}$ is higher, there is a greater ¹³C NMR peak CoG normalized deviation δ_{ω_0} . Similar curves to those presented in Figure 4 for the case of negative microwave irradiation are shown in the Supplement. It should be noted that the curve profiles and final values of δ_{ω_0} are not mirror images of each other. This is also reflected in the ¹³C NMR spectra acquired at ~30.6 mins, see Figure 3. The rate of change in the value of δ_{ω_0} during the first ~100 s of Figure 4 indicates a more rapid change in the ¹H polarization $P_{\rm H}$. This coincides with the starkest changes in ¹³C NMR lineshape, see the Supplement.

Figure 4: Experimental ¹H polarization $P_{\rm H}$ DNP build-up curve (black filled squares and left-hand axis) and ¹³C NMR peak $\underbrace{\text{CoG normalized deviation}}{\delta_{\omega_0}}$ (grey empty circles and right-hand axis) as a function of the ¹H DNP time acquired at 7.05 T (¹H nuclear Larmor frequency = 300.13 MHz, ¹³C nuclear Larmor frequency = 75.47 MHz) and 1.2 K with a single transient per data point for the case of positive microwave irradiation. The timings coincide with those shown in Figure 2. The black solid line indicates the best fit of <u>the</u> experimental data points for the ¹H polarization $P_{\rm H}$ DNP build-up curve, and has the corresponding fitting function: A(1-exp[-(t/r_{DNP}^2)]). Mean ¹H DNP build-up time constant: $(\tau_{DNP}^{+}) \neq 80.2 \pm 0.3$ s.

The ¹³ C NMR peak <u>CoG normalized deviation</u> δ_{ω_0} as a function of the ¹ H polarization $P_{\rm H}$ for positive microwave irradiation is
shown in Figure 5. The ¹ H polarization P _H increases with an increasing ¹³ C NMR peak <u>CoG normalized deviation</u> . The experimental
data were fitted with a phenomenological relationship of the kind: $P_{\rm H}(\delta_{\omega_0}) = A \times \delta_{\omega_0^{\beta_1}}^{\beta}$ where $P_{\rm H}(\delta_{\omega_0})$ is the ¹ H polarization as a
function of the ¹³ C <u>NMR</u> peak <u>CoG</u> normalized deviation $\delta_{\omega_0}\beta$ is the <u>order</u> of the <u>polynomial</u> fit and <u>A</u> is a scaling factor. The
phenomenological function is simply used to correlate the ¹³ C NMR peak CoG normalized deviation δ_{ω_0} with the ¹ H polarization
P _H . The best fit values of the phenomenological function to the experimental data over the range of ¹³ C <u>NMR</u> peak <u>CoG normalized</u>
deviations shown in Figure 5 are given in the caption

Deleted: coincides with small spectral contributions at low levels of ¹H polarization $P_{\rm H}$, see Figures 3a and 3c

Formatted: English (UK)

Deleted: the peak intensities become more equal. This is opposite to the case of strongly polarized water (Mammoli et al, 2015), and other systems (Aghelnejad et al, 2020), where the peak intensities become more unequal with increasing ¹H polarization $P_{\rm H}$. A similar curve

	Deleted: asymmetry A _{sym}
	Deleted: for I
Λ	Deleted:
Ì	Deleted: asymmetry A_{sym} for sample I
//	Deleted: magnitude of the
//	Deleted:
7	Deleted:
	Deleted: linearly
\bigcirc	Deleted: a decreasing
ો	Deleted: asymmetry for $A_{\text{sym}} < 0.5$ where $I_1/I_2 > 3.$
$\langle \rangle$	Deleted: relationships
$\left(\right)$	Deleted: $(A_{\text{sym}}) = m A_{\text{sym}} + \eta,$
$\left(\right)$	Deleted: A _{sym}
())	Deleted: asymmetry parameter A _{sym} , m
	Deleted: slope
$\left(\right)$	Deleted: linear
	Deleted: η is a fitting constant. The slopes of the straight line fits
	Deleted: asymmetries A _{sym}
	Deleted: The slope for positive microwave irradiation in Figure 5 is a factor of ~1.87 less steep than for the case of negative microwave irradiation. This result implies that the ¹³ C peak asymmetry A_{sym} of I is more sensitive to negative microwave irradiation since sample I polarizes to a greater extent under this choice of microwave irradiation frequency. The divergence in ¹³ C peak asymmetries A_{sym} under potential.
	(Formatted: English (US)
	Deleted: The experimental data deviate, severely in the [2]

.09

Figure 5: Experimental ¹H polarizations P_{H} as a function of the ¹³C NMR peak <u>CoG</u> normalized deviation δ_{ω_0} acquired at 7.05 T (¹H nuclear Larmor) frequency = 300.13 MHz, ¹³C nuclear Larmor frequency = 75.47 MHz) and 1.2 K with a single transient per data point<u>for the case of positive microwave</u> irradiation. The <u>experimental</u> data were fitted with a <u>phenomenological</u> function; $P_{H}(\delta_{\omega_0}) = A \times \delta_{\omega_0}^{\mu}$. Best fit values: $\frac{4}{4} = 129.1\% \pm 0.8\%$; $\beta = 0.736 \pm 1000$. The absolute ¹H polarizations P_{H_0} were measured by comparison with a thermal equilibrium ¹H NMR signal.

4. Discussion

As discussed in Section 3.3 above, the <u>CoG normalized deviation δ_{ω_0} of the peaks in the ¹³_vC NMR spectrum indirectly provide the level of ¹H polarization *P*_H, see Figure 5. It is unlikely that a uniform spin temperature between the ¹H and ¹³C nuclear spin reservoirs is reached at any time during the experiment presented in Figure 1, but as long as a uniform spin temperature is achieved within the ¹H nuclear spin reservoir then the methodology presented above holds. It should be noted that the <u>order</u> of the <u>polynomial fit β</u> shown in Figure 5 is likely to be influenced by the capabilities of the *rf*-probe, such as the *rf*-pulse homogeneity, and it is therefore recommended that (if possible) users implement similar measurements on their own experimental setups, rather than simply reusing the value presented here. In this way, any laboratory can adopt the procedure and reproduce the result.</u>

Once the ¹³C NMR peak CoG normalized deviation δ_{ω_0} falls below zero the ¹H polarization P_{H_0} rapidly drops towards negative ¹³C NMR peak CoG normalized deviations δ_{ω_0} (with decreasing ¹H polarizations P_{H}). This result implies that the NMR peak CoG normalized deviation δ_{ω_0} is less sensitive to negative microwave irradiation. This change in sensitivity of the ¹³C NMR peak CoG normalized deviations δ_{ω_0} to positive and negative microwave irradiation is also evident in the ¹³C NMR spectra, see Figure 3 and the Supplement. This is likely associated with: (*i*) ¹³C NMR spectra at negative levels of ¹H polarization have lineshapes with less pronounced features, *i.e.*, partially unresolved peaks; and (*ii*) the ¹³C NMR lineshape changes less dramatically as a function of negative ¹H polarization. These points could both be related to NMR line narrowing due to radiation damping in the case of negative microwave irradiation (Mao and Ye, 1997; Krishnan and Murali, 2013).

¹H polarizations in the range of $P_{\rm H} \lesssim 30\%$ correspond to those typically accrued by ¹H DNP build-up experiments at liquid helium temperatures of 3.8-4.2 K ($P_{\rm H} = 0.30\%$). These results indicate that the ¹³C <u>NMR peak CoG normalized deviation</u> δ_{ω_0} can therefore also be used to infer ¹H polarizations $P_{\rm H}$ accurately at elevated temperatures. However, the presence of methyl group rotation at temperatures above 1.2 K is likely to somewhat average the ¹H-¹³C dipolar couplings and could lead to a different trend compared with the fit presented in Figure 5 (Latanowicz, 2005).

One possible contribution to the inflexion in the fit of the ¹³C NMR peak CoG normalized deviations δ_{ω_0} at low levels of ¹H polarization $P_{\rm H}$ is the presence of strong polarization gradients or highly polarized clusters of nuclear spins located within specific radii of the electron spins within the sample at short ¹H DNP times, which would lead to a non-uniform spin temperature. This contribution is expected to be minor.

)	Deleted: for I
	Deleted: asymmetry A _{sym}
	Deleted: . Black filled squares: Positive
	Deleted: ; Black empty squares: Negative microwave irradiation.
Mh	Deleted: straight line
	Deleted: including a non-zero intercept
	Deleted: $(A_{sym}) = m A_{sym} + \eta$.
	Deleted: Positive microwave irradiation (black solid line): $m = -111.7\%$; $\eta = 66.0\%$; Negative microwave irradiation (black dashed line): $m = 208.5\%$; $\eta = -128.0\%$. Data points at $A_{sym} > 0.5$
1	Formatted: English (US)
_	Deleted: neglected from the fit
	Formatted: English (US)
1	Deleted: asymmetry
	Deleted: intensity of the
Ĺ	Deleted: spectral components A _{sym}
	Deleted: provides
1	Deleted: linearity
	Deleted: slopes
7	Deleted: are
	Deleted: gradient values presented here. Since the two fits to the experimental data in Figure 5 have different slopes, prior knowledge of the sign of the microwave irradiation must also be determined prior to experiments.
	Deleted: To the approach's detriment, once
	Deleted: asymmetry A _{sym} exceeds ~0.5
	Deleted: deviates from a linear trend, dropping
	Deleted: zero rapidly
	Deleted: little
	Deleted: the ¹³ C asymmetry parameter A_{sym}) since
	Deleted: lose any pronounced lineshape features,
	Deleted: This corresponds to
/	Deleted: $ P_{\rm H} \approx 10\text{-}25\%$ (microwave frequency sign dependent), such as
/	Deleted: .
	Deleted: peak asymmetry A_{sym} cannot be
	Deleted: Furthermore
	Deleted: could also be detrimental to the presented approach
	Formatted: English (US)
	Deleted: It is unlikely that a uniform spin temperature between the ¹ H and ¹³ C nuclear spin reservoirs is reached at any time during the experiment presented in Figure 1, but as long as a uniform spin temperature is achieved within each

independent nuclear spin reservoir then the methodology presented above holds. One possible contribution to the

deviation in ¹³C NMR peak asymmetry A_{sym} from a linear

trend at low levels of the

The decay of ¹³C polarization during the ¹H DNP build-up interval t_{DNP}^2 shown in Figure 2 occurs when the microwave source is active and the ¹³C nuclear spin ensemble relaxes towards the spin temperature it would have achieved in the case of direct ¹³C DNP, *i.e.*, no CP. This ¹³C polarization decay is a combination of three factors: (*i*) the microwaves are active and hence polarization is diminishing towards the low DNP equilibrium of the ¹³C nuclear spins with TEMPOL as the polarizing agent; (*ii*) the ¹³C nuclear spins are being actively pulsed, although minimally, every 5 s, which leads to an accumulative loss of ¹³C NMR signal intensity over many minutes; and (*iii*) the radical concentration and temperature are in an optimal range for thermal mixing (Guarin et al, 2017) and since the ¹³C spins are polarized whilst the ¹H spins are saturated the two nuclear pools most likely exchange energy via the electron non-Zeeman reservoir, which influences the time evolution of the ¹³C magnetization until the ¹H spins achieve the same spin temperature. The difference in the ¹³C polarizations P_C at ¹H DNP time = 24 mins for positive and negative microwave irradiation is associated with the ¹H polarization build-ups and the performance efficiency of the multiple-contact CP *rf*-pulses, see the Supplement.

The ¹³C NMR lineshapes of [2-¹³C]sodium acetate shown in Figure 3 have features which mainly originate from ¹³C chemical shift anisotropy (CSA) (max. ~1.5 kHz at our magnetic field of 7.05 T) and ¹H-¹³C dipolar couplings (typ. -22.7 kHz) that are affected by possible methyl group rotation. Since the ¹³C CSA is negligible with respect to the ¹H-¹³C dipolar couplings, it is assumed that the ¹H-¹³C dipolar couplings play the key role in the ¹³C NMR lineshape of [2-¹³C]sodium acetate. The smaller ¹³C NMR peak contributions observed near the baseline in Figure 3a likely correspond to different chemical environments within the sample which are being polarized on different time scales.

The values of δ_{a_00} , $P_{\rm H}$ and the order of the polynomial fit β presented in Figure 5 are likely to depend to a small degree on the solvent constituents. In the case of our sample, the glycerol- d_8 present in the *d*DNP glassing matrix yields an approximate ¹³C concentration of ~410 mM at natural abundance, which is ~14% of the total ¹³C NMR signal. Under microwave irradiation, the natural abundance ¹³C spins of glycerol- d_8 will be polarized with their own build-up rate and maximum polarization, and although deuterated glycerol- d_8 can also be polarized by ¹H-¹³C CP (Vuichoud et al, 2019). As such, these contributions could impact the ¹³C NMR peak intensities, which would go some way to explaining why the ¹³C NMR spectra are not of the same overall profile under positive and negative microwave irradiation at long proton DNP times, see Figures 3b and 3c. It is also possible that the dipolar couplings and CSA interactions manifest differently under positive and negative microwave irradiation, and that there is a preferred energy state for coupling to positive and negative ¹H polarizations $P_{\rm H}$ leading to non-identical ¹³C NMR spectra.

The NMR spectra presented in Figure 3 were acquired for the cases of high ¹³C SNRs, the largest of which is ca. <u>1244</u>. In the event that CP cannot be efficiently implemented_a and the acquired ¹³C NMR signal is weak, we anticipate that the method is robust with respect to a few kilohertz of Lorentzian line broadening, which can be used to improve the experimental SNR. The <u>value</u> of the ¹³C NMR <u>peak CoG normalized deviation</u> δ_{ω_0} is, however, likely to be sensitive to changes in phase, and this should therefore be taken into account before comparing experimental results to any calibration curves similar to those presented in Figure 5. It is also possible that additional phase corrections may help the <u>trend</u> shown in Figure 5 move closer to a linear fit for values of $\delta_{\omega_0} \leq 0.02$.

The results of this study suggest that <u>other</u> ¹³C-labelled molecules which <u>might</u> display <u>distinct</u> solid-state ¹³C NMR spectra, such as [1-¹³C]sodium formate<u>and other</u> ¹³CH₂, group bearing molecular candidates (presence of a strong ¹H-¹³C dipolar <u>coupling</u>), could also be used as indirect ¹H polarization meters. To effectively polarize both ¹H and ¹³C nuclear spins, future experiments could use a tailored mixture of radical species, in certain cases. <u>Clearly, at low levels of ¹H polarization PH the lower</u> <u>intensity resonance is unresolved and polluted by the more intense peak, and as such; the</u> presented analysis could be further improved by considering Voigt fits of the complicated ¹³C NMR spectra, but <u>since there are a number of resonances to consider</u> this route would lead us away from our simple pedagogical approach **Deleted:** Furthermore, in Figure 5 it is noticeable that the ${}^{13}C$ NMR peak asymmetry A_{sym} is not identical near $|P_{H}| = 0$. This shows that the ${}^{13}C$ polarization, and sign thereof, could have a small impact on the ${}^{13}C$ NMR peak asymmetry A_{sym} . This feature is also likely related to the extraction of peak intensities from the somewhat featureless ${}^{13}C$ NMR lineshapes at low levels of ¹H polarization P_{H} , see Figures 3a and 3c. The slight discrepancy in lineshape between these two spectra may additionally be related to residual ¹H polarization, of opposite sign, which may not have been completely destroyed by the second series of crusher rf-pulses implemented on the ¹H rf-channel of our spectrometer.⁶

D	Deleted: I
D	Deleted: . This
D	Deleted: , which could
_	
D	eleted: mirror images of one and other
D	Deleted: time durations
D	Deleted: 3a
D	Deleted: This contribution
F	ormatted: Pattern: Clear (White)
D ra	Deleted: possibly impacts the 13 C NMR peak intensities, their atios and the value of A_{sym}
F	ormatted: Pattern: Clear (White)
D	Deleted: ~1250
D	Deleted: intensities
D	Deleted: peaks in Figure 3 are
D	Deleted: trends
D	Deleted: become
D	Deleted: at
D	Deleted: $A_{\rm sym} > 0.5$
D	Deleted: distinctly asymmetric
D	Deleted: ,
'n	Deleted: The

Formatted: English (US)

Deleted: is

5 Conclusions

6

8

9

0

8

9

90

91

92

93

94

95

96

98

99

00

i01 i02

З9 We have demonstrated that ¹³C NMR lineshape polarimetry of [2-¹³C]sodium acetate can be implemented to indirectly infer the ¹H 0 polarization of the ¹³CH₃ group nuclear spins and potentially the whole sample if the constituents of which are sufficiently 41 homogeneously mixed. An easy to implement protocol based on the normalized deviation of the centre of gravity of the ¹³C peaks 42 was employed and a simple relationship with ¹H polarization was found. This approach is complementary to traditional methods 43 of measuring ¹H polarization, in suitable circumstances, and could be useful in situations where measurements of ¹H polarizations 44 prove difficult, e.g., due to radiation damping (Mao and Ye, 1997; Krishnan and Murali, 2013), which can also likely impact the 45 experimental data and order of the polynomial fit shown in Figure 5. Other appropriate cases for potential implementation include: 46 (i) the lack of a ¹H rf-coil; (ii) the presence of large background signals; and (iii) the absence of a thermal equilibrium spectrum. 47 The approach presented here works well for traditional dDNP-compatible sample formulations but future studies employing fully 48 deuterated dDNP solutions could provide ¹³C NMR lineshapes with more distinct features 49

Acknowledgements

50 51

38

The authors gratefully acknowledge *Bruker Biospin* for providing the prototype *d*DNP polarizer, and particularly Dmitry Eshchenko, Roberto Melzi, Marc Rossire, Marco Sacher and James Kempf for scientific and technical support. The authors additionally acknowledge Catherine Jose and Christophe Pages for use of the ISA Prototype Service, Stéphane Martinez of the UCBL mechanical workshop for machining parts of the experimental apparatus, Aurélien Bornet for preliminary works, Christian Bengs for useful discussions and the reviewers for their comments which led to the improvement of this article,

Financial Support

i58 i59

57

This research was supported by ENS-Lyon, the French CNRS, Lyon 1 University, the European Research Council under the
 European Union's Horizon 2020 research and innovation program (ERC Grant Agreements No. 714519 / HP4all and Marie
 Skłodowska-Curie Grant Agreement No. 766402 / ZULF).

Author Contributions

64 65

63

SJE conceived the idea, performed experiments, processed the data and wrote the manuscript, QC assisted with experiments and data processing, and provided useful advice, and SJ provided informative guidance, supportive feedback, and contributed to the manuscript.

Data Availability

;70 ;71

69

Experimental data are available upon request from the corresponding author.

73

74 Competing Interests

75

77

The authors declare no competing interests.

78 References

79

-(Formatted: Indent: First line: 0 cm
-(Deleted: ,
	Deleted: relative peak intensities
	Deleted: found
	Deleted: linear
	Deleted: of the ¹³ C peak asymmetry
	Deleted: increasing
	Deleted: polarizations surpassing ~10-25% (depending on the sign of the microwave frequency), with different ¹³ C NMR lineshapes for positive and negative microwave irradiation.¶
	Deleted: polarization
	Deleted: .
	Deleted: slope
	Deleted: fits
	Deleted: , and also reveal information regarding solid-state methyl group AE population imbalances at low temperatures (Meier et al, 2013; Roy et al, 2015; Dumez et al, 2017).
	Formatted: Pattern: Clear

Formatted: English (US)

Deleted: and Deleted: ,

		1// (Moved down [2]: L.,
99	Ardenkiær-Larsen, JH., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M. H., Servin, R., Thanine, M., and Golman, K.: Increase in signal-to-noise	// /	Deleted: Smith, B. A., Mattingly, M., Goloshevsky, A.
00	ratio of > 10.000 times in liquid-state NMR, Proc. Natl. Acad. Sci. U.S.A., 100, 10158-10163, https://doi.org/10.1073/pnas.1733835100, 2003.	12	Formatted [6]
01	Hirsch, M. L., Kalechofsky, N., Belzer, A., Rosay, M., and Kempf, J. G.: Brute-Force Hyperpolarization for NMR and MRI, J. Am. Chem. Soc., 137, 8428-8434.	Č,	Moved down [3]: Magn Reson
02	https://doi.org/10.1021/jacs.5b01252, 2015.	\sum	Delated: Ardenkiær-Jarsen J-H: On the present and f
03	Dale, M. W., and Wedge, C. J.: Optically generated hyperpolarization for sensitivity enhancement in solution-state NMR spectroscopy, Chem. Commun., 52,		Formattad
04	13221-13224, https://doi.org/10.1039/C6CC06651H, 2016.		
05	Meier, B.: Quantum-rotor-induced polarization, Magn. Reson. Chem., 56, 610-618, https://doi.org/10.1002/mrc.4725, 2018.	\sum	Deleted: ., 264, 3-12,
06	Kouřil, K., Kouřilová, H., Bartram, S., Levitt, M. H., and Meier, B.: Scalable dissolution-dynamic nuclear polarization with rapid transfer of a polarized solid, Nat.	1	Formatted [10]
07	Commun., 10, 1733, https://doi.org/10.1038/s41467-019-09726-5, 2019	\mathbb{N}	Deleted: Barskiy, D. A., Coffey, A. M., Nikolaou, P., [11]
'08	Nelson, S. J., Kurhanewicz, J., Vigneron, D. B., Larson, P. E. Z., Harzstark, A. L., Ferrone, M., van Crickinge, M., Chang, J. W., Bok, R., Park, I., Reed, G.,	/// (Moved down [4]: V.,
'09	Carvajal, L., Small, E. J., Munster, P., Weinberg, V. K., Ardenkjær-Larsen, JH., Chen, A. P., Hurd, R. E., Odegardstuen, LI., Robb, F. J., Tropp, J., and Murray,	////	Moved down [5]: E.
'10	J. A.: Metabolic imaging of patients with prostate cancer using hyperpolarized [1-10]pyruvate, Sci. Trans. Med., 5, 198ra108,	$\langle \rangle \rangle$	Deleted: Y.: NMR Hyperpolarization Techniques of Gases,
'11	https://doi.org/10.1126/scitranslmed.3006070, 2013		Moved down [6]: Chem.
'12	Chen, HY., Aggarwal, R., Bok, R. A., Ohliger, M. A., Zhu, Z., Lee, P., Goodman, J. W., van Criekinge, M., Carvajal, L., Slater, J. B., Larson, P. E. Z., Small, E.		Deleted: Fur
'13	J., Kurhanewicz, J. and Vigeron, D. B.: Hyperpolarized ¹³ C-pyruvate MRI detects real-time metabolic flux in prostate cancer metastases to bone and liver: a clinical		Manad damm [7]. J
'14	feasibility study. Prostate Cancer Prostatic Dis., 23, 269-276, https://doi.org/10.1038/s41391-019-0180-z, 2020.		Moved down [7]: . J.,
'15	Gallagher, F. A., Woitek, R., McLean, M. A., Gill, A. B., Garcia, R. M., Provenzano, E., Reimer, F., Kaggie, J., Chhabra, A., Ursprung, S., Grist, J. T., Daniels, G.		Deleted: 23, 724-724, ([14])
'16	L. Zaccagna, F., Laurent, MC., Locke, M., Hilborne, S., Frary, A., Torheim, T., Boursnell, C., Schiller, A., Patterson, I., Slough, R., Carmo, B., Kane, J., Biggs,	(Moved down [8]: ., Cousin, S.
'17	H., Harrison, E., Deen, S. S., Patterson, A., Lanz, T., Kingsbury, Z., Ross, M., Basu, B., Baird, R., Lomas, D. J., Sala, E., Watson, J., Rueda, O. M., Chin, SP.,		Moved down [9]: S.,
'18	Wilkinson, I. B., Graves, M. J., Abraham, J. E., Gilbert, F. J., Caidas, C., and Brindle, K. M.: Imaging breast cancer using hyperpolarized carbon-13 MRI, Proc.		Deleted: Chekmenev, E. Y., Goodson, B. M., Barskiy, D.
'19	Natl. Acad. Sci., 117, 2092-2098, https://doi.org/10.1073/pnas.1913841117, 2020.	(Moved down [10]: A.,
'20	Abragam, A., and Goldman, M.: Principles of dynamic nuclear polarisation., Rep. Prog. Phys., 41, 395-467, https://doi.org/10.1088/0034-4885/41/3/002, 1978.		Moved down [11]: Chem.
21	Kundu, K., Mentink-Vigier, F., Feintuch, A., and Vega, S.: DNP mechanisms, eMagRes, 8, 295-338, https://doi.org/10.1002/9780470034590.emrstm1550, 2019.		Formatted
22	Meier, B., Dumez, JN., Stevanato, G., Hill-Cousins, J. T., Roy, S. S., Håkansson, P., Mamone, S., Brown, R. C. D., Pileio, G., and Levitt, M. H.: Long-Lived		Mayad dawn [12]
23	Nuclear Spin States in Methyl Groups and Quantum-Rotor-Induced Polarization, J. Am. Chem. Soc., 135, 18746-18749, https://doi.org/10.1021/ja410432f, 2013.		Moved down [12]: J.,
24	Roy, S. S., Dumez, JN., Stevanato, G., Meier, B., Hill-Cousins, J. T., Brown, R. C. D., Pileio, G., and Levitt, M. H.: Enhancement of quantum rotor NMR signals		Deleted: Zhivonitko, V. V., Koptyug, I. V., Salnikov, ([13])
25	by frequency-selective pulses, J. Magn. Reson., 250, 25-28, https://doi.org/10.1016/j.jmr.2014.11.004, 2015.		Deleted: F., Kurzbach, D., Vuichoud, B., Jannin,
26	Dumez, JN., Vuichoud, B., Mammoli, D., Bornet, A., Pinon, A. C., Stevanato, G., Meier, B., Bodenhausen, G., Jannin, S., and Levitt, M. H.: Dynamic Nuclear	(Deleted: and Koptyug, I. V.: Hyperpolarized NMR ([15])
27	Polarization of Long-Lived Nuclear Spin States in Methyl Groups, J. Phys. Chem. Lett., 8, 3549-3555, https://doi.org/10.1021/acs.jpclett.7b01512, 2017.		Deleted: Asian
28	Elliott, S. J., Meier, B., Vuichoud, B., Stevanato, G., Brown, L. J., Alonso-Valesuero, J., Emsley, L., Jannin, S., and Levitt, M. H.: Hyperpolarized long-lived		Deleted: 13, 1857-1871,
49	nuclear spin states in monodeuterated methyl groups, Phys. Chem. Chem. Phys., 20, 9/55-9/59, https://doi.org/10.1039/C8CP00253C, 2018.		Deleted: Jannin
3U '21	Wauga, J. S., Gonen, O., and Kunns, P.: Pourier transform NMK at low temperatures, J. Comm. Phys., 86, 3810–5818, https://doi.org/10.1005/1.451940, 19		Formatted [17]
22	Kunns, P., Oonen, O., and waugi, J. S.: Proon spin-spin and spin-lattice relaxation in CaSO4'xri ₂ O below 1 K, J. Magn. Reson., 82, 251-257, https://doi.org/10.1012/00023264/0000073-0.100		Deleted and Kurzbach D : Dissolution Dynamic Nug
'32	Marsha LA Casco P L Human LV Miller M A Shukind D N and Waitskamp D P Onticed Larmor best detection of high resolution nuclear magnetic		Formatted
' 1 4	Matom, J. A., Calson, J. J., Hwang, J. J., Miner, M. A., Shykina, D. N., and Weitekamp, D. L. Optical lamitor local decision of might solution indicat magnetic resonance in a semiconductor heteroscitucture. Phys. Rev. Lett. 75 1364,1367 [https://doi.org/10.1103/PhysRevLett.75.1364.1467 [https://doi.00141100000000000000000000000000000000		Deleted I. Cellector E. A. Hu, D. E. Lenste, M. W
'35	Kuzma N N Håkanson P pourfalt M Ghosh R K Kara H Kadlevs S K Pileio G Lvitt M H and Rizi R P Lineshan-based polarimetry of		Deleted: I., Ganagner, F. A., Hu, DE., Lerche, M., W [20]
'36	dvnamicaliv-polarized ¹⁵ N-O in solid-state mixtures, J. Maen, Reson, 234, 90-94, https://doi.org/10.1016/j.imr.2013.06.008, 2013.		Formatted ([21])
'37	Mammoli, D., Salvi, N., Milani, J., Buratto, R., Bornet, A., Scheal, A. A., Canet, E., Pelunessy, P., Carnevale, D., Jannin, S., and Bodenhausen, G.: Challenees in		Deleted: and Brindle, K. M.: Detecting tumor respons [22]
'38	preparing, preserving and detecting para-water in bulk: overcoming proton exchange and other hurdles, Phys. Chem. Chem. Phys., 17, 26819-26827,		Formatted [23]
'39	https://doi.org/10.1039/C5CP03350K, 2015.		Deleted: Med., 13, 1382-1387
'40	Willmering, M. M., Ma, Z. L., Jenkins, M. A., Conley, J. F., and Hayes, S. E.: Enhanced NMR with Optical Pumping Yields 74As Signals Selectively from a Buried		Formatted [24]
'41	GaAs Interface, J. Am. Chem. Soc., 139, 3930-3933, https://doi.org/10.1021/jacs.6b08970, 2017.		Deleted: nm1650, 2007.
'42	Aghelnejad, B., Marhabaie, S., Baudin, M., Bodenhausen, G., and Carnevale, D.: Spin Thermometry: A Straightforward Measure of Millikelvin Deuterium Spin	ľ	Moved down [13]: Gallagher, F.
43	Temperatures Achieved by Dynamic Nuclear Polarization, J. Phys. Chem. Lett., 11, 3219-3225, https://doi.org/10.1021/acs.jpclett.0c00713, 2020.		Deleted: A and Kettunen M L: Tumor imaging usin [26]
'44	Elliott, S. J., Ceillier, M., Cala, O., Stern, Q., Cousin, S. F., El Daraï, Te, and Jannin, S., In Preparation, 2021.		Formatted
45	Bornet, A., Milani, J., Vuichoud, B., Perez Linde, A. J., Bodenhausen, G., and Jannin, S.: Microwave frequency modulation to enhance Dissolution Dynamic		Moved (incention) [5]
46	Nuclear Polarization, Chem. Phys. Lett., 602, 63-67, https://doi.org/10.1016/j.cplett.2014.04.013, 2014.		
'47	Bornet, A., Pinon, A., Jhajharia, A., Baudin, M., Ji, X., Emsley, L., Bodenhausen, G., Ardenkjær-Larsen, JH., and Jannin, S.: Microwave-gated dynamic nuclear		wioved (insertion) [13] ([28])
'48	polarization, Phys. Chem. Chem. Phys., 18, 30530-30535, https://doi.org/10.1039/C6CP05587G, 2016		Deleted: Jannin, S., Dumez, JN., Giraudeau, P., and [29]
'49	Elliott, S. J., Stern, Q., Ceillier, M., El Daraï, T., Cousin, S. F., Cala, O., and Jannin, S.: Practical Dissolution Dynamic Nuclear Polarization, Accepted in Prog.	$\ \rangle ($	Formatted [30]
50	Nucl. Magn. Reson. Spectrose., https://doi.org/10.1016/j.pnmrs.2021.04.002, 2021.		Formatted [31]
		(Deleted: and
		$\langle \rangle$	Deleted: Chappuis
	12		Moved down [14]: Elliott, S.
			Deleted: 1

Formatted

Formatted

Moved (insertion) [14]

Moved down [1]: Magn. Deleted: Reson, 261, 87-94, ...[3]

...[5]

(... [32])

... [33]

- 16 Cheng, T., Capozzi, A., Takado, Y., Balzan, R., and Comment, A.: Over 35% liquid-state ¹³C polarization obtained via dissolution dynamic nuclear polarization at
- 17 7 T and 1 K using ubiquitous nitroxyl radicals: Phys, Chem. Chem. Phys, 15, 48, https://doi.org/10.1039/C3CP53022A, 2013.
- Mao, X. A., and Ye, C. H.: Understanding radiation damping in a simple way, Concepts Magn. Reson. A, 9, 173-187, https://doi.org/10.1002/(SICI)1099-0534(1997)9:3<173::AID-CMR4>3.0.CO;2-W, 1997.
- 20 Krishnan, V. V., and Murali, N.: Radiation damping in modern NMR experiments: Progress and challenges, Prog. Nucl. Magn. Reson. Spectrosc., 68, 41-57,
- 21 <u>https://doi.org/10.1016/j.pnmrs.2012.06.001, 2013.</u>
- 42 Latanowicz, L.: NMR relaxation study of methyl groups in solids from low to high temperatures, Concept Magn. Reson. A, 27A, 38-53,
- 23 <u>https://doi.org/10.1002/cmr.a.20040, 2005.</u>
- 4 Guarin, D., Marhabaie, S., Rosso, A., Abergel, D., Bodenhausen, G., Ivanov, K. L., and Kurzbach, D.: Characterizing Thermal Mixing Dynamic Nuclear
- 25 Polarization via Cross-Talk between Spin Reservoirs, J. Phys. Chem. Lett., 8, 5531-5536, https://doi.org/10.1021/acs.jpclett.7b02233, 2017.
- 26 Vuichoud, B., Milani, J., Bornet, A., Melzi, R., Jannin, S., and Bodenhausen, G.: Hyperpolarization of Deuterated Metabolites via Remote Cross-Polarization and
- Dissolution Dynamic Nuclear Polarization, J. Phys. Chem. B, 118, 1411-1415, https://doi.org/10.1021/jp4118776, 2014.

Moved (insertion) [6]

Moved (insertion) [11] Moved down [15]: Latanowicz, L.: NMR relaxation study of methyl groups in solids from low to high temperatures, Concept Magn. Reson. A, 27A, 38-53, https://doi.org/10.1002/cmr.a.20040, 2005.¶ Moved (insertion) [4]

Formatted: English (UK)

Moved (insertion) [3]

Formatted: English (UK)

Moved (insertion) [15]

Moved (insertion) [2]

Formatted: English (UK), Kern at 18 pt

Page 8: [1] Deleted	Elliott, Stuart	13/07/2021 19:09:00	
Page 8: [2] Deleted	Elliott, Stuart	13/07/2021 19:09:00	
Page 12: [3] Formatted	Elliott, Stuart	13/07/2021 19:09:00	
Font colour: Text 1			
Page 12: [3] Formatted	Elliott, Stuart	13/07/2021 19:09:00	
Font colour: Text 1			
Page 12: [4] Deleted	Elliott, Stuart	13/07/2021 19:09:00	
Page 12: [5] Deleted	Elliott, Stuart	13/07/2021 19:09:00	
۲			
Page 12: [6] Formatted	Elliott, Stuart	13/07/2021 19:09:00	
English (UK), Kern at 18 p	ot		
Page 12: [7] Deleted	Elliott, Stuart	13/07/2021 19:09:00	
Page 12: [8] Formatted	Elliott, Stuart	13/07/2021 19:09:00	
English (UK)			
Page 12: [9] Deleted	Elliott, Stuart	13/07/2021 19:09:00	
Page 12: [10] Formatted	Elliott, Stuart	13/07/2021 19:09:00	
Font colour: Text 1			
Page 12: [11] Deleted	Elliott, Stuart	13/07/2021 19:09:00	
K			
Page 12: [12] Formatted	Elliott, Stuart	13/07/2021 19:09:00	
English (UK)			
Page 12: [13] Deleted	Elliott, Stuart	13/07/2021 19:09:00	
Page 12: [14] Deleted	Elliott, Stuart	13/07/2021 19:09:00	
K			
Page 12: [15] Deleted	Elliott, Stuart	13/07/2021 19:09:00	
t			
Page 12: [16] Deleted	Elliott, Stuart	13/07/2021 19:09:00	
Page 12: [17] Formatted	Elliott, Stuart	13/07/2021 19:09:00	
English (UK), Kern at 18 p	ot		
Page 12: [18] Deleted	Elliott, Stuart	13/07/2021 19:09:00	
·			
Page 12: [19] Formatted	Elliott, Stuart	13/07/2021 19:09:00	
English (UK), Kern at 18 p	ot		
Page 12: [20] Deleted	Elliott, Stuart	13/07/2021 19:09:00	
r			
Page 12: [21] Formatted	Elliott, Stuart	13/07/2021 19:09:00	

I

l

I

1

ļ

English (UK), Kern at 18 pt

I

I

Page 12: [22] Deleted	Elliott. Stuart	13/07/2021 19:09:00		
Dogo 13, [32] Essential		12/07/2021 10.00.00		
Findlish (LIK) Kern at 19	emott, Stuart	13/07/2021 19:09:00		
		12/07/2021 10 00 00		
Page 12: [24] Formatted	Elliott, Stuart	13/07/2021 19:09:00		
Eligiisii (OK), Kerii at 16 j				
Page 12: [24] Formatted	Elliott, Stuart	13/07/2021 19:09:00		
English (UK), Kern at 18 p	Dt			
Page 12: [25] Deleted	Elliott, Stuart	13/07/2021 19:09:00		
▼				
Page 12: [26] Deleted	Elliott, Stuart	13/07/2021 19:09:00		
▼				
Page 12: [27] Formatted	Elliott, Stuart	13/07/2021 19:09:00		
English (US)	,			
Page 12: [28] Moved from	page 12 (Move #13)	Elliott. Stuart	13/07/2021 19:09:00	
Gallagher, F.	<u>r (</u>)			
Page 12: [28] Moved from Gallagher F	1 page 12 (Move #13)	Elliott, Stuart	13/07/2021 19:09:00	
Ganagilei, F.				
Page 12: [28] Moved from	page 12 (Move #13)	Elliott, Stuart	13/07/2021 19:09:00	
Gallagher, F.				
Page 12. [28] Moved from	nage 12 (Move #13)	Filliott Stuart	13/07/2021 19:09:00	
Gallagher, F.	page 12 (1000 #10)	Linoti, Stuart	10/0//2021 17:07:00	
Page 12: [28] Moved from	page 12 (Move #13)	Elliott, Stuart	13/07/2021 19:09:00	
<u>Ganagner, F.</u>				
Page 12: [29] Deleted	Elliott, Stuart	13/07/2021 19:09:00		
Page 12: [30] Formatted	Elliott. Stuart	13/07/2021 19:09:00		
Font colour: Text 1	,			
Page 12: [31] Formatted	Elliott, Stuart	13/07/2021 19:09:00		
Font colour: Text 1				
Page 12. [32] Formatted	Filiott Stuart	13/07/2021 19.09.00		
English (US)	Emote, Stuart	10/07/2021 17:07:00		
Dago 12: [22] Married from	naga 12 (Maria #14)	Filiatt Stuart	12/07/2021 10.00.00	
Elliott, S.	1 page 12 (1010ve #14)	Emou, Stuart	13/07/2021 19:09:00	
Page 12: [33] Moved from	page 12 (Move #14)	Elliott, Stuart	13/07/2021 19:09:00	
Elliott, S.				
Page 12: [33] Moved from	page 12 (Move #14)	Elliott. Stuart	13/07/2021 19:09:00	
Elliott, S.	<u> </u>			