
 

  1  

Solid-State 1H Spin Polarimetry by 13CH3 Nuclear Magnetic Resonance 1 
 2 
Stuart J. Elliott1,2, Quentin Stern1 and Sami Jannin1 3 
 4 
1Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - FRE 2034 Université de Lyon / CNRS / Université Claude 5 
Bernard Lyon 1 / ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France 6 
2Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom 7 
 8 
Correspondence to: Stuart J. Elliott (Stuart.Elliott@liverpool.ac.uk) 9 
 10 
Abstract. Dissolution-dynamic nuclear polarization is used to prepare proton polarizations approaching unity. At present, 1H 11 

polarization quantification remains fastidious due to the requirement of measuring thermal equilibrium signals. Lineshape 12 

polarimetry of solid-state nuclear magnetic resonance spectra is used to determine several useful properties regarding the spin 13 

system under investigation. In the case of highly polarized nuclear spins, such as those prepared under the conditions of dissolution-14 

dynamic nuclear polarization experiments, the absolute polarization of a particular isotopic species within the sample may be 15 

directly inferred from the characteristics of the corresponding resonance lineshape. In situations where direct measurements of 16 

polarization are complicated by deleterious phenomena, indirect estimates of polarization using coupled heteronuclear spins prove 17 

informative. We present a simple analysis of the 13C spectral lineshape of [2-13C]sodium acetate based on the normalized deviation 18 

of the centre of gravity of the 13C peaks, which can be used to indirectly evaluate the proton polarization of the methyl group moiety 19 

and very likely the entire sample in the case of rapid and homogeneous 1H-1H spin diffusion. For the case of positive microwave 20 

irradiation, 1H polarization was found to increase with an increasing normalized centre of gravity deviation. These results suggest 21 

that, as a dopant, [2-13C]sodium acetate could be used to indirectly gauge 1H polarizations in standard sample formulations, which 22 

is potentially advantageous for: (i) samples polarized in commercial dissolution-dynamic nuclear polarization devices that lack 1H 23 

radiofrequency hardware; (ii) measurements that are deleteriously influenced by radiation damping or complicated by the presence 24 

of large background signals; and (iii) situations where the acquisition of a thermal equilibrium spectrum is not feasible. 25 

 26  27 
1 Introduction 28 

 29 

Classical nuclear magnetic resonance (NMR) experiments produce inherently weak signals. The severely limiting low intrinsic 30 

sensitivity of the technique can be enhanced by up to four orders of magnitude by employing a wide range of routinely used 31 

hyperpolarization methodologies (Ardenkjær-Larsen et al., 2003; Hirsch et al., 2015; Dale and Wedge, 2016; Meier 2018; Kouřil 32 

et al, 2019). The significantly boosted NMR signal intensities from metabolites hyperpolarized by implementing a dissolution-33 

dynamic nuclear polarization (dDNP) approach have been used in the clinical diagnostics of cancer in human patients (Nelson et 34 

al, 2013; Chen et al, 2020; Gallagher et al, 2020). 35 

 To hyperpolarize nuclear spins via the dDNP approach, the spin system of interest is co-frozen in a mixture of aqueous solvents 36 

and glassing agents with a carefully chosen paramagnetic radical species (Abragam and Goldman, 1978). The dDNP-compatible 37 

solution is subsequently frozen at liquid helium temperatures, where the solvent matrix forms a glass, inside a magnetic field and 38 

is irradiated with slightly non-resonant microwave irradiation, which transfers the high electron spin polarization to the nuclear 39 

spins of interest (Kundu et al, 2019). 40 

 Hyperpolarization of methyl group moieties by dDNP has led to some unusual effects including the generation of long-lived 41 

spin order, which is revealed in the liquid-state upon dissolution of the material from cryogenic conditions (Meier et al, 2013; Roy 42 

et al, 2015; Dumez et al, 2017; Elliott et al, 2018). Solid-state NMR of highly polarized nuclear spins has previously been utilized 43 

to infer the sample polarization level and, in suitable cases, the quantity of long-lived spin order established (Elliott et al, 2018; 44 

Waugh et al, 1987; Kuhns et al, 1989; Marohn et al, 1995; Kuzma et al, 2013; Mammoli et al, 2015; Willmering et al, 2017; 45 
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Aghelnejad et al, 2020). To the best of our knowledge, the solid-state NMR spectra of strongly polarized methyl groups have not 77 

shown any significant features which may be used for a clear lineshape analysis. 78 

 In this Communication, we propose that the 13C NMR lineshape of [2-13C]sodium acetate can be used to indirectly quantify the 79 
1H polarization of the methyl group spins. Furthermore, since 1H-1H spin diffusion rapidly achieves a homogeneous proton 80 

polarization across the entire sample, the 1H polarization level of the whole sample is therefore likely to be reflected by the 1H 81 

polarization of the methyl group moiety. We analyse the experimental 13C NMR spectra acquired for different 1H polarizations and 82 

herein present a straightforward approach to indirectly quantify the 1H polarization based on the 13C NMR peak normalized 83 

deviation of the centre of gravity (CoG). 1H polarization was observed to increase with an increasing 13C NMR peak CoG deviation 84 

(case of positive microwave irradiation). 85 

 86 

2. Methods 87 

 88 

2.1. Sample Preparation 89 

 90 

A solution of 3 M [2-13C]sodium acetate in the glass-forming mixture H2O/D2O/glycerol-d8 (1/3/6 v/v/v) was doped with 50 mM 91 

TEMPOL radical (all compounds purchased from Sigma Aldrich) and sonicated for ~10 minutes. Paramagnetic TEMPOL radicals 92 

were chosen to polarize 1H spins most efficiently under our dDNP conditions. 93 

 94 

2.2. Sample Freezing 95 

 96 

A 100 𝜇L volume of the above sample was pipetted into a Kel-F sample cup and inserted into a 7.05 T prototype Bruker Biospin 97 

polarizer equipped with a specialized dDNP probe, including a background-free radiofrequency (rf) coil insert (Elliott et al, 2021), 98 

running TopSpin 3.5 software. The sample temperature was reduced to 1.2 K by submerging the sample in liquid helium and 99 

reducing the pressure of the variable temperature insert (VTI) towards ~0.7 mbar. 100 

 101 

2.3. Dynamic Nuclear Polarization 102 

 103 

The 100 𝜇L of sample was polarized by applying microwave irradiation at fμw = 197.616 GHz (positive lobe of the DNP 104 

enhancement profile) or fμw = 198.192 GHz (negative lobe of the DNP enhancement profile) with triangular frequency modulation 105 

(Bornet et al, 2014) of amplitude Dfμw = ± 136 MHz or Dfμw = ± 112 MHz, respectively, and rate fmod = 0.5 kHz at a power of ca. 106 

125 mW at the output of the microwave source (value given by the provider of our microwave source VDI/AMC 705) and ca. 30 107 

mW reaching the DNP cavity (evaluated by monitoring the helium bath pressure, see Section 2.4), which were optimized prior to 108 

commencing experiments to achieve the highest possible level of 1H polarization. 109 

 110 

2.4.  Microwave Power Evaluation 111 

 112 

The microwave power reaching the DNP cavity was determined by comparison with the heating from a resistor in the liquid helium 113 

bath and calibrating how much the bath pressure increases vs. microwave power. In practice, the measurement was performed as 114 

follows: 115 

 (i) The VTI was filled with liquid helium and pumped down to 0.65 mbar, corresponding to 1.2 K; 116 

 (ii) The change of pressure when turning on a resistive heater or the microwave source for 120 s was monitored. The pressure 117 

plateaus after approximatively 60 s; 118 
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 (iii) The pressure difference between the base pressure and that under the effect of the resistive heater or the microwave source 138 

ΔPmbar is calculated. 139 

 All measurements were performed ensuring that the liquid helium level in the VTI was not varying by more than a few 140 

centimetres: the microwave cavity was immersed under 5-10 cm of liquid helium. The measurements performed using the resistive 141 

heater with power Pheater are used to plot a calibration curve Pheater vs. ΔPmbar with slope a. The deposited microwave power in the 142 

cavity is then obtained by computing Pmicrowave = aΔPmbar. 143 

 144 

2.5. Polarization Build-Ups 145 

 146 

To monitor 13C NMR spectral lineshapes with satisfactory signal-to-noise ratios (SNRs), 13C polarization must first be built-up by 147 

using a succession of optimized cross-polarization (CP) contact rf-pulses. Then, to observe changes in the lineshape of 13C NMR 148 

spectra acquired as the 1H polarization builds up from the thermal to DNP equilibrium, we employed a series of 1H saturating rf-149 

pulses followed by microwave activation, a small flip-angle rf-pulse and 13C NMR signal detection, as shown by the rf-pulse 150 

sequence in Figure 1. The build-up of 13C polarization throughout the microwave irradiation period was tracked by engaging the 151 

following experimental procedure: 152 

(i) A saturating sequence of 90° rf-pulses with alternating phases separated by a short delay (typ. 11 ms) repeated n times (typ. 153 

n = 50) kills residual magnetization on both rf-channels; 154 

(ii) The microwave source becomes active and 1H polarization builds up; 155 

(iii) The 13C Zeeman magnetization trajectory is minimally perturbed by the application of a small flip-angle rf-pulse (typ. 𝛽 = 156 

3.5°) used for detection, which is then followed by a short acquisition period (typ. tFID = 1 ms); 157 

(iv) 1H DNP builds up during a time 𝑡!"#$  (typ. 𝑡!"#$  = 30 s); 158 

(v) Stages iii-iv are cycled m times (typ. m = 6) in order to monitor the evolution of the 13C polarization (between CP steps); 159 

(vi) The microwave source is gated and a delay of duration tG = 0.5 s occurs, see Section 2.6, thus permitting the electron spins 160 

to relax to their highly polarized thermal equilibrium state before the next CP step (Bornet et al, 2016); 161 

(vii) Two synchronized adiabatic half-passages (AHPs) simultaneously produce transverse magnetization for all pulsed spin 162 

species; 163 

(viii) The nuclear magnetization is subsequently spin-locked on both rf-channels (typically by a high power rf-pulse with a 164 

nutation frequency on the order of 15 kHz and a duration between 1-10 ms) and 1H®13C polarization transfer occurs (Bornet et al, 165 

2016); 166 

(ix) A second pair of harmonized AHPs (operating with reverse chronology) restores Zeeman magnetization on each rf-channel; 167 

(x) Stages ii-ix are repeated in L units (typ. L = 8) to periodically transfer 1H Zeeman polarization to 13C nuclear spins; 168 

(xi) A second saturating sequence of 90° rf-pulses with alternating phases separated by a short delay (typ. 11 ms) repeated n 169 

times (typ. n = 50) kills residual magnetization on the 1H rf-channel only; 170 

(xii) The microwave source reactivates; 171 

(xiii) The 13C Zeeman magnetization trajectory is minimally perturbed by the application of a small flip-angle rf-pulse (typ. 𝛽 172 

= 3.5°) used for detection, which is then followed by a short acquisition period (typ. tFID = 1 ms); 173 

(xiv) 1H DNP builds up during a time 𝑡!"#%  (typ. 𝑡!"#%  = 5 s); 174 

(xv) Stages xiii-xiv are cycled p times (typ. p = 80) to monitor the evolution of the 13C NMR spectra as a function of the 1H 175 

polarization build-up with sufficient SNR. 176 

Further details regarding multiple-contact CP rf-pulse sequence operation are given elsewhere (Elliott et al, 2021b). It should 177 

be stressed that the use of CP is purely optional, and in most cases its use will be dictated by the rf-hardware available. We use CP 178 
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here simply as a means to offer greater SNRs for 13C NMR signal detection. Given the level of sample deuteration, at 6.7 T and 198 

with microwave modulation suitable SNRs can also be achieved with direct 13C DNP (Chen et al., 2013). 199 

Since it is unlikely that the 13C NMR lineshape is significantly influenced by the 13C polarization, we can afford not to diminish 200 

the 13C NMR signal intensity by a sequence of 13C saturating rf-pulses on the 13C rf-channel at stage xi to maintain high SNRs. The 201 

small rf-pulse flip angles are necessary to preserve the 1H and 13C polarizations throughout the course of the build-up experiment. 202 

 203 

 204 

 205 
Figure 1: Schematic representation of the rf-pulse sequence used to accrue 13C polarizations and monitor 13C lineshapes as a function of the 1H polarization. 206 
The experiments used the following key parameters chosen to maximize the efficiency of the rf-pulse sequence: n = 50; 𝜷 = 3.5°; m = 6; 𝒕𝐃𝐍𝐏𝟏  = 30 s; L = 8; 207 
𝒕G = 0.5 s; p = 80; and 𝒕𝐃𝐍𝐏𝟐  = 5 s. AHP = adiabatic half-passage. AHP sweep width = 100 kHz. The 𝝅/2 saturating rf-pulses used an empirically optimized 208 
thirteen-step phase cycle to remove residual magnetization at the beginning of each experiment: {0, 𝝅/18, 5𝝅/18, 𝝅/2, 4𝝅/9, 5𝝅/18, 8𝝅/9, 𝝅, 10𝝅/9, 13𝝅/9, 209 
𝝅/18, 5𝝅/3, 35𝝅/18}. The resonance offset was placed at the most intense peak of the 1H and 13C NMR spectra. 210 
 211 

2.6. Microwave Gating 212 

 213 

Microwave gating was employed shortly before and during CP experiments to allow the electron spin ensemble to return to a highly 214 

polarized state, which happens on the timescale of the longitudinal electron relaxation time (typ. T1e = 100 ms with Pe = 99.93% 215 

under our experimental dDNP conditions) (Bornet et al, 2016). Microwave gating hence provides a way to strongly attenuate 216 

paramagnetic relaxation, and consequently the 1H and 13C 𝑇$& relaxation time constants in the presence of an rf-field are extended 217 

by orders of magnitude. This allows spin-locking rf-pulses to be much longer, which significantly increases the efficiency of nuclear 218 

polarization transfer. 219 

 220 

3. Results 221 

 222 

3.1. 13C CP Build-Ups and Decays 223 

 224 

The CP build-up curves for the 13C polarizations PC as a function of the 1H DNP time tDNP for both positive and negative microwave 225 

irradiation are shown in Figure 2. The 13C polarizations PC were accrued by employing the rf-pulse sequence shown in Figure 1. 226 

The 13C polarizations PC ultimately reached PC ≃ 40.6% and PC ≃ -46.8% after 8 CP transfers and 24 minutes of positive and 227 

negative microwave irradiation, respectively. The achieved levels of 13C polarization PC are lower than those previously reported 228 

in the literature (Bornet et al, 2016), but were not further optimized since only the 13C NMR lineshape was of interest in this study 229 

as a probe for absolute 1H polarization. This is inconsequential for the current study since sufficient SNRs on the order of ~965 and 230 

~1244 were achieved for the cases of positive and negative microwave irradiation, respectively. After this point, i.e., beyond the 231 

vertical dashed line (1H DNP time = 24 mins), a slow and partial decay in the 13C NMR signal intensity towards a pseudo-232 

equilibrium is observed, see Figure 2. This 13C NMR signal decay is not a problem in general since the 13C NMR signal remains 233 

sufficiently intense as to allow clear measurement of the 13C NMR lineshape with high accuracy. 234 

 235 
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 263 
 264 
Figure 2: Experimental 13C polarization PC CP build-up curves and subsequent 13C signal decays as a function of 1H DNP time acquired at 7.05 T (1H 265 
nuclear Larmor frequency = 300.13 MHz, 13C nuclear Larmor frequency = 75.47 MHz) and 1.2 K with a single transient per data point. The presented 266 
data were acquired by using the rf-pulse sequence depicted in Figure 1. Black filled squares: Positive microwave irradiation; Black empty squares: 267 
Negative microwave irradiation. The vertical dashed line denotes the 1H DNP time at which the 1H NMR signal was destroyed by a second series of 268 
saturating rf-pulses (as shown by the rf-pulse sequence illustrated in Figure 1). 269 
 270 

3.2. 13C NMR Spectra 271 

 272 

Figure 3 shows the relevant part of the experimental 13C NMR spectra acquired with a small flip angle rf-pulse (𝛽 = 3.5°) at two 273 

different 1H DNP times. The 13C NMR spectra in Figure 3 were acquired by using the rf-pulse sequence shown in Figure 1. The 274 

initial 13C NMR spectrum (acquired at 24 mins) is a single peak with a linewidth at full-width half-maximum height (FWHM) of 275 

~10.9 kHz. The 13C NMR lineshape is relatively symmetrical and has no obvious defining features, see Figure 3a. Small peak 276 

contributions to the 13C NMR spectrum are observed towards the baseline, including one environment shifted as much as ca. -277 

300ppm. This spectrum corresponds to a low level of 1H polarization (|PH| ≃ 0%). 278 

 However, the 13C NMR spectra become more complicated and gain sharper spectral features at extended 1H DNP times, see 279 

Figures 3b and 3c. At ~30.6 mins, the 13C NMR spectra are comprised of (at least) two main resonances with differing NMR signal 280 

intensities. In the case of positive microwave irradiation (Figure 3b), the frequency separation between the two most intense 13C 281 

NMR peaks is ~8.4 kHz and the linewidth at FWHM is ~17.7 kHz. It is interesting to note that the 13C NMR spectra acquired in 282 

the cases of positive (Figure 3b) and negative (Figure 3c) microwave irradiation do not have the same overall profile at long 1H 283 

DNP times. These spectra correspond to much higher levels of 1H polarization (|PH| ≳ 55%). 284 

 285 
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 314 

 315 
Figure 3: Relevant portions of the experimental 13C NMR spectra belonging to the 13C-labelled methyl group (13CH3) of [2-13C]sodium acetate acquired at 316 
7.05 T (1H nuclear Larmor frequency = 300.13 MHz, 13C nuclear Larmor frequency = 75.47 MHz) and 1.2 K with a single transient (rf-pulse flip angle = 317 
3.5°) at two different 1H DNP times. The labels indicate the 1H DNP times at which the spectra were recorded. The timings coincide with those shown in 318 
Figure 2. The 13C NMR spectra were acquired by using the rf-pulse sequence depicted in Figure 1. (a) No microwave irradiation; (b) Positive microwave 319 
irradiation; and (c) Negative microwave irradiation. All 13C NMR spectra have been scaled to yield the same maximum intensity. 320 
 321 

3.3. 13C NMR Peak Normalized Centre of Gravity Deviation vs. 1H Polarization 322 
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 333 

The DNP build-up curve for the 1H polarization PH as a function of the 1H DNP time for positive microwave irradiation is shown 334 

in Figure 4. More details regarding how to acquire such build-up curves are given in the following reference (Bornet et al, 2016). 335 

The 1H polarization build-up curve was found to have a stretched exponential behaviour, and the experimental data are well fitted 336 

with a stretched exponential function using a 1H DNP build-up time constant denoted 𝜏!"#' . Stretched exponential function: A(1-337 

exp{-(t/𝜏!"#' )(}), where A is a constant, 𝜏)*+'  is the 1H DNP build-up time constant extracted from the above fitting procedure 338 

and 𝛽 is the breadth of the distribution of 1H DNP build-up time constants. The mean 1H DNP build-up time constant 〈𝜏)*+' 〉 is 339 

calculated as follows: 〈𝜏)*+' 〉 = 𝜏)*+' Γ(1/𝛽)/𝛽, where Γ(1/𝛽) is the gamma function. A similar 1H polarization build-up curve 340 

for the case of negative microwave irradiation, with parameters 𝜏!"#, 	and 〈𝜏!"#, 〉, is shown in the Supplement. 341 

The sample polarized to PH ≃ -77.3% (1H DNP time ≃ 30.6 mins) by employing negative microwave irradiation with a 1H 342 

DNP build-up time constant of 〈𝜏!"#, 〉	= 122.0 ± 0.4 s (𝛽 = 0.87). A reduced 1H polarization of PH ≃ 58.1% was reached (at 1H 343 

DNP time ≃ 30.6 mins) by using positive microwave irradiation. The 1H DNP build-up time constant was much shorter in this 344 

case: 〈𝜏!"#' 〉 = 80.2 ± 0.3 s (𝛽 = 0.77). 345 

The 13C NMR lineshapes presented in Figure 3 are complicated and so it is desirable to construct a parameter which can describe 346 

the 1H polarization PH, be robust with respect to field inhomogeneities and easily applied to any lineshape. Figure 4 therefore also 347 

displays the 13C NMR peak CoG deviation 𝛿-! for sample I as a function of the 1H DNP time for the case of positive microwave 348 

irradiation. The 13C NMR peak CoG normalized deviation 𝛿-! is defined as: 349 

 350 

𝛿-! =
."#$%
/0!

 (1) 351 

 352 

where Masym is denoted as the first moment of asymmetry and corresponds to the following quantity: 353 

 354 

𝑀1234 = ∫ (𝜔 − 𝜔5(𝑃6 = 0%))
7
,7 𝑓(𝜔)	𝑑𝜔 (2) 355 

 356 

The first moment of asymmetry Masym is based on a calculation whereby the CoG of the 13C NMR peak 𝜔5 is held constant at 357 

𝜔5(𝑃6 = 0%), i.e., the 13C NMR peak CoG corresponding to when the 1H polarization PH is zero. The CoG of the 13C NMR peak 358 

𝜔5 is calculated as: 359 

 360 

𝜔5 = ∫ 𝜔7
,7 𝑓(𝜔)	𝑑𝜔 (3) 361 

 362 

where the intensities of the 13C NMR peaks are normalized: 363 

 364 

∫ 𝑓(𝜔)
7
,7 	𝑑𝜔 = 1 (4) 365 

 366 

where 𝜔 is the resonance frequency and 𝑓(𝜔) is the peak intensity at 𝜔. The procedure outlined above ensures that 𝑀1234 = 0 at 367 

PH = 0% such that the described approach can be readily generalized to any lineshape. The quantity LW0 is a measure of the 368 

linewidth of the 13C NMR peak in the case of PH = 0%: 369 

 370 

𝐿𝑊5 = >∫ (𝜔(𝑃6 = 0%) − 𝜔5(𝑃6 = 0%))%
7
,7 𝑓(𝜔(𝑃6 = 0%))	𝑑𝜔 (5) 371 
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i.e., the square root of the second moment at PH = 0%. This factor establishes a 13C NMR peak CoG deviation 𝛿-! (defined in 398 

Equation 1) which is a normalized and dimensionless quantity. 399 

Figure 4 indicates that at longer 1H DNP times, where the 1H polarization PH is higher, there is a greater 13C NMR peak CoG 400 

normalized deviation 𝛿-!. Similar curves to those presented in Figure 4 for the case of negative microwave irradiation are shown 401 

in the Supplement. It should be noted that the curve profiles and final values of 𝛿-! are not mirror images of each other. This is 402 

also reflected in the 13C NMR spectra acquired at ~30.6 mins, see Figure 3. The rate of change in the value of 𝛿-! during the first 403 

~100 s of Figure 4 indicates a more rapid change in the 1H polarization PH. This coincides with the starkest changes in 13C NMR 404 

lineshape, see the Supplement. 405 

 406 

 407 

 408 
Figure 4: Experimental 1H polarization PH DNP build-up curve (black filled squares and left-hand axis) and 13C NMR peak CoG normalized deviation 409 
𝜹𝝎𝟎 (grey empty circles and right-hand axis) as a function of the 1H DNP time acquired at 7.05 T (1H nuclear Larmor frequency = 300.13 MHz, 13C nuclear 410 
Larmor frequency = 75.47 MHz) and 1.2 K with a single transient per data point for the case of positive microwave irradiation. The timings coincide with 411 
those shown in Figure 2. The black solid line indicates the best fit of the experimental data points for the 1H polarization PH DNP build-up curve, and has 412 
the corresponding fitting function: A(1-exp{-(𝐭/𝝉𝐃𝐍𝐏

± )𝜷}). Mean 1H DNP build-up time constant: 〈𝝉𝐃𝐍𝐏) 〉 = 80.2 ± 0.3 s. 413 

 414 

The 13C NMR peak CoG normalized deviation 𝛿-! as a function of the 1H polarization PH for positive microwave irradiation is 415 

shown in Figure 5. The 1H polarization PH increases with an increasing 13C NMR peak CoG normalized deviation. The experimental 416 

data were fitted with a phenomenological relationship of the kind: 𝑃8?𝛿-!@ = 𝐴 × 𝛿-!
( , where 𝑃8(𝛿-!) is the 1H polarization as a 417 

function of the 13C NMR peak CoG normalized deviation 𝛿-!, 𝛽 is the order of the polynomial fit and A is a scaling factor. The 418 

phenomenological function is simply used to correlate the 13C NMR peak CoG normalized deviation 𝛿-! with the 1H polarization 419 

PH. The best fit values of the phenomenological function to the experimental data over the range of 13C NMR peak CoG normalized 420 

deviations shown in Figure 5 are given in the caption. 421 
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 484 

 485 
Figure 5: Experimental 1H polarizations PH as a function of the 13C NMR peak CoG normalized deviation 𝜹𝝎𝟎 acquired at 7.05 T (1H nuclear Larmor 486 
frequency = 300.13 MHz, 13C nuclear Larmor frequency = 75.47 MHz) and 1.2 K with a single transient per data point for the case of positive microwave 487 
irradiation. The experimental data were fitted with a phenomenological function: 𝑷𝐇-𝜹𝝎𝟎. = 𝑨 × 𝜹𝝎𝟎

𝜷 . Best fit values: A = 129.1% ± 0.8%; 𝜷 = 0.736 ± 488 
0.005. The absolute 1H polarizations PH were measured by comparison with a thermal equilibrium 1H NMR signal. 489 
 490 

4. Discussion 491 

 492 

As discussed in Section 3.3 above, the CoG normalized deviation 𝛿-! of the peaks in the 13C NMR spectrum indirectly provide the 493 

level of 1H polarization PH, see Figure 5. It is unlikely that a uniform spin temperature between the 1H and 13C nuclear spin reservoirs 494 

is reached at any time during the experiment presented in Figure 1, but as long as a uniform spin temperature is achieved within 495 

the 1H nuclear spin reservoir then the methodology presented above holds. It should be noted that the order of the polynomial fit 𝛽 496 

shown in Figure 5 is likely to be influenced by the capabilities of the rf-probe, such as the rf-pulse homogeneity, and it is therefore 497 

recommended that (if possible) users implement similar measurements on their own experimental setups, rather than simply reusing 498 

the value presented here. In this way, any laboratory can adopt the procedure and reproduce the result.  499 

Once the 13C NMR peak CoG normalized deviation 𝛿-! falls below zero the 1H polarization PH, rapidly drops towards negative 500 
13C NMR peak CoG normalized deviations 𝛿-! (with decreasing 1H polarizations PH). This result implies that the NMR peak CoG 501 

normalized deviation 𝛿-! is less sensitive to negative microwave irradiation. This change in sensitivity of the 13C NMR peak CoG 502 

normalized deviations 𝛿-! to positive and negative microwave irradiation is also evident in the 13C NMR spectra, see Figure 3 and 503 

the Supplement. This is likely associated with: (i) 13C NMR spectra at negative levels of 1H polarization have lineshapes with less 504 

pronounced features, i.e., partially unresolved peaks; and (ii) the 13C NMR lineshape changes less dramatically as a function of 505 

negative 1H polarization. These points could both be related to NMR line narrowing due to radiation damping in the case of negative 506 

microwave irradiation (Mao and Ye, 1997; Krishnan and Murali, 2013). 507 
1H polarizations in the range of PH ≲ 30% correspond to those typically accrued by 1H DNP build-up experiments at liquid 508 

helium temperatures of 3.8-4.2 K (PH = 0-30%). These results indicate that the 13C NMR peak CoG normalized deviation 𝛿-! can 509 

therefore also be used to infer 1H polarizations PH accurately at elevated temperatures. However, the presence of methyl group 510 

rotation at temperatures above 1.2 K is likely to somewhat average the 1H-13C dipolar couplings and could lead to a different trend 511 

compared with the fit presented in Figure 5 (Latanowicz, 2005). 512 

One possible contribution to the inflexion in the fit of the 13C NMR peak CoG normalized deviations 𝛿-! at  low levels of 1H 513 

polarization PH is the presence of strong polarization gradients or highly polarized clusters of nuclear spins located within specific 514 

radii of the electron spins within the sample at short 1H DNP times, which would lead to a non-uniform spin temperature. This 515 

contribution is expected to be minor. 516 
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The decay of 13C polarization during the 1H DNP build-up interval 𝑡!"#%  shown in Figure 2 occurs when the microwave source 563 

is active and the 13C nuclear spin ensemble relaxes towards the spin temperature it would have achieved in the case of direct 13C 564 

DNP, i.e., no CP. This 13C polarization decay is a combination of three factors: (i) the microwaves are active and hence polarization 565 

is diminishing towards the low DNP equilibrium of the 13C nuclear spins with TEMPOL as the polarizing agent; (ii) the 13C nuclear 566 

spins are being actively pulsed, although minimally, every 5 s, which leads to an accumulative loss of 13C NMR signal intensity 567 

over many minutes; and (iii) the radical concentration and temperature are in an optimal range for thermal mixing (Guarin et al, 568 

2017) and since the 13C spins are polarized whilst the 1H spins are saturated the two nuclear pools most likely exchange energy via 569 

the electron non-Zeeman reservoir, which influences the time evolution of the 13C magnetization until the 1H spins achieve the 570 

same spin temperature. The difference in the 13C polarizations PC at 1H DNP time = 24 mins for positive and negative microwave 571 

irradiation is associated with the 1H polarization build-ups and the performance efficiency of the multiple-contact CP rf-pulses, see 572 

the Supplement. 573 

The 13C NMR lineshapes of [2-13C]sodium acetate shown in Figure 3 have features which mainly originate from 13C chemical 574 

shift anisotropy (CSA) (max. ~1.5 kHz at our magnetic field of 7.05 T) and 1H-13C dipolar couplings (typ. -22.7 kHz) that are 575 

affected by possible methyl group rotation. Since the 13C CSA is negligible with respect to the 1H-13C dipolar couplings, it is 576 

assumed that the 1H-13C dipolar couplings play the key role in the 13C NMR lineshape of [2-13C]sodium acetate. The smaller 13C 577 

NMR peak contributions observed near the baseline in Figure 3a likely correspond to different chemical environments within the 578 

sample which are being polarized on different time scales. 579 

The values of 𝛿-!, PH and the order of the polynomial fit 𝛽 presented in Figure 5 are likely to depend to a small degree on the 580 

solvent constituents. In the case of our sample, the glycerol-d8 present in the dDNP glassing matrix yields an approximate 13C 581 

concentration of ~410 mM at natural abundance, which is ~14% of the total 13C NMR signal. Under microwave irradiation, the 582 

natural abundance 13C spins of glycerol-d8 will be polarized with their own build-up rate and maximum polarization, and although 583 

deuterated glycerol-d8 can also be polarized by 1H-13C CP (Vuichoud et al, 2019). As such, these contributions could impact the 584 
13C NMR peak intensities, which would go some way to explaining why the 13C NMR spectra are not of the same overall profile 585 

under positive and negative microwave irradiation at long proton DNP times, see Figures 3b and 3c. It is also possible that the 586 

dipolar couplings and CSA interactions manifest differently under positive and negative microwave irradiation, and that there is a 587 

preferred energy state for coupling to positive and negative 1H polarizations PH leading to non-identical 13C NMR spectra. 588 

The NMR spectra presented in Figure 3 were acquired for the cases of high 13C SNRs, the largest of which is ca. 1244. In the 589 

event that CP cannot be efficiently implemented, and the acquired 13C NMR signal is weak, we anticipate that the method is robust 590 

with respect to a few kilohertz of Lorentzian line broadening, which can be used to improve the experimental SNR. The value of 591 

the 13C NMR peak CoG normalized deviation 𝛿-! is, however, likely to be sensitive to changes in phase, and this should therefore 592 

be taken into account before comparing experimental results to any calibration curves similar to those presented in Figure 5. It is 593 

also possible that additional phase corrections may help the trend shown in Figure 5 move closer to a linear fit for values of 𝛿-!< 594 

0.02. 595 

The results of this study suggest that other 13C-labelled molecules which might display distinct solid-state 13C NMR spectra, 596 

such as [1-13C]sodium formate and other 13CH3, or 13CH2, group bearing molecular candidates (presence of a strong 1H-13C dipolar 597 

coupling), could also be used as indirect 1H polarization meters. To effectively polarize both 1H and 13C nuclear spins, future 598 

experiments could use a tailored mixture of radical species, in certain cases. Clearly, at low levels of 1H polarization PH the lower 599 

intensity resonance is unresolved and polluted by the more intense peak, and as such; the presented analysis could be further 600 

improved by considering Voigt fits of the complicated 13C NMR spectra, but since there are a number of resonances to consider 601 

this route would lead us away from our simple pedagogical approach. 602 
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 638 

We have demonstrated that 13C NMR lineshape polarimetry of [2-13C]sodium acetate can be implemented to indirectly infer the 1H 639 

polarization of the 13CH3 group nuclear spins and potentially the whole sample if the constituents of which are sufficiently 640 

homogeneously mixed. An easy to implement protocol based on the normalized deviation of the centre of gravity of the 13C peaks 641 

was employed and a simple relationship with 1H polarization was found. This approach is complementary to traditional methods 642 

of measuring 1H polarization, in suitable circumstances, and could be useful in situations where measurements of 1H polarizations 643 

prove difficult, e.g., due to radiation damping (Mao and Ye, 1997; Krishnan and Murali, 2013), which can also likely impact the 644 

experimental data and order of the polynomial fit shown in Figure 5. Other appropriate cases for potential implementation include: 645 

(i) the lack of a 1H rf-coil; (ii) the presence of large background signals; and (iii) the absence of a thermal equilibrium spectrum. 646 

The approach presented here works well for traditional dDNP-compatible sample formulations but future studies employing fully 647 

deuterated dDNP solutions could provide 13C NMR lineshapes with more distinct features. 648 
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