Supplement

Solid-State 1H Nuclear Spin Polarimetry by 13CH$_3$ Nuclear Magnetic Resonance

Stuart J. Elliotta,b,†, Quentin Chappuisa and Sami Jannina

a Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - FRE 2034 Université de Lyon / CNRS / Université Claude Bernard Lyon 1 / ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France

b Department of Chemistry, Crown Street, University of Liverpool, Liverpool L69 7ZD, United Kingdom

† stuart-james.elliott@univ-lyon1.fr
Contents

1 13C NMR Spectra ... 3
2 13C NMR Peak Asymmetry vs. 1H Polarization 4
1. 13C NMR Spectra

Figure S1: Relevant portions of the experimental 13C NMR spectra belonging to the 13C-labelled methyl (13CH$_3$) group of I acquired at 7.05 T (1H nuclear Larmor frequency = 300.13 MHz, 13C nuclear Larmor frequency = 75.47 MHz) and 1.2 K with a single transient (rf-pulse flip angle = 3.5°) as a function of 1H DNP time. (a) Positive microwave irradiation; and (b) Negative microwave irradiation. The labels indicate the 1H DNP time at which the spectra were recorded.

Figure S1 shows the relevant part of the experimental 13C NMR spectra of I acquired with a small flip angle rf-pulse ($\beta = 3.5^\circ$) as a function of 1H DNP time. The 13C NMR spectra in Figure S1 were acquired by using the rf-pulse sequence shown in Figure 1 of the main text. The timings coincide with those shown in Figure 2 of the main text.
2. 13C NMR Peak Asymmetry vs. 1H Polarization

Figure S2: Experimental 1H polarization $|P_h|$ DNP build-up curve (black filled squares) and 13C NMR peak asymmetry A_{sym} (grey empty circles) for I as a function of 1H DNP time acquired at 7.05 T (1H nuclear Larmor frequency = 300.13 MHz, 13C nuclear Larmor frequency = 75.47 MHz) and 1.2 K with a single transient per data point for the case of negative microwave irradiation. The timings coincide with those shown in Figure 2 of the main text. The black solid line indicates the best fit of experimental data points for the 1H polarization $|P_h|$ DNP build-up curve, and has the corresponding fitting function: $A(1-\exp\left(-t/\tau_{DNP}\right))$. Mean 1H DNP build-up time constant: $\langle \tau_{DNP} \rangle = 122.0 \pm 0.4$ s.

Figure S2 shows the DNP build-up curve for the 1H polarization $|P_h|$ of I as a function of 1H DNP time for negative microwave irradiation. Figure S2 also displays the 13C NMR peak asymmetry A_{sym} for sample I as a function of 1H DNP time.