Supplement # Solid-State ¹H Nuclear Spin Polarimetry by ¹³CH₃ Nuclear Magnetic Resonance Stuart J. Elliott^{a,b,†}, Quentin Stern^a and Sami Jannin^a ^a Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - FRE 2034 Université de Lyon / CNRS / Université Claude Bernard Lyon 1 / ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France ^b Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom [†] stuart-james.elliott@univ-lyon1.fr ## Contents | 1 | ¹³ C NMR Spectra | 3 | |---|--|---| | 2 | ¹³ C NMR Peak Asymmetry vs. ¹ H Polarization | 4 | ### 1. ¹³C NMR Spectra Figure S1: Relevant portions of the experimental 13 C NMR spectra belonging to the 13 C-labelled methyl (13 CH₃) group of I acquired at 7.05 T (1 H nuclear Larmor frequency = 300.13 MHz, 13 C nuclear Larmor frequency = 75.47 MHz) and 1.2 K with a single transient (rf-pulse flip angle = 3.5°) as a function of 1 H DNP time. (a) Positive microwave irradiation; and (b) Negative microwave irradiation. The labels indicate the 1 H DNP time at which the spectra were recorded. Figure S1 shows the relevant part of the experimental 13 C NMR spectra of I acquired with a small flip angle rf-pulse ($\beta = 3.5^{\circ}$) as a function of 1 H DNP time. The 13 C NMR spectra in Figure S1 were acquired by using the rf-pulse sequence shown in Figure 1 of the main text. The timings coincide with those shown in Figure 2 of the main text. ### 2. ¹³C NMR Peak Asymmetry vs. ¹H Polarization Figure S2: Experimental 1 H polarization $|P_{\rm H}|$ DNP build-up curve (black filled squares) and 13 C NMR peak asymmetry $A_{\rm sym}$ (grey empty circles) for **I** as a function of 1 H DNP time acquired at 7.05 T (1 H nuclear Larmor frequency = 300.13 MHz, 13 C nuclear Larmor frequency = 75.47 MHz) and 1.2 K with a single transient per data point for the case of negative microwave irradiation. The timings coincide with those shown in Figure 2 of the main text. The black solid line indicates the best fit of experimental data points for the 1 H polarization $|P_{\rm H}|$ DNP build-up curve, and has the corresponding fitting function: A(1-exp{-(t/ $\tau_{\rm DNP}$) $^{\beta}$ }). Mean 1 H DNP build-up time constant: $\langle \tau_{\rm DNP}^{-} \rangle = 122.0 \pm 0.4$ s. Figure S2 shows the DNP build-up curve for the 1 H polarization $|P_{H}|$ of **I** as a function of 1 H DNP time for negative microwave irradiation. Figure S2 also displays the 13 C NMR peak asymmetry A_{sym} for sample **I** as a function of 1 H DNP time.