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Abstract. The ability to make robust inferences about the dynamics of biological macromolecules using NMR spectroscopy

depends heavily on the application of appropriate theoretical models for nuclear spin relaxation. Data analysis for NMR

laboratory-frame relaxation experiments typically involves selecting one of several model-free spectral density functions using

a bias-corrected fitness test. Here, advances in statistical model selection theory, termed bootstrap aggregation or bagging, are

applied to 15N spin relaxation data, developing a multimodel inference solution to the model-free selection problem. The ap-5

proach is illustrated using data sets recorded at four static magnetic fields for the bZip domain of the S. cerevisiae transcription

factor GCN4.

1 Introduction

Since the original publications in the early 1980’s, the model-free formalism of Lipari and Szabo (Lipari and Szabo, 1982a, b)

and the related two-step approach of Halle and Wennenström (Halle and Wennerström, 1981) have served as starting points for10

extracting dynamical information about macromolecules from NMR spin relaxation data.
The original approaches represented intramolecular dynamics using a single generalized order parameter and effective corre-

lation time. In the ensuing decades, increasingly complex models have offered a more refined understanding of internal and

overall molecular motions. Extended model-free formalisms characterize intramolecular dynamics using generalized order

parameters and effective correlation times for more than one (usually two) time scales (Clore et al., 1990; Gill et al., 2016). Re-

lated approaches employ discrete or continuous distributions to more fully capture the range of intramolecular correlation times

(Lemaster, 1995; Calandrini et al., 2010; Khan et al., 2015; Hsu et al., 2018, 2020; Smith et al., 2019). Other strategies em-

ploy physical models or atomistic molecular dynamics simulations for overall rotational diffusion and internal conformational

fluctuations, to more directly link the NMR phenomena to underlying physical processes (Tugarinov et al., 2001; Zerbetto

et al., 2013; Ollila et al., 2018; Polimeno et al., 2019a, b; Mendelman et al., 2020; Mendelman and Meirovitch, 2021). The

availability of extended model-free formalisms, or other approaches with variable numbers of parameters, has created a further

dilemma: should a data analysis protocol extract the most exacting information justified by the data, or employ the model most

robust to experimental variation.
Several authors have addressed model selection by employing the principle of parsimony or Occam’s Razor (Palmer et al.,

1991; Stone et al., 1992; Mandel et al., 1995; d’Auvergne and Gooley, 2003; Chen et al., 2004). These approaches seek
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to identify the simplest model that explains the data within experimental uncertainties by applying various bias-correcting15

penalties to the fitness statistic, e.g. F-statistic,

Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC).

These corrections alone often fall short of producing robust inferences and may yield parameter values susceptible to insta-

bility in both simulated and real-world replicates. In these situations, the model-selection process has failed the principle of

‘worrying selectively’. This criterion suggests, “Since all models are wrong the scientist must be alert to what is importantly20

wrong.” (Box, 1976).

To illustrate the issue more concretely, a typical data analysis protocol uses a non-linear weighted least-squares algorithm

to fit experimental spin relaxation data with a set of model-free spectral density functions (Mandel et al., 1995; Gill et al.,

2016). The resulting χ2 residual sum-of-squares variables are penalized for the number of adjustable parameters in each model

function, the model with the lowest penalized residual sum-of-squares is selected as optimal, and the best-fit parameters of the25

model reported. However, this procedure is subject to model-selection error: random statistical variation in the experimental

data may lead to one model chosen as optimal for a given data set, but another model, with different set of parameters, may

be selected if the experimental data were replicated, with consequent different random variation. The problem of joint model-

selection and parameter estimation has been explored elegantly by d’Auvergne and Gooley (d’Auvergne and Gooley, 2007,

2008a, b)30

and by Abergel and coworkers (Abergel et al., 2014).

The present paper addresses model-selection error by using the approach of bootstrap aggregation or bagging. This concept

originated from a desire to improve the performance of machine learning algorithms. Thus, Breiman showed that predictor

accuracy and stability improved when averaging predictor values obtained from bootstrap replicates of the original training set

(Breiman, 1996). Buja and Stuetzle subsequently extended the use of bagging to generalized statistical analysis and showed35

sampling with and without replacement yield equivalent improvements (Buja and Stuetzle, 2006). The approach and notation

of Efron is used in the following (Efron, 2014).

Bootstrap aggregation improves parameter stability; consequently, the resulting variations in model-free parameter values,

for example between atomic sites or functional states in a given macromolecule, are more likely to be biologically or chemi-

cally meaningful. Although applicable to most model-selection situations, bootstrap aggregation exhibits the most pronounced40

benefits when the data justify two distinct models with similar degrees of certainty.

Bootstrap aggregation for model-free analysis of NMR spin relaxation relaxation rate constants is illustrated by application

to backbone amide 15N spin relaxation data that have been recorded at 1H magnetic fields of 600, 700, 800, and 900 MHz for

the bZip domain of the S. cerevisiae transcription factor GCN4 by Gill and coworkers (Gill et al., 2016).

2 Theory45

In the following, the notation used by Efron is rephrased in terms appropriate for NMR spin relaxation data (Efron, 2014).

Laboratory-frame nuclear spin relaxation rate constants for backbone 15N spins can be transformed into sets of spectral density
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function values, J(ω), in which ω is an eigenfrequency of the spin system (Farrow et al., 1995; Gill et al., 2016). Laboratory-

frame 15N relaxation rate constants, typically R1, R2, and the steady-state nuclear Overhauser enhancement (NOE), recorded

at a single static magnetic field yield estimates of J(0), J(ωN ), and J(0.87ωH), in which ωN and ωH are the 15N and 1H50

Larmor frequencies. Thus, the number of spectral density values N = 3G in which G is the number of static magnetic fields

utilized. In the present application, G= 4. The set of experimental spectral densities is described using the following notation:

y = {yj}= {y1,y2, ...,yN} , (1)

in which the yj = J(ωj) are ordered in increasing values of ω. The values of J(0) are ordered additionally by increasing values55

of the static magnetic field. The experimental data sets utilized in the present work are not affected by chemical exchange

contributions to spin relaxation, but such contributions can be taken into account from the field dependence of transverse

relaxation rate constants prior to the model-free analysis (Kroenke et al., 1998).

The extended model-free spectral density function used to fit 15N spin relaxation data is given by the following:

J(ω) =
2

5

[
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fS

2
sτm
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f )S2
sτ2

(1 +ω2τ22 )
+

(1−S2
f )(1−S2

s )τ3

(1 +ω2τ23 )

]
(2)

in which τ−11 = τ−1m +τ−1s , τ−12 = τ−1m +τ−1f , and τ−13 = τ−1m +τ−1s +τ−1f and τf < τs. The set of possible model parameters

in this function are given by the following:

µ= {µk}= {τm,S2
f ,S

2
s , τf , τs} , (3)

in which τm is the (effective) overall rotational correlation time, S2
f is the square of the generalized order parameter for internal65

motions on a fast (τf ≤ 150 ps) time scale, and S2
s is the square of the generalized order parameter for internal motions on

a slow (τs > 150 ps) time scale (vide infra). The square of the generalized order parameter S2 = S2
fS

2
s . Overall rotational

diffusion has been assumed to be isotropic for simplicity; this assumption can be relaxed as needed (Lee et al., 1997). The

spectral density data are fit with a set of nested models. The full model, ‘model 5’, contains all five parameters, while simpler

models, models 1-4, are generated by fixing the value of one or more parameters, effectively removing such parameters from70

the model. Thus:

Model 1: µ= {τm,S2
f ,1,0,0}

Model 2: µ= {τm,S2
f ,1, τf ,0}

Model 3: µ= {τm,1,S2
s ,0, τs}

Model 4: µ= {τm,S2
f ,S

2
s ,0, τs}75

Model 5: µ= {τm,S2
f ,S

2
s , τf , τs}.

The optimal model t1 and associated parameter values µ are obtained as follows:

µ̂= {µ̂k}= t1(y) , (4)
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using the lowest penalized residual sum-of-squares as described above. In the present work, the small-sample AICC criterion

was used for model selection (Hurvich and Tsai, 1989).80

In general, a non-parametric bootstrap sample is generated by draws with replacement from the original data y and defined

as follows:

y∗i = {y∗ij}= {y∗i1,y∗i2, ...,y∗iN} , (5)

in which i= 1, ...B and B is the total number of bootstrap samples. The nature of spectral density data requires care in85

generating bootstrap samples and the particular procedure employed in the present work is described in Methods.

A conventional non-parametric bootstrap determination of the standard deviations of the parameters µ̂ begins by determining

fitted parameters for the ith bootstrap sample as follows:

µ̂∗i = {µ̂∗ik}= t1(y∗i ) , (6)

in which the fitting model is fixed to the optimal model selected in fitting the original spectral density values and only model90

parameter values are optimized. The bootstrap estimate of the standard deviation for the kth parameter is derived from the

following expressions:

µ̂∗k =
1

B

B∑
i=1

µ̂∗ik , (7)

σ̂∗k =

[
1

B− 1

B∑
i=1

(µ̂∗ik − µ̂∗k)2

]1/2
. (8)

In the conventional approach, the reported results of the data analysis are {µ̂k} and {σ̂∗k}. Model-selection error is not assessed.95

This form of bootstrap simulation is an alternative to Monte Carlo simulations to determine parameter uncertanties, which could

be regarded as parametric bootstrap simulations (vide infra).

In contrast to the conventional procedure, bootstrap aggregation determines both the optimal fitted model and associated

model parameters for each bootstrap sample. Thus, the optimal model ti is determined for the ith bootstrap sample using the

same model selection strategy as for the original data as follows:100

µ̃∗i = {µ̃∗ik}= ti(y
∗
i ) . (9)

Unlike the conventional bootstrap procedure, the different members of the set µ̃∗i obtained by bootstrap aggregation represent

different models as well as different sets of optimized parameters. The aggregated, or smoothed, estimator of the kth model

parameter is given by the following:

µ̃k =
1

B

B∑
i=1

µ̃∗ik . (10)105
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To make the above formalism concrete, suppose that for a given set of spectral density values, model selection and parameter

optimization for B bootstrap samples yields B2 samples in which model 2 is optimal and B3 samples in which model 3 is

optimal, with B =B2 +B3. The bootstrap aggregated estimates of S̃2
f and τ̃f are given by the following:

S̃2
f =

1

B

[∑
i∈B2

S̃2∗
fi +

∑
i∈B3

1

]
, (11)

τ̃f =
1

B

[∑
i∈B2

τ̃∗fi +
∑
i∈B3

0

]
. (12)110

because model 3 fixes S2
f = 1 and τf = 0. As another example, suppose that for a given set of spectral density values, model

selection and parameter optimization forB bootstrap samples yieldsB4 samples in which model 4 is optimal andB5 samples in

which model 5 is optimal, with B =B4 +B5. The the bootstrap aggregated estimates of S̃2
f and τ̃f are given by the following:

S̃2
f =

1

B

B∑
i=1

S̃2∗
fi , (13)

τ̃2f =
1

B

[∑
i∈B4

0 +
∑
i∈B5

τ̃2∗fi

]
. (14)115

because both models 4 and 5 fit S2
f as a parameter, but model 4 fixes τf = 0.

A smoothed standard deviation for µ̃ can be obtained using the plug-in-principle (Efron, 2014). Here, the cumulative distri-

bution function for the parameters of interest are estimated using the empirical distribution function of the bootstrap replicates.

Using the above notation, the number of times that the ith bootstrap replicate, y∗i , contains the spectral density value yj is

given by the following:120

Y ∗ij = #{y∗ik = yj} . (15)

With this definition, Y∗i is a vector enumerating the representation of each original data point in the ith bootstrap replicate as

follows:

Y∗i = {Y ∗i1,Y ∗i2, ...,Y ∗iN} . (16)

Further, the average representation of the original spectral density value yj across the B bootstrap replicates is given by the125

following:

Ȳ ∗j =
1

B

B∑
i=1

Y ∗ij . (17)

The covariance between the representation of the jth spectral density value and the kth model-free parameter value across B

bootstrap replicates is given by the following:

ˆcovjk =
1

B

B∑
i=1

(
Y ∗ij − Ȳ ∗j

)
(µ̃∗ik − µ̃k) . (18)130
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Finally, the smoothed estimate of the standard deviation for the kth model-free parameter is calculated from the following

expression:

σ̃k =

 1

N

N∑
j=1

ˆcov2jk

1/2

. (19)

In bootstrap aggregation, the reported results consist of the smoothed estimators {µ̃k} and {σ̃k} incorporating the effects of

model-selection uncertainty. As noted by Efron, σ̃k ≤ σ̂u
k , in which σ̂u

k is obtained using Eq. 8 naively applied to the bootstrap135

aggregated data (rather than to data analyzed with a fixed model as above) (Efron, 2014).

3 Methods

Backbone amide 15N spin relaxation data have been reported atG= 4 1H static magnetic fields of 600, 700, 800, and 900 MHz

for the bZip domain of the S. cerevisiae transcription factor GCN4 by Gill and coworkers (Gill et al., 2016). Experimental

values of R1, R2, and the steady-state NOE measured at each magnetic field for each residue were converted to spectral140

density values using the following expressions (Farrow et al., 1995; Gill et al., 2016):

J(0.87ωH) =
4

5d2NH

σNH (20)

J(ωN ) =
4(R1− 1.249σNH)

3d2NH + 4c2NH

(21)

J(0) =
6(R2− 0.5R1− 0.454σNH)

3d2NH + 4c2NH

, (22)

in which σNH = (NOE−1)R1γNγ
−1
H , dNH = (µ0/4π)~γHγNr−3NH , cNH = 3−1/2∆σωN , rNH = 0.102 nm is the N-H bond145

length, and ∆σ =−172 ppm is the 15N chemical shift anisotropy. A single value of J(0) was obtained for each residue as the

weighted mean (using propagated experimental uncertainties) of the values obtained from the G static magnetic fields. The

uncertainty in the mean J(0) was obtained by jackknife simulations. For each residue, the spectral density values used for

model fitting consist of the mean J(0), G values of J(ωN ) and G values of J(0.87ωH), for a total of 9 data points.

As noted above, the 15N spectral density values for each backbone amide consist of G= 4 values of each of J(0), J(ωN )150

and J(0.87ωH). Random sampling with replacement from the N = 12 values to generate bootstrap samples, as normally

applied, could result in samples in which the relative numbers of spectral density values from each class are highly skewed. For

example, a bootstrap sample could be generated without any J(0) values, leading to very anomalous fitted parameters. At the

other extreme, random sampling with replacement could result in samples in which a single value was highly over-represented.

For example, a bootstrap sample could be generated in which one particular J(0) value is represented exclusively.155

To avoid such highly unrepresentive possibilities, bootstrap samples were generated by enumerating the 193 = 6859 possible

arrangements in which at most two spectral density values from each set of J(0), J(ωN ) and J(0.87ωH) are duplicated. The 19

possible arrangements of the G= 4 indices {1,2,3,4} and corresponding Yij for selecting bootstrap samples of J(0), J(ωN )

and J(0.87ωH) are shown in Table 1. In this Table, pij is a pointer vector selecting data from a particular set of spectral density
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Table 1. Bootstrap Selections

i pij Y ∗
ij i pij Y ∗

ij

1 [1,2,3,4] [1,1,1,1] 11 [4,2,3,4] [0,1,1,2]

2 [1,1,3,4] [2,0,1,1] 12 [1,4,3,4] [1,0,1,2]

3 [1,2,1,4] [2,1,0,1] 13 [1,2,4,4] [1,1,0,2]

4 [1,2,3,1] [2,1,1,0] 14 [1,1,2,2] [2,2,0,0]

5 [2,2,3,4] [0,2,1,1] 15 [1,1,3,3] [2,0,2,0]

6 [1,2,2,4] [1,2,0,1] 16 [1,1,4,4] [2,0,0,2]

7 [1,2,3,2] [1,2,1,0] 17 [2,2,3,3] [0,2,2,0]

8 [3,2,3,4] [0,1,2,1] 18 [2,2,4,4] [0,2,0,2]

9 [1,3,3,4] [1,0,2,1] 19 [3,3,4,4] [0,0,2,2]

10 [1,2,3,3] [1,1,2,0]

values. For example p4j = [1,2,3,1]; applying this pointer to the set of J(0) values would select the J(0) values obtained at160

600 (×2), 700, and 800 MHz. The corresponding counter vector Y ∗4j = [2,1,1,0] is the numbers of times J(0) values recorded

at the different fields were sampled. The process would be repeated for the other sets of spectral density values.
For example, the 1260th bootstrap sample uses p4j to select J(0), p10j to select J(ωN ), and p6j to select J(0.87ωH). The full

vector Y ∗ij of length N = 12 is obtained by concatenating the individual Y ∗4j , Y ∗10j , and Y ∗6j vectors from the table. With this

procedure, the first bootstrap sample is identical to the original data. The mean and uncertainty was determined for J(0) for

each bootstrap sample as described above for the original data so that fitting of bootstrap samples was performed in the same

fashion as for the original data.
The data were analyzed by three procedures. First, a conventional analysis, Eq. (4), was performed in which optimal models

t1 and model parameters {µ̂k} were determined for each amino acid residue (for which data were available) using AICC .165

The uncertainties in model parameters, denoted {σ̂k}, were determined by 500 Monte Carlo simulations using the measured

experimental uncertainties in the spectral density values (Gill et al., 2016). Second, the optimal model was determined as in the

first procedure, but the uncertainties in model parameters, {σ̂∗k}, were determined by the conventional bootstrap, using Eq. (8).

In both of these approaches, error estimates were obtained while fixing the model for each Monte Carlo or bootstrap sample

as the optimal model t1 selected against the original data. Third, the smoothed model parameters {µ̃k} and uncertainties {σ̃k}170

were determined by bootstrap aggregation using Eqs. (10) and (19), respectively. In this approach, the optimal model and

parameters were determined individually for each bootstrap sample as in Eq. (9).

A flowchart outlining the process of performing bootstrap aggregation is shown in Figure 1.

Both models 2 and 3 contain a single generalized order parameter and a single internal effective correlation time. The model

selection strategy employed herein assigns model 2 if the internal correlation is < 0.15 ns and model 3 if the internal correlation

time is ≥ 0.15 ns (vide infra).
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i ≤ 193

Calculate boot-
strap statistics
from μi and Yi

l   = 1 + (i–1) // 192

m = 1 + [(i–1) % 192] // 19
n  = 1 + [(i–1)% 192] % 19

Select bootstrap samples:
        {J(0}i   : plj

        {J(ωN}i : pmj

        {J(ωH}i : pnj

Calculate <{J(0)}i> 

Fit bootstrap samples:

<{J(0)}i>, {J(ωN)}i, {J(ωH)}i

with model-free J(ω)’s

i = i + 1

T

F

Determine optimal model
and parameters by AICC:
   μi

∼

i = 1

∼

Form counter vector:
   Yi = {Ylj, Ymj, Ynj} 

* ** *

*

Figure 1. Flowchart for bootstrap aggregation for the model-free formalism. Indices l, m, and n are determined for each bootstrap sample

from the index i using modulo arithmatic in which // represents floor division and % is the modulo (remainder) operation. The three indices l,

m, and n select pointer and counter vectors from Table 1. The three pointer vectors are used to generate bootstrap samples for J(0), J(ωN ),

and J(ωH). The three counter vectors are concatenated to form Y ∗
i .
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Values of a local τm were optimized for each residue in the well-ordered coil-coil domain of the protein (residues 26-55).

Values of τm for residues in the basic region (residues 3–25) and disordered C-terminus (residues 56–58) were fixed at 17.5

ns, the average value obtained for ordered residues. A similar approach was used by Gill and coworkers in the original analysis

of the relaxation data (Gill et al., 2016). Local values of τm can be used to determine the overall rotational correlation time

or diffusion tensor by established methods (Lee et al., 1997). Alternatively, the fitting process could be modified to globally

optimize the overall rotational correlation time or diffusion tensor while independently optimizing generalized order parameters

and correlation times for individual residues (Mandel et al., 1995). In this scenario, bootstrap aggregation for the internal

dynamical parameters would be performed by the same approach as used herein.

175

4 Results

The results of the conventional analysis usingAICC for model-selection and Monte Carlo error estimation are shown in Figure

2. Each of the Monte Carlo simulations was analyzed using the optimal model determined from the original data.
The optimal parameters differ slightly from those reported by Gill and coworkers, because the present approach used a different

spectral density function and model-selection method compared to the earlier work (Gill et al., 2016).
The results of the conventional analysis using AICC for model-selection and bootstrap resampling for error estimation are180

shown in Figure 3. Each of the bootstrap data sets was analyzed using the optimal model determined from the original data. The

results for bootstrap aggregation using AICC to determine the optimal model for each bootstrap sample are shown in Figure

4. The boostrap-aggregated smoothed model-free parameters were calculated using Eq. (10) and the smoothed parameter

uncertainties were calculated using Eq. (19).

Bootstrap simulations in which a single optimal model is utilized provide an alternative to Monte Carlo simulations for185

estimation of (unsmoothed) parameter uncertainties. The uncertainties in σ̂(S2) obtained from Monte Carlo simulations and

σ̂∗(S2) obtained from conventional bootstrap simulations are compared in Figure 5a. The uncertainties have approximately

the same range, but are uncorrelated with each other. These results suggest the non-parametric bootstrap samples simulate the

actual data distribution in comparable manner as the parametric Monte Carlo simulations, but without assuming a normal distri-

bution of spectral density values. The smoothed parameter uncertainty obtained from Eq. (19) is compared to the uncertainties190

from Monte Carlo simulations in Fig. 5b. The increase in σ̃(S2) compared to σ̂(S2) reflects the effect of model-selection un-

certainty. As noted by Efron, the estimate of smoothed parameter uncertainty obtained from Eq. (19) is smaller than the naive

estimate obtained by applying Eq. (6) to the aggregated bootstrap samples (Efron, 2014). To illustrate the advantage of Eq.

(19), Fig. 5c compares σ̂u(S2) obtained from Eq. (8) and σ̃(S2) obtained from Eq.(19). Similar trends are observed for other

model-free parameters (not shown).195

The performance of the conventional analysis, in which a single optimal model is chosen, and bootstrap aggregation, in

which parameter values are smoothed over all models, are illustrated for particular residues Arg 11, Arg 26, and Asp 32. Table

2 shows the values of AICC for each model fit to the original spectral density and the percentage that each model was chosen

in the bootstrap aggregation. Table 3 shows the optimized model-free parameters for each model fit to the original spectral
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Figure 2. Model-free parameters from conventional model selection using AICC and 500 Monte Carlo simulations to determine parameter

uncertainties. Values of S2, τm, S2
f , τf , S2

s , and τs are plotted vs. residue number. Overall correlation times (τm) were determined individ-

ually for residues in the coiled-coil region (black), while τm was fixed at 17.5 ns for residues in the basic region and C-terminus. Regions

of the protein are colored as basic region 1 (residues 3–12) (reddish-purple), basic region 2 (residues 13–25) (green), coiled-coil (residues

26–55) (black) , and disordered C-terminus (residues 56–58) (orange) (Gill et al., 2016).

density data and the smoothed model-free parameters obtained by bootstrap aggregation. The optimal single model selected by200

AICC is highlighted with an asterisk.

To further illustrate bootstrap aggregation for Arg 11, Arg 26, and Asp 32, Figures 6, 7, and 8 show the distributions of

model-free parameters determined from the optimal model for each bootstrap sample. The calculated spectral density function

for bootstrap aggregation is compared to the fitted spectral density functions for each model in Figures 9, 10, and 11.

5 Discussion205

The difficulties posed by conventional model-selection strategies, in which a single optimal model is chosen using AICC or

other fitness statistic, are illustrated for the bZip domain of GCN4 in Fig. 2. In particular, some residues in the basic region
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Figure 3. Model-free parameters from conventional model selection using AICC and bootstrap resampling to determine parameter un-

certainties. Values of S2, τm, S2
f , τf , S2

s , and τs are plotted vs. residue number. Parameter values are identical as in Figure (2), but the

uncertainty estimates differ. Regions of the protein are colored as basic region 1 (residues 3–12) (reddish-purple), basic region 2 (residues

13–25) (green), coiled-coil (residues 26–55) (black) , and disordered C-terminus (residues 56–58) (orange) (Gill et al., 2016)

(residues 3-25) are analyzed using model 4, in which τf = 0 and other residues are analyzed with model 5, in which τf > 0.

The resulting values of the other model-free parameters are systematically affected depending on whether or not τf = 0. These

systematic effects are evident most clearly in the scatter in S2
f and τs for residues in the basic region. The advantages of210

bootstrap aggregation in smoothing over variability in model selection is evident in Fig. 4, in which the residue-to-residue

variability of the model-free parameters is reduced. Thus, the distributions of τf and τs are much more uniform within the four

regions of the protein, suggesting rather uniform time-scale processes in each sub-domain. The similarity in the distributions

for σ̂(S2) and σ̂∗(S2), shown in Fig. 5a, indicates that the bootstrap procedure adequately samples the distribution of parameter

values. That is, the reduction in parameter variablility from bootstrap aggregation does not result from restricted sampling.215

The results shown for residue Arg 11 in Tables 2 and 3 and Figs. 6 and 9 illustrate the mechanics behind bootstrap aggrega-

tion. The original optimization against the measured data yielded AICC values of 33.3 for model 4 and 34.1 for model 5. The

conventional analysis then selects model 4 (with τf = 0) as optimal, even though AICC for model 5 is only slightly larger.
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Figure 4. Smoothed model-free parameters from bootstrap aggregation to determined smoothed parameter estimates and uncertainties.

Values of S2, τm, S2
f , τf , S2

s , and τs are plotted vs. residue number. Regions of the protein are colored as basic region 1 (residues 3–12)

(reddish-purple), basic region 2 (residues 13–25) (green), coiled-coil (residues 26–55) (black) , and disordered C-terminus (residues 56–58)

(orange) (Gill et al., 2016)
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Figure 5. Comparison of model-free parameter uncertainties. (a) Uncertainties for S2 calculated from Monte Carlo, σ̂k and bootstrap sim-

ulations, σ̂∗
k , for a single optimal model. (b) Uncertainties for S2 calculated from Monte Carlo simulations for a single optimal model and

smoothed σ̃k calculated from bootstrap aggregation. (c) Uncertainties σ̂u
k and σ̃ for S2 calculated from bootstrap aggregation, illustrating the

smaller variability obtained using Eq. (19) for calculation of parameter sample deviations.
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Table 2. Model Selection for Selected Residues

Residue Fit Model 1 Model 2 Model 3 Model 4 Model 5

Arg 11 AICC 67.9 NA 57.2 33.3 34.2

Boot 0.000 0.000 0.000 0.243 0.757

Arg 26 AICC 39.2 23.4 NA 33.5 56.6

Boot 0.000 0.566 0.316 0.096 0.022

Asp 32 AICC 18.4 10.3 NA 22.3 46.2

Boot 0.000 0.970 0.000 0.019 0.011

For each residue, the top line lists the AICC values determined by fitting the original data to Models 1-5. The second line enumerates the

percentage of bootstrap samples for which the indicated model exhibited the lowest AICC . Both models 2 and 3 contain a single internal

effective correlation time. Model 2 is assigned if this correlation time is < 0.15 ns (and model 3 is not assigned, NA). Model 3 is assigned if

this correlation time is ≥ 0.15 ns (and model 2 is not assigned, NA).

Table 3. Model-free Parameters for Selected Residues

Residue Model τm S2 S2
f S2

s τf τs

Arg 11 1 17.5(fixed) 0.886 ± 0.015 0.886 ± 0.015 1 0 0

3 17.5(fixed) 0.480 ± 0.006 1 0.480 ± 0.006 0 0.761 ± 0.011

4* 17.5(fixed) 0.220 ± 0.017 0.754 ± 0.015 0.292 ± 0.018 0 0.838 ± 0.014

5 17.5(fixed) 0.211 ± 0.017 0.646 ± 0.022 0.326 ± 0.020 0.036 ± 0.004 1.13 ± 0.09

Smooth 17.5(fixed) 0.208 ± 0.005 0.662 ± 0.029 0.316 ± 0.013 0.033 ± 0.006 1.31 ± 0.21

Arg 26 1 14.55 ± 0.48 0.954 ± 0.031 0.954 ± 0.031 1 0 0

2* 16.01 ± 0.55 0.914 ± 0.024 0.914 ± 0.024 1 0.105 ± 0.054 0

4 16.00 ± 0.73 0.878 ± 0.038 0.935 ± 0.037 0.939 ± 0.013 0 0.274 ± 0.165

5 17.28 ± 2.69 0.812 ± 0.103 0.871 ± 0.070 0.932 ± 0.057 0.030 ± 0.020 0.93 ± 1.15

Smooth 16.33 ± 0.68 0.891 ± 0.027 0.925 ± 0.037 0.972 ± 0.015 0.050 ± 0.024 0.19 ± 0.14

Asp 32 1 16.28 ± 0.39 0.944 ± 0.022 0.944 ± 0.022 1 0 0

2* 16.92 ± 0.46 0.908 ± 0.025 0.908 ± 0.025 1 0.017 +/- 0.016 0

4 16.92 ± 1.31 0.908 ± 0.053 1.000 ± 0.060 0.908 ± 0.040 0 0.02 ± 0.48

5 19.58 ± 3.45 0.756 ± 0.138 0.853 ± 0.074 0.887 ± 0.091 0.010 ± 0.009 8.33 ± 3.18

Smooth 17.06 ± 0.34 0.909 ± 0.017 0.911 ± 0.015 0.998 ± 0.005 0.018 ± 0.004 0.035 ± 0.074

For each residue, parameter values for Models 1-5 are calculated from the fit of the original data to the relevant spectral density function,

with errors determined by Monte Carlo simulation. The model selected by AICC is indicated by *. Smooth values are obtained by

averaging the best fit parameter values across bootstrap samples as in Eq.10, with errors determined as indicated in Eqs. 15-19.
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Figure 6. Distribution of model-free parameters from bootstrap aggregation for residue Arg 11. Color coding is S2
f or τf (reddish-purple)

and S2
s or τs (blue). The orange line in (c) indicates the value of τs obtained for the optimal single (unsmoothed) model 4. For clarity, null

values of 1 for generalized order parameters and 0 for internal effective correlation times are not shown in the graphs; τf = 0 is observed

1664 times.

In contrast the bootstrap analysis suggests that model 4 would be optimal for 24% and model 5 would be optimal for 76% of

randomly chosen data, under the assumption that the bootstrap samples represent the underlying distribution of spectral density220

values. Bootstrap smoothing then averages each model-free parameter over the empirical distributions shown in Fig. 6, with

resulting optimized spectral density curves compared to the original experimental data in Fig. 9. The results for model 4 in

Table 3 and the corresponding vertical orange line in Fig. 9 shows that the selection of model 4 in the conventional analysis

results in an estimate for τs that is skewed toward the lower boundary of the τs bootstrap distribution.

The results shown for residue Arg 26 in Tables 2 and 3 and Figs. 7 and 10 illustrate another advantage of bootstrap aggrega-225

tion. In this case, the original optimization against the measured data yielded an AICC value 23.4 of for model 2, substantially

smaller than for any other model, implying a single model might be an adequate description for this residue. However, the
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Figure 7. Distribution of model-free parameters from bootstrap aggregation for residue Arg 26. Color coding is S2
f or τf (reddish-purple)

and S2
s or τs (blue). The orange line in (c) indicates the value of τf obtained for the optimal single (unsmoothed) model 2. For clarity, null

values of 1 for generalized order parameters and 0 for internal effective correlation times are not shown in the graphs; S2
f = 1 is observed

2167 times, S2
s = 1 is observed 3884 times, τf = 0 is observed 2823 times, and τs = 0 is observed 3884 times.

bootstrap distribution for the internal correlation times is bimodal. The conventional choice of model 2 reults in an estimate

of τf roughly centered in the distrubution, but the smoothed bootstrap estimates identify the presence of two separable time

scales for internal motions, one with a mean 0.052± 0.019 and the other with mean 0.13± 0.08. Residue 26 is at the juncture230

between the basic region and coiled-coil motif of the GCN4 bZip domain; consequently, the latter effective internal correlation

time might represent a vestige of the more pronounced motions evident in the basic region. The critical value of 0.15 ns used

to separate fast from slow motions in the present work was chosen empirically to distinguish the two distributions observed for

residue 26 (and used for all other residues). More sophisticated clustering algorithms could be used to make this distinction

between models 2 and 3.235

The results shown for residue Asp 32 in Tables 2 and 3 and Figs. 8 and 11 illustrate a case of strong agreement between the

conventional analysis and bootstrap aggregation when a single motional model is strongly favored by the experimental data.

The distributions shown in Fig. 8 then represent the variability in model-free parameters across the bootstrap samples. These

results would be comparable to results obtained in Fig. 3, in which the bootstrap samples were used to estimate model-free

parameter uncertainties σ̂∗k for a single fixed optimal model.240

15



0.0 0.2 0.4 0.6 0.8 1.0
S2

0

200

400

600

800

1000

Co
un

t

(a)

1.0 1.1 1.2 1.3 1.4 1.5
log10( m/1ns)

0

200

400

600

800

1000 (b)

0.0 0.2 0.4 0.6 0.8 1.0
S2

f, s

0

200

400

600

800

1000

Co
un

t

(c)

2.5 2.0 1.5 1.0 0.5 0.0 0.5
log10( f, s/1ns)

0

100

200

300

400 (d)

Figure 8. Distribution of model-free parameters from bootstrap aggregation for residue Asp 32. Color coding is S2
f or τf (reddish-purple)

and S2
s or τs (blue). The orange line in (c) indicates the value of τf obtained for the optimal single (unsmoothed) model 2. For clarity, null

values of 1 for generalized order parameters and 0 for internal effective correlation times are not shown in the graphs; S2
s = 1 was observed

6650 times.
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Figure 9. Comparison of individual fits for Arg 11 of (a) model 1, (b) model 3, (c) model 4, and (d) model 5 (black lines) or the bootstrap

aggregation smoothed fit (reddish-purple line) to (circles) experimental spectral density values.

16



0 1 2 3 4 5
3

2

1

0

1

lo
g 1

0[
J(

)/(
1n

s)
] (a)

0 1 2 3 4 5
3

2

1

0

1
(b)

0 1 2 3 4 5
 (1/ns)

3

2

1

0

1

lo
g 1

0[
J(

)/(
1n

s)
] (c)

0 1 2 3 4 5
 (1/ns)

3

2

1

0

1
(d)

Figure 10. Comparison of individual fits for Arg 26 of (a) model 1, (b) model 3, (c) model 4, and (d) model 5 (black lines) or the bootstrap

aggregation smoothed fit (reddish-purple line) to (circles) experimental spectral density values.
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Figure 11. Comparison of individual fits for Asp 32 of (a) model 1, (b) model 3, (c) model 4, and (d) model 5 (black lines) or the bootstrap

aggregation smoothed fit (reddish-purple line) to (circles) experimental spectral density values.
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The present application of bootstrap aggregation used spin relaxation data recorded at four static magnetic fields. A total of

6859 bootstrap samples were used to calculate smoothed parameter estimates. Data recorded at three static magnetic fields

provides 9 spectral density values, but allows only 73 = 343 bootstrap samples. To test the effect of such a drastic reduction

in the size of the bootstrap sample, the relaxation rate constants recorded at 600, 800, and 900 MHz were analyzed for the

disordered basic region (residues 3-25). This preserves the same range of sampled frequencies as for the original analysis, but

only 7 spectral density values are obtained for each residue, after averaging the three values of J(0). The smaller number of

spectral density values results in smaller numbers of degrees of freedom when fitting the model-free spectral density models.

As a consequence, only models 3 and 4 were selected for the basic region in the conventional analysis; essentially, the data were

not sufficient to determine τf and τs simultaneously (model 5). Nonetheless, bootstrap aggregation was effective in smoothing

the effects of model selection error between models 3 and 4, even with only 343 bootstrap samples (not shown). A number of

studies have investigated the number of model parameters that can be determined from backbone amide 15N relaxation data

recorded at high static magnetic fields (Khan et al., 2015; Gill et al., 2016; Abyzov et al., 2016) The present results suggest

that measurements at four static magnetic fields are required to fully statistically characterize the information content of such

measurements within the extended model-free formalism.

6 Conclusions

Model-selection error is a classical problem in statistics and has been recognized as a concern in the model-free analysis of

NMR spin relaxation data since the work of d’Auvergne and Gooley (d’Auvergne and Gooley, 2007, 2008a, b). Bootstrap

aggregation has emerged as a powerful approach for incorporating selection error into statistical model-building (Buja and245

Stuetzle, 2006; Efron, 2014). However, bootstrap aggregation requires sufficient numbers of data points to allow faithful re-

sampling of the distribution of the data. This issue is made more serious by the nature of nuclear spin relaxation data: spectral

density values for J(0), J(ωN ) and J(0.87ωH) are very different and should not be interchanged by resampling.
As shown in the present work, resampling within blocks of spectral density values clustered as J(0), J(ωN ) and J(0.87ωH)

recorded at three or four static magnetic fields is sufficient to enable bootstrap aggregation. However, the larger data set

available from four static magnetic fields allows more reliable resolution of two internal correlation times, τf < 0.15 ns and

τs ≥ 0.15 ns.
Aggregation improves parameter stability by averaging over all models represented in the bootstrap sample. As applied to250

15N spin relaxation data for the bZip domain of GCN4, bootstrap aggregation reduces residue-to-residue variations in opti-

mal model-free parameters, particularly in the partially disordered basic region. Consequently, trends in the conformational

dynamics along the polypeptide backbone that reflect actual physical properties of the protein become more evident.
Notably, local maxima in generalized order parameters within the basic region (residues 3-25), most evident for residues 8 and

9 and for residues 14 and 15 in Fig. 4, reflect transient populations of helical conformations observed in molecular dynamics

simulations (Robustelli et al., 2013).
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NMR spin relaxation spectroscopy is a powerful approach for interrogating conformational dynamics of biological macro-255

molecules. Bootstrap aggregation, coupled with experimental NMR spin relaxation measurements at multiple static magnetic

fields, promises to advance efforts to understand the interplay between conformation and function in biology.
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