Supporting Information

Improved NMR transfer of magnetization from protons to half-integer spin quadrupolar nuclei at moderate and high MAS frequencies

5 Jennifer S. Gómez¹, Andrew G.M. Rankin^{1,#}, Julien Trébosc², Frédérique Pourpoint¹, Yu Tsutsumi³, Hiroki Nagashima⁴, Olivier Lafon^{1,5}, Jean-Paul Amoureux^{1,6,7}

¹Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, 59000,

France

²Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 – IMEC – Fédération Chevreul, Lille, 59000, France

³Bruker Japan, 3-9 Moriya-cho, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-0022, Japan

⁴Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan

⁵Institut Universitaire de France, 1 rue Descartes, Paris, 75231, France

⁶Riken NMR Science and Development Division, Yokohama-shi, Yokohama-shi, Kanagawa, 230-0045, Japan ⁷Bruker Biospin, 34 rue de l'industrie, Wissembourg, 67166, France

[#]Present address: Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, Paris, 75005, France

Correspondence to: Olivier Lafon (olivier.lafon@univ-lille.fr) and Jean-Paul Amoureux (jean-paul.amoureux@univ-lille.fr)

10

15

Figure S1: ¹H MAS spectrum of AlPO₄-14. The spectrum was acquired at $B_0 = 18.8$ T and $v_R = 20$ kHz by averaging 16 transients separated by a recycle interval of 1 s, using the DEPTH pulse sequence for probe background suppression, with $v_1 \approx 208$ kHz.

Figure S2: Variation at $v_R = 20$ kHz of ²⁷AlO₄ signal of AlPO₄-14 as function of v_1 or $v_{1,max}$ of the recoupling for PRESTO-R22⁷₂(180₀) and -R18⁵₂(180₀) as well as RINEPT-SR4²₁ (tt), -SR4²₁ (270₀90₁₈₀) and -R12⁵₃ (270₀90₁₈₀). For each curve τ was fixed to its optimum value given in Table 6.

50

65 Figure S3: Variation at $v_R = 20$ kHz of ²⁷AlO4 signal of AlPO4-14 as function of offset of the recoupling for PRESTO-R22⁷₂(180₀) and -R18⁵₂(180₀) as well as RINEPT-SR4²₁ (tt), -SR4²₁ (270₀90₁₈₀) and -R12⁵₃ (270₀90₁₈₀). For each curve τ and v_1 or $v_{1,max}$ were fixed to their optimum values given in Table 5.

Figure S4: Variation at $v_R = 62.5$ kHz of 27 AlO₄ signal of AlPO₄-14 as function of v_1 or $v_{1,max}$ of the recoupling for PRESTO-R16 ${}^6_7(270_090_{180})$ and -R14 ${}^5_6(270_090_{180})$ as well as RINEPT-SR4 2_1 (tt), -SR4 2_1 (270 ${}^0_090_{180}$) and -R12 5_3 (270 ${}^0_090_{180}$). For each curve τ was fixed to its optimum value given in Table 8.

100 Figure S5: Variation at $v_R = 62.5$ kHz of ²⁷AlO₄ signal of AlPO₄-14 as function of offset of the recoupling for PRESTO-R16⁶₇(270₀90₁₈₀) and -R14⁵₆(270₀90₁₈₀) as well as RINEPT-SR4²₁ (tt), -SR4²₁ (270₀90₁₈₀) and -R12⁵₃ (270₀90₁₈₀). For each curve τ and v_1 or $v_{1,max}$ were fixed to their optimum values given in Table 8.

Table S1. Distances between the different hydrogen atoms and their closest Al neighbours in the structure of isopropylamine templated AlPO₄-14 determined from X-ray diffraction. (Broach et al., 2003) The H and Al atoms are numbered according to the cif file.

	Н	Al	$r_{ m HAl}/{ m \AA}$
	H1 (OH)	Al4O ₆	2.496
		Al4O ₆	2.499
		Al1O ₅	2.503
		Al2O ₄	4.299
	H2 (NH ₃)	Al4O ₆	3.069
		Al2O ₄	3.779
		A13O ₄	3.778
	113 (1113)	Al4O ₆	3.960
	H4 (NH ₃)	Al2O ₄	3.479
		Al1O ₅	3.801
	H5 (CH)	Al2O ₄	3.737
	III5 (CII)	Al1O ₅	4.850
	H6 (CH _a),	Al1O ₅	3.655
		A13O ₄	4.594
		A13O ₄	4.082
		Al105	4.320
	H8 (CH ₃) ₁	Al2O ₄	3.772
		A13O ₄	4.651
	H9 (CH ₃) ₂	Al4O ₆	3.888
		A13O ₄	4.124
	H10 (CH ₂) ₂	Al4O ₆	3.509
		A13O ₄	4.502
	H11 (CH ₃) ₂	Al4O ₆	3.970
		A13O ₄	4.048

Broach, R. W., Wilson, S. T. and Kirchner, R. M.: Corrected crystallographic tables and figure for as-synthesized AlPO₄-14, Microporous and Mesoporous Materials, 57(2), 211–214, https://doi.org/10.1016/S1387-1811(02)00563-2, 2003.