

Heteronuclear and Homonuclear Radio Frequency Driven Recoupling

3 **Authors:** Evgeny Nimerovsky*, Kai Xue, Kumar Tekwani Movellan & Loren B. Andreas*

4 Affiliations:

5 Department of NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
6 Fassberg 11, Göttingen, Germany

7 *Corresponding authors: land@nmr.mpibpc.mpg.de ORCID: 0000-0003-3216-9065 and
8 evni@nmr.mpibpc.mpg.de

9 Abstract

10 The Radio Frequency Driven Recoupling (RFDR) pulse sequence is used in magic-angle spinning
11 (MAS) NMR to recouple homonuclear dipolar interactions. Here we show simultaneous recoupling of both
12 the heteronuclear and homonuclear dipolar interactions by applying RFDR pulses on two channels. We
13 demonstrate the method, called HETeronuclear RFDR (HET-RFDR) on microcrystalline SH3 samples at
14 10 kHz and 55.555 kHz MAS. Numerical simulations of both HET-RFDR and standard RFDR sequences
15 allow better understanding of the influence of offsets, paths of magnetization transfers for both HET-RFDR
16 and RFDR experiments as well as the crucial role of XY phase cycling.

17 Keywords: Magic Angle Spinning NMR, heteronuclear and homonuclear RFDR, the operator analysis

18 **Introduction**

19 Magic-angle spinning (MAS) NMR spectroscopy is used to obtain atomic resolution spectra of
20 materials and biological molecules in the solid state, by removal of the broadening associated with
21 anisotropic dipolar couplings and other interactions. Under control of radio frequency pulses, dipolar

22 interactions can be switched on, or recoupled, in order to correlate nearby spins or to accurately determine
23 internuclear distances. Recoupling sequences can be broadly categorized as homonuclear (Meier and Earl,
24 1986; Tycko and Dabbagh, 1990; Gullion and Vega, 1992; Bennett et al., 1992; Ok et al., 1992; Zhang et
25 al., 2020; Gelenter et al., 2020; Takegoshi et al., 2001; Szeverenyi et al., 1982; Hou et al., 2011b, 2013;
26 Carravetta et al., 2000; Bennett et al., 1998; Nielsen et al., 2012) or heteronuclear (Gelenter et al., 2020;
27 Gullion and Schaefer, 1989; Jaroniec et al., 2002; Hing et al., 1992; Hartmann and Hahn, 1962; Rovnyak,
28 2008; Metz et al., 1994; Hediger et al., 1994; Hou et al., 2011a; Brinkmann and Levitt, 2001; Gelenter and
29 Hong, 2018; Zhang et al., 2016; Nielsen et al., 2012).

30 The recoupling of the homonuclear dipolar interactions with a train of π -pulses every rotor period
31 was originally introduced by Gullion and Vega (Gullion and Vega, 1992) and Bennett et all (Bennett et al.,
32 1992). Since, the homonuclear Radio Frequency Driven Recoupling (RFDR) sequence (Bennett et al.,
33 1992) has been successfully applied for the qualitative and quantitative determinations of the dipolar spin
34 correlations in materials (Saalwächter, 2013; Messinger et al., 2015; Fritz et al., 2019; Roos et al., 2018;
35 Nishiyama et al., 2014a; Wong et al., 2020; Hellwagner et al., 2018; Pandey and Nishiyama, 2018) and
36 biomolecular samples (Zheng et al., 2007; Tang et al., 2011; Shen et al., 2012; Pandey et al., 2014; Grohe
37 et al., 2019; Andreas et al., 2015; Petkova et al., 2002; Aucoin et al., 2009; Zinke et al., 2018; Zhang et al.,
38 2017; Zhou et al., 2012; Jain et al., 2017; Colvin et al., 2015; Shi et al., 2015; Daskalov et al., 2020). Sun
39 et al. (1995) showed that the RFDR pulse sequence element could also be used as a part of the SPICP
40 experiment (Wu and Zilm, 1993) for removing the undesired effect of the chemical shift terms to zero order.

41 Depending on the assumptions (Bennett et al., 1992; Gullion and Vega, 1992; Ishii, 2001), two
42 different Average Hamiltonian Theory (Haeberlen and Waugh, 1968; Maricq, 1982) (AHT) descriptions
43 have been detailed for RFDR. In both, homonuclear dipolar recoupling occurs via a rotor-synchronized
44 train of π -pulses, with one pulse each rotor period (Bennett et al., 1992) on a single channel. In the first
45 case, delta π -pulses are assumed (Bennett et al., 1992). The efficiency of recoupling is linked with the
46 rotational resonance conditions (Bennett et al., 1992, 1998), and depends on the ratio between chemical

47 shift offset difference and MAS rate. In the second theoretical description, the effects of finite π -pulses are
 48 considered (Bennett et al., 1992; Ishii, 2001; Nishiyama et al., 2014b; Zhang et al., 2015; Brinkmann et al.,
 49 2002; Ji et al., 2020). The efficiency of recoupling in this case depends on a duty factor (Ishii, 2001), defined
 50 as the fraction of the rotor period occupied by the π -pulse. The RFDR pulses are applied according to a
 51 variety of XY phase cycling schemes, which have been analyzed with the intent to suppress imperfections
 52 associated with offset differences, rf-field inhomogeneity and second order Average Hamiltonian terms
 53 between different anisotropic interactions (Zhang et al., 2015).

54 The full high field truncated dipolar Hamiltonian of the homonuclear I_2 spin system is represented
 55 as follows:

56
$$H_{D,Full}^{II} = \omega_{D,12}(t)[3I_{z1}I_{z2} - \bar{I}_1 \cdot \bar{I}_2]. \quad \text{Eq. (1)}$$

57 where $\omega_{D,12}(t)$ is a periodic time dependent function (Olejniczak et al., 1984) that depends on the
 58 positions of spins I_1 and I_2 within the rotor. This Hamiltonian is subsequently referred to as the full
 59 Hamiltonian, and contains only the A and B terms of the dipolar alphabet (Slichter, 1990).

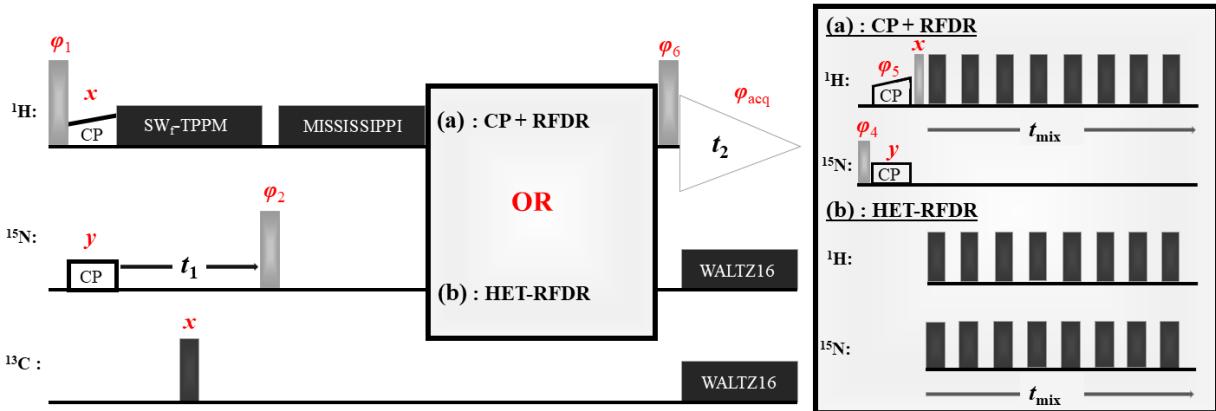
60 The interesting conclusion can be obtained, if we simplify the Eq. (1). The dipolar Hamiltonian
 61 during RFDR can be simplified (in the absence of other interactions) by considering that $\bar{I}_1 \cdot \bar{I}_2$ commutes
 62 with the secular part ($I_{z1}I_{z2}$) and with the rf-field Hamiltonian. At the end of each rotor period, the
 63 oscillatory $\omega_{D,12}(t)$ term ensures zero total evolution. The simplified Eq. (1) is:

64
$$H_{D,M}^{II} = 1.5\omega_{D,12}(t)2I_{z1}I_{z2}. \quad \text{Eq. (2)}$$

65 Comparing Eq. (2) with full Dipolar Hamiltonian of the heteronuclear IS spin system(Mehring, 1983):

66
$$H_{D,Full}^{IS} = \omega_{D,12}(t)2I_zS_z, \quad \text{Eq. (3)}$$

67 we notice that the difference between Eq. (3) and Eq. (1) is a factor of 1.5. Note that we have made the
 68 substitution of I_{z1} to I_z and I_{z2} to S_z while the dipolar function, $\omega_{D,12}(t)$, has been kept the same. Such

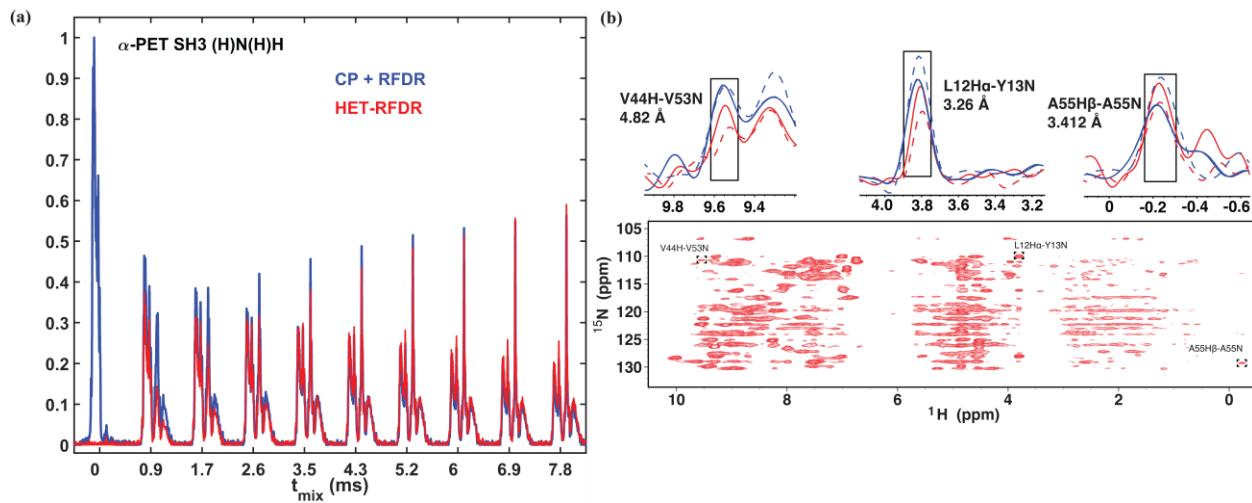

69 comparison suggests a HETeronuclear-RFDR (HET-RFDR), which should have a scaling of 1.5 as
70 compared with the homonuclear case.

71 In this article we investigate spin dynamics under HET-RFDR, in which RFDR π -pulses are
72 applied simultaneously on two channels (Figure 1). We demonstrate simultaneous heteronuclear and
73 homonuclear transfers using HET-RFDR applied to α -PET (Movellan et al., 2019) labeled SH3 at 10 kHz
74 and 55.555 kHz MAS.

75 We perform and compare a numerical operator analysis of both RFDR and HET-RFDR
76 experiments under different simulated conditions. This numerical analysis allows to define the conditions
77 under which homonuclear and heteronuclear RFDR polarization transfers have similar behaviors, to
78 understand the paths through which the signals are transferred between operators, and to understand the
79 crucial role of 90 degree phase alternation (XY-4, XY-8, etc) (Ishii, 2001; Nishiyama et al., 2014b; Zhang
80 et al., 2015; Hellwagner et al., 2018) for both RFDR and HET-RFDR recoupling.

81 **HET-RFDR Experiments**

82 Figure 1 shows two 2D (H)N(H)H pulse sequences used to evaluate the HET-RFDR transfer. For
83 both sequences, the transfer from proton to nitrogen is implemented with ramped cross polarization (CP)
84 and then the nitrogen dimension is encoded (t_1) for 2D spectra. In Figure 1a, the transfer to structurally
85 interesting protons is implemented with N to H CP followed by H-H RFDR. In Figure 1b, the same
86 transfer is implemented with a single HET-RFDR period. The HET-RFDR transfer avoids the back CP
87 step. Instead, nitrogen polarization is placed along the \hat{z} axis and transferred to directly bonded proton
88 spins and at the same time to remote proton spins with the simultaneous application of the π -pulses on the
89 proton and nitrogen channels.


90

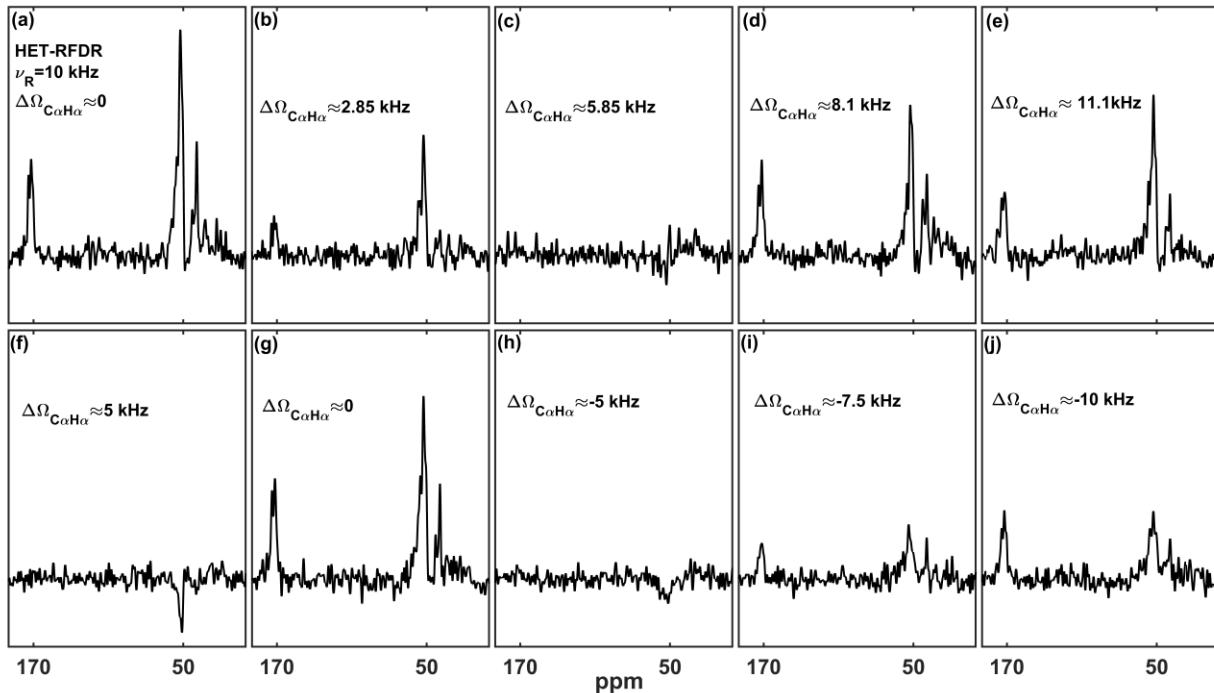
91 **Figure 1** Two versions of the (H)N(H)H pulse sequence are shown. The first, (a), is the standard implementation with CP +
 92 RFDR. The second, (b), instead uses the new HET-RFDR recoupling element. Light grey pulses represent $\pi/2$ -pulses, whereas
 93 dark grey pulses represent π -pulses. The ramped CP transfer from proton to nitrogen as well as from nitrogen to proton in (a) are
 94 indicated with constant power on the nitrogen channel and a ramp in power on the proton channel. During the indirect dimension
 95 (t_1), SW_r-TPPM decoupling is applied at 55 kHz, respectively. A single π -pulse in the middle of t_1 decouples carbon. Water
 96 suppression is implemented with the MISSISSIPI (Zhou and Rienstra, 2008) sequence. During acquisition, WALTZ16 (Thakur et
 97 al., 2006) decoupling is applied on nitrogen and carbon channels. The phases are: $\varphi_1 = x, -x$; $\varphi_{acq} = y, -y, -y, y, -y, y, y, -y$.
 98 In (a) the phases are: $\varphi_2 = x; \varphi_4 = x, x, -x, -x; \varphi_5 = y, y, y, -y, -y, -y, -y; \varphi_6 = x$. In (b) the phases are: $\varphi_2 =$
 99 $x, x, -x, -x; \varphi_6 = x, x, x, x, -x, -x, -x, -x$. RFDR π -pulses on both channels use the XY8 scheme (Gullion et al., 1990).

100 Figure 2 compares the 1D and 2D spectra obtained with the two sequences of Figure 1. In Figure
 101 2a, the 1D signal is shown as a function of RFDR mixing time. For the standard sequence (blue) the N to
 102 H CP was 0.55 ms. The HET-RFDR signal is shown in (red). Without RFDR mixing, the CP+RFDR
 103 detects directly bonded amide protons (Figure 2a, red with zero mixing time) and zero signal occurs for
 104 HET-RFDR (Figure 2a, blue with zero mixing time) since the signal is on nitrogen. With increasing
 105 RFDR mixing, the signal is transferred from directly bonded amide protons to remote protons for the
 106 CP+RFDR sequence (red), whereas simultaneous transfer from nitrogen spins to amide protons and from
 107 amide protons to remote protons occurs with HET-RFDR (blue). For the directly bonded amide protons,
 108 the HET-RFDR polarization transfer achieves only ~40% of the CP signal. This occurs at 0.846 ms
 109 mixing (second red spectrum). However, with increased mixing of about 3 ms, HET-RFDR reaches the

110 same efficiency as the standard sequence. This is notable since transfer over long distances has been
111 implemented with ~3 ms mixing for deuterated samples (Grohe et al., 2019; Linser et al., 2014).

112 Structurally interesting cross-peaks are indeed observed in the 2D HET-RFDR spectrum shown in
113 Figure 2b at 3.456 ms mixing. For example, we have observe the amide-amide contact between V44 and
114 V53, which is 4.82 Å in the crystal (pdb code 2NUZ (Castellani et al., 2002)). The amide to side chain
115 contact of a A55 N to H β (3.41 Å) is also indicated in the Figure, along with a sequential contact from
116 Y13 ^{15}N to L12 $^1\text{H}\alpha$, which is 3.26 Å. These peaks are boxed in Figure 2b, and the 1D slices shown above
117 the 2D spectra. For comparison, in 1D slices we show CP +RFDR (blue) and HET-RFDR (red) intensities
118 of these three peaks for two different mixing times: 1.154 ms (dashed) 3.456 ms (solid). Both methods
119 provide similar intensities at long mixing time, whereas at shorter mixing times CP+RFDR provides
120 higher intensities for short range distances.

121
122 **Figure 2** 1D (a) and 2D (b) (H)N(H)H spectra of α -PET labeled SH3. For all spectra the first CP from proton to nitrogen was
123 performed with 1.05 ms. (a) 1D spectra with different sequences used for the second transfer: CP + RFDR (blue) and HET-RFDR
124 (red). For CP + RFDR, 0.55 ms of CP was used. For both RFDR and HET-RFDR, t_{mix} of 0, 0.846, 1.728, 2.592, 3.456, 4.32,
125 5.184, 6.048, 6.912, 7.7776 ms are shown. (b) 2D HET-RFDR at 3.456 ms of mixing time. Spectra were recorded at a 600 MHz
126 Bruker instrument equipped with a 1.3 mm probe and an MAS frequency of 55 kHz. The widths of π -pulses on proton and
127 nitrogen channels were 5.8 us and 6.6 us, respectively. The 1D slices show the intensities of three selected peaks. CP+RFDR


128 (blue) and HET-RFDR (red)- at 1.154 ms (dashed lines) and 3.456 ms (solid lines) mixing are displayed. The experimental
129 parameters are detailed in Table 1 and 2 the ‘Experimental Methods’. XY8 phase cycling was used.

130 At 55.555 kHz MAS on a 600 MHz instrument, the chemical shift offsets can always be much
131 smaller than the spinning frequency. At a lower MAS frequency, the offsets become important for HET-
132 RFDR. The recoupling then depends on a heteronuclear ‘offset difference’ that we define as $\Delta\Omega_{ij} = \Omega_i -$
133 Ω_j , where Ω_i and Ω_j are the offsets on each channel (the difference between the Larmor frequency of the
134 spin and the carrier frequency (Bak et al., 2000)). When $\Omega_i = \Omega_j = 0$ as well as $\Delta\Omega_{ij} = \Omega_i - \Omega_j \approx nv_R$
135 ($n=0, \pm 1, \pm 2\dots$), the HET-RFDR polarization transfer reaches local maximal intensities. However, when
136 $\Delta\Omega_{ij} = \Omega_i - \Omega_j \approx 0.5nv_R$ ($n=\pm 1, \pm 3\dots$), the HET-RFDR polarization transfer reaches local minima. The
137 experimental confirmation of this is shown in Figure 3, where the effect of different proton and carbon
138 offsets is explored for proton-carbon HET-RFDR spectra. The spinning frequency was reduced to 10 kHz
139 MAS for these measurements and the signal detected on the carbon channel. The 1D HC HET-RFDR
140 pulse sequence is shown in the SI (Figure S1).

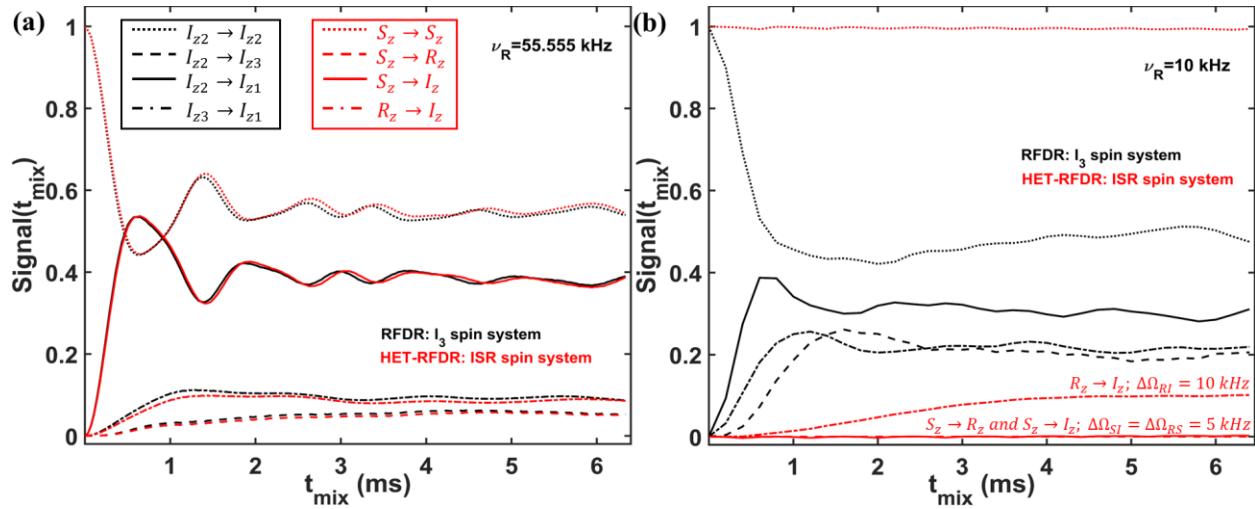
141 Figures 3a-e depicts the HET-RFDR spectra when the carbon carrier frequency is changed (numbers
142 show the offset from the alpha carbon at ~53 ppm), whereas the alpha proton offset is kept at 0 kHz (at
143 4.6 ppm). While heteronuclear transfer is detected at zero offset (Figure 3a) or with 11.1 kHz carbon
144 offset (Figure 3e), the signal remains in the noise when the carbon offset is 5.85 kHz (Figure 3c).

145 A similar effect can be detected when the proton carrier frequency is changed (increased from 4.6 ppm),
146 but this time the carbon offset is set to 5 kHz from C α (83.66 ppm) to show that it is the offsets on both
147 channels ($\Delta\Omega_{C\alpha H\alpha}$) that is important (Figures 3f-j). The series of spectra show a local minimal transfers at
148 offset differences of 5 kHz (Figure 3f) and -5 kHz (Figure 3h) and local maximal polarization transfers at

149 differences of 0 (Figure 3g) and -10 kHz (Figure 3j).

150

151 **Figure 3** The influence of the carbon and proton offsets on proton-carbon HET-RFDR polarization transfers at 4.8 ms mixing.
152 α-PET labeled SH3 was used with 10 kHz MAS at a 600 MHz spectrometer using a 1.3 mm probe. The widths of π -pulses on
153 proton and carbon channels were 5.8 us and 6.6 us, respectively. For (a)-(e) the proton carrier frequency was set to 4.6 ppm and
154 carbon carrier frequency was set to 51 ppm (a), 70 ppm (b), 90 ppm (c), 105 ppm (d) 125 ppm (e). For (f)-(j) the carbon carrier
155 frequency was set to 83.66 ppm and the proton carrier frequency was set to 4.6 ppm (f), 12.933 ppm (g), 21.26 ppm (h), 25.43
156 ppm (i) and 29.6 ppm (j). The indicated offset differences, $\Delta\Omega_{C\alpha H\alpha} = \Omega_{C\alpha} - \Omega_{H\alpha}$ in kHz were calculated based on typical
157 isotropic chemical shifts of C_α (51 ppm) and H_α (4.6 ppm) at a 600 MHz spectrometer. The experimental parameters are detailed
158 in Table 1 and 2 the ‘Experimental Methods’. The 1D HET-RFDR sequence is shown in the SI (Figure S1). [XY8 phase cycling](#)
159 [was used](#).


160 Numerical Operator Analysis

161 To comprehend the mechanism underlying the transfers during the HET-RFDR and also the well-
162 known RFDR pulse sequence, we use a numerical simulation approach. We identify the conditions under
163 which the heteronuclear and homonuclear spin systems under HET-RFDR and RFDR sequences have
164 similar behaviors. Considering the evolutions of the different spin systems through HET-RFDR and

165 RFDR during the first two rotor periods, we identify the operators that are involved in the polarization
166 transfer.

167 To identify the conditions under which the HET-RFDR and RFDR sequences have similar and
168 different behaviors we simulated a three spin system at high (55.555 kHz) and low (10 kHz) MAS
169 frequencies. In Figure 4 we compare the RFDR transferred signals for I_3 (a homonuclear 3-spin system,
170 black lines) and HET-RFDR transferred signals for ISR (three different types of spins with the names I , S
171 and R ; red lines) spin systems. At 55.555 Hz MAS when the offset difference is small compared to MAS
172 rate, the behavior of the homonuclear I_3 spin system is similar to the behavior of the heteronuclear ISR
173 spin system (Figure 4a). However, when the MAS rate is low (10 kHz) and the offset difference cannot be
174 neglected, the behaviors of these spin systems are completely different (Figure 4b). For the homonuclear
175 spin system (I_3), the polarization transfers are efficient for all dipolar pairs (black lines), whereas for the
176 heteronuclear spin system (ISR) the HET-RFDR polarization transfer is detected between R and I spins
177 (Figure 4b, red dashed-dotted line) only. For this RI pair the offset difference was chosen as 10 kHz,
178 whereas for the other spin pairs (SI , RS) the offset differences were set to 5 kHz. These simulations show
179 a special condition of $\sim 0.5\nu_R$ of offset difference for the heteronuclear spins under which the transfer
180 obtains local / global minima values. The simulations are in full agreement with the experiments, which
181 were shown in Figure 3. Another interesting observation can be made from the influence of the offset
182 difference on the RFDR transfer for the homonuclear I_3 spin system (Figure 4b, black lines). For a 5 kHz
183 of offset difference, the RFDR polarization transfer between I_{z2} and I_{z3} spins is significantly faster with 10
184 kHz MAS (Figure 4b, black dashed line) than at 55.555 kHz MAS (Figure 4a, black dashed line). Since
185 the duty factor is decreased with decreasing MAS frequency(Ishii, 2001): 0.33 for 55.555 kHz MAS and
186 0.06 for 10 kHz MAS, the opposite behavior is expected if one considers only the effect of finite pulses in
187 the RFDR experiment(Ishii, 2001). It indicates that when the offset difference cannot be neglected with
188 respect to the MAS rate, it has a significant influence on the RFDR transfer efficiency between

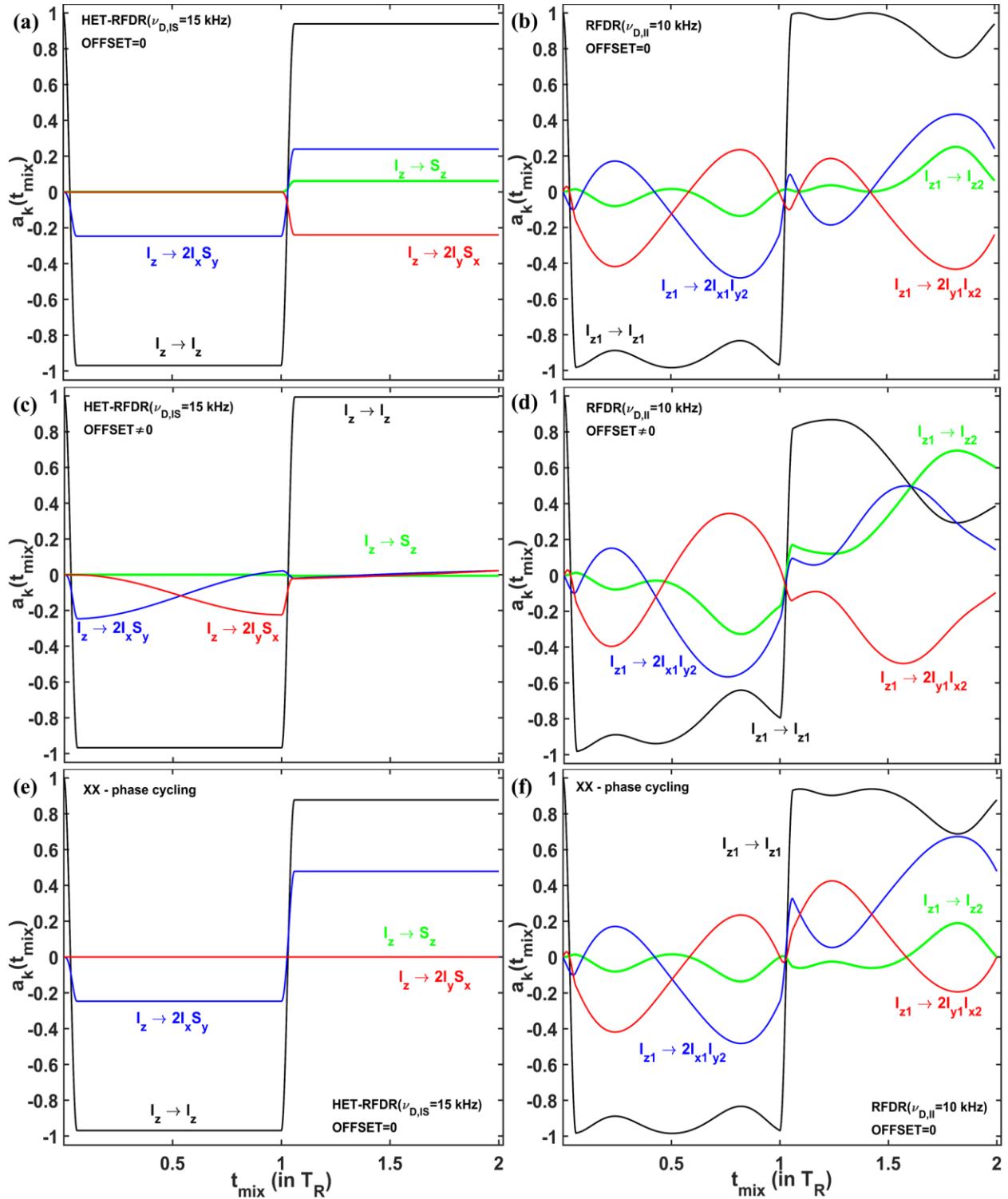
189 homonuclear spins despite the significant remoteness from the rotational resonance condition (Bennett et
 190 al., 1992, 1998).

191 **Figure 4** Comparison of the simulated RFDR and HET-RFDR signals. I_3 (three homonuclear spins, black lines) and ISR (three
 192 different spin types, red lines) for 55.555 kHz (a) and 10 kHz (b) MAS. 83 kHz of rf-field is used (6 us of the widths of π -pulses).
 193 The vertical axis shows the intensities of the starting and transferred signals between different operators of I_3 and ISR spin
 194 systems, respectively (the initial operator \rightarrow the measured operator): $I_{z2} \rightarrow I_{z2}$ and $S_z \rightarrow S_z$ – (the dotted lines); $I_{z2} \rightarrow I_{z3}$ and
 195 $S_z \rightarrow R_z$ – (the dashed lines); $I_{z2} \rightarrow I_{z1}$ and $S_z \rightarrow I_z$ – (the solid lines); $I_{z3} \rightarrow I_{z1}$ and $R_z \rightarrow I_z$ – (the dashed-dotted lines). For
 196 both spin systems the offset (Ω) and CSA values are: [-3; 2; 7] (kHz) and [5.2; 2.5; 3]. The dipolar coupling constants for
 197 homonuclear spin system (I_3) spin system are: $\nu_{12,D} = 7.333$ kHz, $\nu_{13,D} = 2$ kHz, $\nu_{23,D} = 0.333$ kHz. For ISR spin system all
 198 dipolar constants are 1.5 times larger: $\nu_{IS,D} = 11$ kHz, $\nu_{IR,D} = 3$ kHz, $\nu_{SR,D} = 0.5$ kHz. The simulated measurements occurs
 199 every 2 rotor periods. XY8 phase cycling is used. $I_{z1} \rightarrow I_{z1}$, $I_{z3} \rightarrow I_{z3}$, $I_z \rightarrow I_z$ and $R_z \rightarrow R_z$ are not shown.
 200

201 In order to understand via which operators the polarization transfer occurs, we considered the
 202 evolutions of two systems - I_2 homonuclear and IS heteronuclear spin systems - under RFDR and HET-
 203 RFDR sequences with 10 kHz MAS. We simulated the polarization transfers between different operators
 204 during the first two rotor periods, which completes the basic RFDR element: $t(\pi_x) \rightarrow del_1 \rightarrow t(\pi_y) \rightarrow$
 205 del_2 . We consider the amplitudes of the operators for a single molecular orientation since it allows to see
 206 the significant evolution of the operators during the two rotor periods. Figure 5a,c,e shows the amplitudes
 207 of four Cartesian operators (Ernst et al., 1987) for IS (HET-RFDR) and Figures 5b,d,f shows the operators

208 for I_2 (RFDR) spin systems. The measured Cartesian operators are $I_z, S_z, 2I_xS_y, 2I_yS_x$ and
209 $I_{z1}, I_{z2}, 2I_{x1}I_{y2}, 2I_{y1}I_{x2}$ for IS and I_2 spin systems, respectively.

210 The evolutions of four operators *during* two rotor periods for the IS spin system the I_2 spin system are
211 different, regardless of the offset difference. However, with a zero offset difference, the simulated
212 heteronuclear operators (Figure 5a) and the homonuclear operators (Figure 5b) show the same values of
213 the amplitudes at one and two rotor periods. From the 64 possibilites (details in the SI, section ‘The
214 Operator Paths’) for magnetization tranfer between heteronuclear operators I_z and S_z during the two rotor
215 periods, we find only one path with nonzero amplitude: $I_z \xrightarrow{\pi_x} 2I_xS_y \xrightarrow{del_1} 2I_xS_y \xrightarrow{\pi_y} S_z \xrightarrow{del_2} S_z$. In contrast to
216 the single path found for HET-RFDR, for the homonuclear case all 64 paths connecting operators I_{z1} and
217 I_{z2} have non-zero amplitudes. However, after each rotor period, the sum of all homonuclear paths provides
218 the same values of the amlitudes as for the heteronuclear IS spin system.


219 In contrast, with a non-zero offset difference, the amplitudes of homonuclear and heteronuclear operators
220 do not coincide at any time (Figures 5c and d). Moreover, while the amplitude of $I_{z1} \rightarrow I_{z2}$ polarization
221 transfer is significantly increased (Figure 5d, green line), the corresponding heteronuclear amplitude for
222 $I_z \rightarrow S_z$ transfer is significantly decreased (Figure 5c, green line).

223 Figure 5c demonstrates the case, when negligible small HET-RFDR transfer is observed with $0.5\nu_R$ offset
224 difference. To understand the influence of the $0.5\nu_R$ offset difference for that case, the evolution of the
225 operators during first two rotor period is considered. During the first π_x pulse the starting signal is
226 transferred from I_z to $2I_xS_y$. Because of the offset difference of $0.5\nu_R$, the amplitude of this operator is
227 mainly transferred to $2I_yS_x$ during the first delay (Figure 5c, red line). Since the second π -pulse has phase
228 y , there is no transfer from $2I_yS_x$ to I_{z2} and very little $I_z \rightarrow S_z$ polarization transfer overall by the end of
229 the second rotor period (Figure 5c, green line).

230 In general, under $\pm \sim 0.5n\nu_R$ ($n=1,3,5,\dots$) HET-RFDR transfer signal can obtain local minima
231 (negative signals, Figure S5 in SI), whereas under $\pm \sim n\nu_R$ offset difference the local maxima are detected.

232 The demonstrated case in Figure 5c indicates the importance of the phase cycling for RFDR and
233 HET-RFDR sequences. Figures 5d and f show the evolution of the operators when there is no offset and
234 both π -pulses have the same phase cycling – XX. For *IS* spin system (Figure 5e) only two operators have
235 nonzero amplitudes during the investigated time: I_z (black line) and $2I_xS_y$ (blue line), whereas S_z and $2I_yS_x$
236 are not created. For the *I₂* spin system (Figure 5d) all four operators envolve during these two rotor
237 periods. However, by the end of two rotor periods only two operators have nonzero amplitudes, as for the
238 *IS* spin system. In neither case is there magnetization transfer from I_z to S_z nor from I_{z1} to I_{z2} after one or
239 two rotor periods. The formal proof of zero transfer signal for homonuclear two spin system in the
240 absence of offset difference can be found in the SI, “RFDR Phase Cycling” section.

241 Additional spectra and simulation results are found in the supporting information. We recorded proton-
242 carbon HET-RFDR spectra using fully protonated [¹³C, ¹⁵N] labeled SH3. We numerically simulated
243 multi-spin systems, either containing two protons and two carbons, or one nitrogen and two protons, in
244 order to track more complex transfer of magnetization. The main conclusions from the simulations and
245 the experiments in the SI are the agreement between experimental and simulated HET-RFDR transfer
246 efficiencies, and the expected small dependence of the HET-RFDR recoupling on the flip angle
247 deviations with XY8 phase cycling (Gullion et al., 1990).

248 **Figure 5** The operator evolution through HET-RFDR and RFDR over two rotor periods. The simulated amplitudes of the
 249 operators of a single crystal (Euler angles: 184°; 141°; 349°) for HET-RFDR ((a), (c)) and RFDR ((b), (d)). For the heteronuclear
 250 spin system, ($\nu_{D,IS} = 15 \text{ kHz}$, the initial operator is I_z) and for the homonuclear I_2 spin system, ($\nu_{D,II} = 10 \text{ kHz}$, the initial
 251 operator is I_z).

252 operator is I_{z1}). The MAS frequency was 10 kHz and the rf-field was 83 kHz. Black lines – I_z and I_{z1} ; Green lines – S_z and I_{z2} ;
253 Blue lines – $2I_xS_y$ and $2I_xI_{y2}$; Red lines – $2I_yS_x$ and $2I_yI_{x2}$. For (a) – (d) the phases of the first and second π -pulses are X and Y,
254 respectively. (e) and (f) show the case of IS and I_2 spin systems, respectively, when the phases of the first and second π -pulses are
255 both X. (a), (b), (e), (f) – Offset values in kHz: 0, 0. (c) and (d) – Offset values in kHz: 2, -3.

256 Conclusion

257 In this article we firstly demonstrated HETeronuclear RFDR recoupling, when π -pulses with XY8
258 phase cycling were applied simultaneously on two channels. Observation of simultaneous heteronuclear
259 and homonuclear polarization transfers as well as long range contacts were observed in 2D (H)NH spectra
260 using HET-RFDR for the microcrystalline protein SH3 using α -PET labeling. The comparison of 1D
261 HET-RFDR with CP followed by homonuclear RFDR showed similar efficiency of both methods at long
262 mixing times of about 3ms and longer. We experimentally and numerically demonstrated the dependence
263 of the HET-RFDR efficiency on the offset difference between dipolar coupled spins. A numerical
264 operator analysis of both HET-RFDR and RFDR sequences showed that when the offest difference was
265 small with respect to the MAS frequency, and with measurement at a whole number of rotor periods, the
266 behavior of HET-RFDR was similar to the well-known homonuclear RFRD. However, different
267 behaviors were observed when the offset difference could not be neglected.

268 Considering the evoulution of a single crystal during HET-RFDR and RFDR, we showed the
269 operators that were responsible for the transfer. We demostrated that XY phase cycling of π -pulses has a
270 crucial role for both HET-RFDR and RFDR transfer. With phase cycling of XX (or $X\bar{X}$) the transfers
271 between heteronuclear and homonuclear spins did not occur in the absence of offsets. With the presence
272 of the offset differences when they cannot be neglected in comparison to the MAS rate, RFDR
273 polarization transfer with phase cycling of XX or $X\bar{X}$ does occur, although with lower efficiency as was
274 described before (Bennett et al., 1992).

275 Experimental methods

276 *Sample preparation:* Microcrystalline chicken alpha spectrin SH3 protein was used for acquisition of all
277 experimental data. The samples were labeled with 100% protonation at exchangeable sites and either with
278 alpha proton exchange by transamination (α -PET) or with uniform ^{13}C and ^{15}N labeling with the protocol
279 described in (Movellan et al., 2019).

280 *Simulations:* HET-RFDR and RFDR simulations were performed with in-house MATLAB scripts using
281 numerical solution of the equation of motion (Nimerovsky and Goldbourt, 2012).

282 *Solid state NMR spectroscopy:* The HC and (H)N(H)H spectra of α -PET SH3 were acquired at 14.1 T (600
283 MHz) using a Bruker AVIIHD spectrometer using a MASDVT600W2 BL1.3 HXY probe. The
284 experiments were performed at 10 kHz and 55.555 kHz MAS with the temperature of the cooling gas set
285 to 280 K and 235 K, respectively.

286 For 1D and 2D α -PET SH3 (H)N(H)H spectra, the ramped CP transfer from proton to nitrogen was
287 performed under the same conditions for all experiments: 42.95 kHz on the nitrogen channel and the optimal
288 ramped amplitude on the proton channel of 86.95-108.69 kHz. The mixing time was 1.05 ms. 9.3 kHz
289 WALTZ-16 (Shaka et al., 1983) with 25 μs pulses and 10.4 kHz WALTZ-16 (Shaka et al., 1983) with 100
290 μs pulses were applied on nitrogen and carbon channels during the acquisition. MISSISSIPPI water
291 suppression (Zhou and Rienstra, 2008) was applied for 100 ms with 13.513 kHz of the rf-field. The carrier
292 positions were set to 4.6 ppm, 118.5 ppm and 53.7 ppm for ^1H , ^{15}N and ^{13}C , respectively, except where
293 otherwise indicated.

294 Table 1 summarizes the applied experimental parameters for 1D spectra.

295 **Table 1** Summary of the experimental parameters used in the 1D CP + RFDR (the start and the end values are shown) and HET-
296 RFDR using α -PET labeled SH3.

	CP + RFDR		HET-RFDR
	CP	RFDR	
^1H (kHz)	86.95-108.69	86.21	86.21
^{15}N (kHz)	42.95	-	75.75
transfer time (ms)	0.55	[0-7.776]	[0-7.776]

NS	32	32
D1 (s)	2	2
AQ (s)	0.020448	0.020448
SW (kHz)	25	25

297 NS – number of scans; D1 – a recycle delay; AQ – the acquisition time; SW – the spectral width.

298 For 2D (H)N(H)H HET-RFDR spectra, during the indirect dimension 11.6 kHz SW_f-TPPM (Thakur et al.,
299 2006) decoupling with 36.36 us pulses was applied on the proton channel. Two mixing times were used:
300 1.152 ms and 3.456 ms. The widths of π -pulses on proton and nitrogen channels were 5.8 us and 6.6 us,
301 respectively. 16 scans were acquired per increment in t_1 . The total time for the single 2D experiment was
302 10 hours. Table 2 summarizes the rest of the parameters.

303 **Table 2** Summary of the experimental parameters used in 2D HET HET-RFDR α -PET SH3 experiments.

	AQ1; AQ2 (s)	SW1; SW2 (kHz)	DW1; DW2 (us)
HET-RFDR	0.0527075; 0.020448	9.713; 25	102.94 20

304 1 and 2 are indirect and direct dimensions; AQ – the acquisition time; SW – the spectral width; DW – the dwell time.

305 [2D CP + RFDR experiment with 1.152 and 3.456 ms of mixing time \(only 1D slices are shown in Figure](#)
306 [2b\) was performed with the same experimental conditions as 2D HET-RFDR. The CP mixing times from](#)
307 [H to N and from N to H were 1.05 ms and 0.55 ms, respectively.](#)

308 For all 1D HC HET-RFDR experiments (Figure 3), 4.8 ms of the mixing time was applied. The widths of
309 π -pulses on proton and carbon channels were 5.8 us (86.21 kHz) and 6.6 us (75.75 kHz), respectively. 87
310 kHz SPINAL64 (Fung et al., 2000) with 6 us pulses was used during the acquisition. 128 scans were
311 accumulated. The spectral width was 50 kHz and the acquisition time 0.01536 s.

312 **Author Contributions**

313 EN performed the simulations and discovered HET-RFDR. EN and LBA designed experiments. EN and
314 KX recorded data. EN and LBA wrote the article. KTM prepared the SH3 protein samples. All authors
315 edited and approved the article.

316 **Competing Interests**

317 The authors declare that they have no conflict of interest.

318 **Acknowledgments**

319 We acknowledge financial support from the MPI for Biophysical Chemistry, and from the Deutsche
320 Forschungsgemeinschaft (Emmy Noether program Grant AN1316/1- 1)

321 **References**

- 322 Andreas, L. B., Le Marchand, T., Jaudzems, K., and Pintacuda, G.: High-resolution proton-detected NMR
323 of proteins at very fast MAS, *J. Magn. Reson.*, 253, 36–49, <https://doi.org/10.1016/j.jmr.2015.01.003>,
324 2015.
- 325 Aucoin, D., Camenares, D., Zhao, X., Jung, J., Sato, T., and Smith, S. O.: High resolution ^1H MAS RFDR
326 NMR of biological membranes, *J. Magn. Reson. San Diego Calif* 1997, 197, 77–86,
327 <https://doi.org/10.1016/j.jmr.2008.12.009>, 2009.
- 328 Bak, M., Rasmussen, J. T., and Nielsen, N. C.: SIMPSON : A General Simulation Program for Solid-State
329 NMR Spectroscopy, *J. Magn. Reson. San Diego Calif* 1997, 1–35,
330 <https://doi.org/10.1006/jmre.2000.2179>, 2000.
- 331 Bennett, A. E., Griffin, R. G., Ok, J. H., and Vega, S.: Chemical shift correlation spectroscopy in rotating
332 solids: Radio frequency-driven dipolar recoupling and longitudinal exchange, *J. Chem. Phys.*, 96, 8624–
333 8627, <https://doi.org/10.1063/1.462267>, 1992.
- 334 Bennett, A. E., Rienstra, C. M., Griffiths, J. M., Zhen, W., Lansbury, P. T., and Griffin, R. G.: Homonuclear
335 radio frequency-driven recoupling in rotating solids, *J. Chem. Phys.*, 108, 9463–9479,
336 <https://doi.org/10.1063/1.476420>, 1998.
- 337 Brinkmann, A. and Levitt, M. H.: Symmetry principles in the nuclear magnetic resonance of spinning
338 solids: Heteronuclear recoupling by generalized Hartmann–Hahn sequences, *J. Chem. Phys.*, 115, 357–
339 384, <https://doi.org/10.1063/1.1377031>, 2001.
- 340 Brinkmann, A., Schmedt auf der Günne, J., and Levitt, M. H.: Homonuclear Zero-Quantum Recoupling in
341 Fast Magic-Angle Spinning Nuclear Magnetic Resonance, *J. Magn. Reson.*, 156, 79–96,
342 <https://doi.org/10.1006/jmre.2002.2525>, 2002.
- 343 Carravetta, M., Edén, M., Zhao, X., Brinkmann, A., and Levitt, M. H.: Symmetry principles for the design
344 of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids, *Chem. Phys.*
345 *Lett.*, 321, 205–215, [https://doi.org/10.1016/S0009-2614\(00\)00340-7](https://doi.org/10.1016/S0009-2614(00)00340-7), 2000.
- 346 Castellani, F., van Rossum, B., Diehl, A., Schubert, M., Rehbein, K., and Oschkinat, H.: Structure of a
347 protein determined by solid-state magic-angle-spinning NMR spectroscopy, *Nature*, 420, 99–102,
348 <https://doi.org/10.1038/nature01070>, 2002.

- 349 Colvin, M. T., Silvers, R., Frohm, B., Su, Y., Linse, S., and Griffin, R. G.: High Resolution Structural
350 Characterization of A β 42 Amyloid Fibrils by Magic Angle Spinning NMR, *J. Am. Chem. Soc.*, 137, 7509–
351 7518, <https://doi.org/10.1021/jacs.5b03997>, 2015.
- 352 Daskalov, A., Martinez, D., Coustou, V., Mammeri, N. E., Berbon, M., Andreas, L. B., Bardiaux, B., Stanek,
353 J., Noubhani, A., Kauffmann, B., Wall, J. S., Pintacuda, G., Saupe, S. J., Habenstein, B., and Loquet, A.:
354 Structural and molecular basis of cross-seeding barriers in amyloids, *bioRxiv*, 2020.07.06.188508,
355 <https://doi.org/10.1101/2020.07.06.188508>, 2020.
- 356 Ernst, R. R., Bodenhausen, G., and Wokaun, A.: *Principles of nuclear magnetic resonance in one and two*
357 *dimensions*, Oxford Univ. Press, London/New York, 610 pp., 1987.
- 358 Fritz, M., Kraus, J., Quinn, C. M., Yap, G. P. A., Struppe, J., Sergeyev, I. V., Gronenborn, A. M., and
359 Polenova, T.: Measurement of Accurate Interfluorine Distances in Crystalline Organic Solids: A High-
360 Frequency Magic Angle Spinning NMR Approach, *J. Phys. Chem. B*, 123, 10680–10690,
361 <https://doi.org/10.1021/acs.jpcb.9b08919>, 2019.
- 362 Fung, B. M., Khitrin, A. K., and Ermolaev, K.: An Improved Broadband Decoupling Sequence for Liquid
363 Crystals and Solids, *J. Magn. Reson.*, 142, 97–101, <https://doi.org/10.1006/jmre.1999.1896>, 2000.
- 364 Gelenter, M. D. and Hong, M.: Efficient ^{15}N – ^{13}C Polarization Transfer by Third-Spin-Assisted Pulsed
365 Cross-Polarization Magic-Angle-Spinning NMR for Protein Structure Determination, *J. Phys. Chem. B*,
366 122, 8367–8379, <https://doi.org/10.1021/acs.jpcb.8b06400>, 2018.
- 367 Gelenter, M. D., Dregni, A. J., and Hong, M.: Pulsed Third-Spin-Assisted Recoupling NMR for Obtaining
368 Long-Range ^{13}C – ^{13}C and ^{15}N – ^{13}C Distance Restraints, *J. Phys. Chem. B*, 124, 7138–7151,
369 <https://doi.org/10.1021/acs.jpcb.0c04574>, 2020.
- 370 Grohe, K., Nimerovsky, E., Singh, H., Vasa, S. K., Söldner, B., Voegeli, B., Rienstra, C. M., and Linser, R.:
371 Exact distance measurements for structure and dynamics in solid proteins by fast-magic-angle-spinning
372 NMR, *Chem. Commun.*, <https://doi.org/10.1039/C9CC02317H>, 2019.
- 373 Gullion, T. and Schaefer, J.: Rotational-echo double-resonance NMR, *J. Magn. Reson.* 1969, 81, 196–200,
374 [https://doi.org/10.1016/0022-2364\(89\)90280-1](https://doi.org/10.1016/0022-2364(89)90280-1), 1989.
- 375 Gullion, T. and Vega, S.: A simple magic angle spinning NMR experiment for the dephasing of rotational
376 echoes of dipolar coupled homonuclear spin pairs, *Chem. Phys. Lett.*, 194, 423–428,
377 [https://doi.org/10.1016/0009-2614\(92\)86076-T](https://doi.org/10.1016/0009-2614(92)86076-T), 1992.
- 378 Gullion, T., Baker, D. B., and Conradi, M. S.: New, compensated Carr-Purcell sequences, *J. Magn. Reson.*
379 1969, 89, 479–484, [https://doi.org/10.1016/0022-2364\(90\)90331-3](https://doi.org/10.1016/0022-2364(90)90331-3), 1990.
- 380 Haeberlen, U. and Waugh, J. S.: Coherent Averaging Effect in Magnetic Resonance, *Phys. Rev.*, 175, 453–
381 467, <https://doi.org/10.1103/PhysRev.175.453>, 1968.
- 382 Hartmann, S. R. and Hahn, E. L.: Nuclear Double Resonance in the Rotating Frame, *Phys. Rev.*, 128,
383 2042–2053, <https://doi.org/10.1103/PhysRev.128.2042>, 1962.

- 384 Hediger, S., Meier, B. H., Kurur, N. D., Bodenhausen, G., and Ernst, R. R.: NMR cross polarization by
385 adiabatic passage through the Hartmann—Hahn condition (APHH), *Chem. Phys. Lett.*, 223, 283–288,
386 [https://doi.org/10.1016/0009-2614\(94\)00470-6](https://doi.org/10.1016/0009-2614(94)00470-6), 1994.
- 387 Hellwagner, J., Wili, N., Ibáñez, L. F., Wittmann, J. J., Meier, B. H., and Ernst, M.: Transient effects in π -
388 pulse sequences in MAS solid-state NMR, *J. Magn. Reson.*, 287, 65–73,
389 <https://doi.org/10.1016/j.jmr.2017.12.015>, 2018.
- 390 Hing, A. W., Vega, S., and Schaefer, J.: Transferred-echo double-resonance NMR, *J. Magn. Reson.* 1969,
391 96, 205–209, [https://doi.org/10.1016/0022-2364\(92\)90305-Q](https://doi.org/10.1016/0022-2364(92)90305-Q), 1992.
- 392 Hou, G., Byeon, I.-J. L., Ahn, J., Gronenborn, A. M., and Polenova, T.: 1H–13C/1H–15N Heteronuclear
393 Dipolar Recoupling by R-Symmetry Sequences Under Fast Magic Angle Spinning for Dynamics Analysis of
394 Biological and Organic Solids, *J. Am. Chem. Soc.*, 133, 18646–18655, <https://doi.org/10.1021/ja203771a>,
395 2011a.
- 396 Hou, G., Yan, S., Sun, S., Han, Y., Byeon, I.-J. L., Ahn, J., Concel, J., Samoson, A., Gronenborn, A. M., and
397 Polenova, T.: Spin Diffusion Driven by R-Symmetry Sequences: Applications to Homonuclear Correlation
398 Spectroscopy in MAS NMR of Biological and Organic Solids, *J. Am. Chem. Soc.*, 133, 3943–3953,
399 <https://doi.org/10.1021/ja108650x>, 2011b.
- 400 Hou, G., Yan, S., Trébosc, J., Amoureaux, J.-P., and Polenova, T.: Broadband homonuclear correlation
401 spectroscopy driven by combined R2nv sequences under fast magic angle spinning for NMR structural
402 analysis of organic and biological solids, *J. Magn. Reson.*, 232, 18–30,
403 <https://doi.org/10.1016/j.jmr.2013.04.009>, 2013.
- 404 Ishii, Y.: 13C–13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic
405 resonance: Applications to distance measurements, spectral assignments, and high-throughput
406 secondary-structure determination, *J. Chem. Phys.*, 114, 8473–8483,
407 <https://doi.org/10.1063/1.1359445>, 2001.
- 408 Jain, M. G., Lalli, D., Stanek, J., Gowda, C., Prakash, S., Schwarzer, T. S., Schubeis, T., Castiglione, K.,
409 Andreas, L. B., Madhu, P. K., Pintacuda, G., and Agarwal, V.: Selective 1H–1H Distance Restraints in Fully
410 Protonated Proteins by Very Fast Magic-Angle Spinning Solid-State NMR, *J. Phys. Chem. Lett.*, 8, 2399–
411 2405, <https://doi.org/10.1021/acs.jpclett.7b00983>, 2017.
- 412 Jaroniec, C. P., Filip, C., and Griffin, R. G.: 3D TEDOR NMR Experiments for the Simultaneous
413 Measurement of Multiple Carbon–Nitrogen Distances in Uniformly 13C,15N-Labeled Solids, *J. Am.*
414 *Chem. Soc.*, 124, 10728–10742, <https://doi.org/10.1021/ja026385y>, 2002.
- 415 Ji, Y., Liang, L., Guo, C., Bao, X., Polenova, T., and Hou, G.: Zero-Quantum Homonuclear Recoupling
416 Symmetry Sequences in Solid-State Fast MAS NMR Spectroscopy, *Acta Phys.-Chim. Sin.*, 36, 1905029–
417 1905034, 2020.
- 418 Linser, R., Bardiaux, B., Andreas, L. B., Hyberts, S. G., Morris, V. K., Pintacuda, G., Sunde, M., Kwan, A. H.,
419 and Wagner, G.: Solid-State NMR Structure Determination from Diagonal-Compensated, Sparsely
420 Nonuniform-Sampled 4D Proton–Proton Restraints, *J. Am. Chem. Soc.*, 136, 11002–11010,
421 <https://doi.org/10.1021/ja504603g>, 2014.

- 422 Maricq, M. M.: Application of average hamiltonian theory to the NMR of solids, *Phys. Rev. B*, 25, 6622–
423 6632, <https://doi.org/10.1103/PhysRevB.25.6622>, 1982.
- 424 Mehring, M.: *Principles of High Resolution NMR in Solids*, 2nd ed., Springer-Verlag, Berlin Heidelberg,
425 <https://doi.org/10.1007/978-3-642-68756-3>, 1983.
- 426 Meier, B. H. and Earl, W. L.: Excitation of multiple quantum transitions under magic angle spinning
427 conditions: Adamantane, *J. Chem. Phys.*, 85, 4905–4911, <https://doi.org/10.1063/1.451726>, 1986.
- 428 Messinger, R. J., Ménétrier, M., Salager, E., Boulineau, A., Duttine, M., Carlier, D., Ateba Mba, J.-M.,
429 Croguennec, L., Masquelier, C., Massiot, D., and Deschamps, M.: Revealing Defects in Crystalline
430 Lithium-Ion Battery Electrodes by Solid-State NMR: Applications to LiVPO₄F, *Chem. Mater.*, 27, 5212–
431 5221, <https://doi.org/10.1021/acs.chemmater.5b01234>, 2015.
- 432 Metz, G., Wu, X. L., and Smith, S. O.: Ramped-Amplitude Cross Polarization in Magic-Angle-Spinning
433 NMR, *J. Magn. Reson. A*, 110, 219–227, <https://doi.org/10.1006/jmra.1994.1208>, 1994.
- 434 Movellan, K. T., Najbauer, E. E., Pratihar, S., Salvi, M., Giller, K., Becker, S., and Andreas, L. B.: Alpha
435 protons as NMR probes in deuterated proteins, *J. Biomol. NMR*, 73, 81–91,
436 <https://doi.org/10.1007/s10858-019-00230-y>, 2019.
- 437 Nielsen, N. Chr., Strassø, L. A., and Nielsen, A. B.: Dipolar Recoupling, in: *Solid State NMR*, edited by:
438 Chan, J. C. C., Springer, Berlin, Heidelberg, 1–45, https://doi.org/10.1007/128_2011_129, 2012.
- 439 Nimerovsky, E. and Goldbourt, A.: Insights into the spin dynamics of a large anisotropy spin subjected to
440 long-pulse irradiation under a modified REDOR experiment., *J. Magn. Reson.*, 225, 130–41,
441 <https://doi.org/10.1016/j.jmr.2012.09.015>, 2012.
- 442 Nishiyama, Y., Malon, M., Ishii, Y., and Ramamoorthy, A.: 3D ¹⁵N/¹⁵N/¹H chemical shift correlation
443 experiment utilizing an RFDR-based ¹H/¹H mixing period at 100kHz MAS, *J. Magn. Reson.*, 244, 1–5,
444 <https://doi.org/10.1016/j.jmr.2014.04.008>, 2014a.
- 445 Nishiyama, Y., Zhang, R., and Ramamoorthy, A.: Finite-pulse radio frequency driven recoupling with
446 phase cycling for 2D ¹H/¹H correlation at ultrafast MAS frequencies, *J. Magn. Reson.*, 243, 25–32,
447 <https://doi.org/10.1016/j.jmr.2014.03.004>, 2014b.
- 448 Ok, J. H., Spencer, R. G. S., Bennett, A. E., and Griffin, R. G.: Homonuclear correlation spectroscopy in
449 rotating solids, *Chem. Phys. Lett.*, 197, 389–395, [https://doi.org/10.1016/0009-2614\(92\)85790-H](https://doi.org/10.1016/0009-2614(92)85790-H), 1992.
- 450 Olejniczak, E. T., Vega, S., and Griffin, R. G.: Multiple pulse NMR in rotating solids, *J. Chem. Phys.*, 81,
451 4804–4817, <https://doi.org/10.1063/1.447506>, 1984.
- 452 Pandey, M. K. and Nishiyama, Y.: A one-dimensional solid-state NMR approach for ¹⁴NH/¹⁴NH overtone
453 correlation through ¹H/¹H mixing under fast MAS, *Phys. Chem. Chem. Phys.*, 20, 25849–25853,
454 <https://doi.org/10.1039/C8CP05000G>, 2018.
- 455 Pandey, M. K., Vivekanandan, S., Yamamoto, K., Im, S., Waskell, L., and Ramamoorthy, A.: Proton-
456 detected 2D radio frequency driven recoupling solid-state NMR studies on micelle-associated
457 cytochrome-b5, *J. Magn. Reson.*, 242, 169–179, <https://doi.org/10.1016/j.jmr.2014.02.016>, 2014.

- 458 Petkova, A. T., Ishii, Y., Balbach, J. J., Antzutkin, O. N., Leapman, R. D., Delaglio, F., and Tycko, R.: A
459 structural model for Alzheimer's -amyloid fibrils based on experimental constraints from solid state
460 NMR, *Proc. Natl. Acad. Sci.*, 99, 16742–16747, <https://doi.org/10.1073/pnas.262663499>, 2002.
- 461 Roos, M., Mandala, V. S., and Hong, M.: Determination of Long-Range Distances by Fast Magic-Angle-
462 Spinning Radiofrequency-Driven ^{19}F – ^{19}F Dipolar Recoupling NMR, *J. Phys. Chem. B*, 122, 9302–9313,
463 <https://doi.org/10.1021/acs.jpcb.8b06878>, 2018.
- 464 Rovnyak, D.: Tutorial on analytic theory for cross-polarization in solid state NMR, *Concepts Magn. Reson.*
465 Part A, 32A, 254–276, <https://doi.org/10.1002/cmra.20115>, 2008.
- 466 Saalwächter, K.: Robust NMR Approaches for the Determination of Homonuclear Dipole–Dipole
467 Coupling Constants in Studies of Solid Materials and Biomolecules, *ChemPhysChem*, 14, 3000–3014,
468 <https://doi.org/10.1002/cphc.201300254>, 2013.
- 469 Shaka, A. J., Keeler, J., Frenkiel, T., and Freeman, R.: An improved sequence for broadband decoupling:
470 WALTZ-16, *J. Magn. Reson.* 1969, 52, 335–338, [https://doi.org/10.1016/0022-2364\(83\)90207-X](https://doi.org/10.1016/0022-2364(83)90207-X), 1983.
- 471 Shen, M., Hu, B., Lafon, O., Trébosc, J., Chen, Q., and Amoureaux, J.-P.: Broadband finite-pulse radio-
472 frequency-driven recoupling (fp-RFDR) with (XY8)41 super-cycling for homo-nuclear correlations in very
473 high magnetic fields at fast and ultra-fast MAS frequencies, *J. Magn. Reson.*, 223, 107–119,
474 <https://doi.org/10.1016/j.jmr.2012.07.013>, 2012.
- 475 Shi, C., Fricke, P., Lin, L., Chevelkov, V., Wegstroth, M., Giller, K., Becker, S., Thanbichler, M., and Lange,
476 A.: Atomic-resolution structure of cytoskeletal bactofillin by solid-state NMR, *Sci. Adv.*, 1,
477 <https://doi.org/10.1126/sciadv.1501087>, 2015.
- 478 Slichter, C. P.: Principles of Magnetic Resonance, 3rd ed., Springer-Verlag, Berlin Heidelberg,
479 <https://doi.org/10.1007/978-3-662-09441-9>, 1990.
- 480 Sun, B. Q., Costa, P. R., and Griffin, R. G.: Heteronuclear Polarization Transfer by Radiofrequency-Driven
481 Dipolar Recoupling Under Magic-Angle Spinning, *J. Magn. Reson. A*, 112, 191–198,
482 <https://doi.org/10.1006/jmra.1995.1031>, 1995.
- 483 Szeverenyi, N. M., Sullivan, M. J., and Maciel, G. E.: Observation of spin exchange by two-dimensional
484 fourier transform ^{13}C cross polarization-magic-angle spinning, *J. Magn. Reson.* 1969, 47, 462–475,
485 [https://doi.org/10.1016/0022-2364\(82\)90213-X](https://doi.org/10.1016/0022-2364(82)90213-X), 1982.
- 486 Takegoshi, K., Nakamura, S., and Terao, T.: ^{13}C – ^1H dipolar-assisted rotational resonance in magic-angle
487 spinning NMR, *Chem. Phys. Lett.*, 344, 631–637, [https://doi.org/10.1016/S0009-2614\(01\)00791-6](https://doi.org/10.1016/S0009-2614(01)00791-6), 2001.
- 488 Tang, M., Berthold, D. A., and Rienstra, C. M.: Solid-State NMR of a Large Membrane Protein by
489 Paramagnetic Relaxation Enhancement, *J. Phys. Chem. Lett.*, 2, 1836–1841,
490 <https://doi.org/10.1021/jz200768r>, 2011.
- 491 Thakur, R. S., Kurur, N. D., and Madhu, P. K.: Swept-frequency two-pulse phase modulation for
492 heteronuclear dipolar decoupling in solid-state NMR, *Chem. Phys. Lett.*, 426, 459–463,
493 <https://doi.org/10.1016/j.cplett.2006.06.007>, 2006.

- 494 Tycko, R. and Dabbagh, G.: Measurement of nuclear magnetic dipole—dipole couplings in magic angle
495 spinning NMR, *Chem. Phys. Lett.*, 173, 461–465, [https://doi.org/10.1016/0009-2614\(90\)87235-J](https://doi.org/10.1016/0009-2614(90)87235-J), 1990.
- 496 Wong, K. M., Wang, Y., Seroski, D. T., Larkin, G. E., Mehta, A. K., Hudalla, G. A., Hall, C. K., and Paravastu,
497 A. K.: Molecular complementarity and structural heterogeneity within co-assembled peptide β -sheet
498 nanofibers, *Nanoscale*, 12, 4506–4518, <https://doi.org/10.1039/C9NR08725G>, 2020.
- 499 Wu, X. L. and Zilm, K. W.: Cross Polarization with High-Speed Magic-Angle Spinning, *J. Magn. Reson. A*,
500 104, 154–165, <https://doi.org/10.1006/jmra.1993.1203>, 1993.
- 501 Zhang, R., Nishiyama, Y., Sun, P., and Ramamoorthy, A.: Phase cycling schemes for finite-pulse-1D
502 MAS solid state NMR experiments, *J. Magn. Reson.*, 252, 55–66,
503 <https://doi.org/10.1016/j.jmr.2014.12.010>, 2015.
- 504 Zhang, R., Mroue, K. H., and Ramamoorthy, A.: Proton-Based Ultrafast Magic Angle Spinning Solid-State
505 NMR Spectroscopy, *Acc. Chem. Res.*, 50, 1105–1113, <https://doi.org/10.1021/acs.accounts.7b00082>,
506 2017.
- 507 Zhang, Z., Chen, Y., and Yang, J.: Band-selective heteronuclear dipolar recoupling with dual back-to-back
508 pulses in rotating solids, *J. Magn. Reson.*, 272, 46–52, <https://doi.org/10.1016/j.jmr.2016.09.003>, 2016.
- 509 Zhang, Z., Oss, A., Org, M.-L., Samoson, A., Li, M., Tan, H., Su, Y., and Yang, J.: Selectively Enhanced 1H–
510 1H Correlations in Proton-Detected Solid-State NMR under Ultrafast MAS Conditions, *J. Phys. Chem. Lett.*, 11, 8077–8083, <https://doi.org/10.1021/acs.jpclett.0c02412>, 2020.
- 512 Zheng, Z., Qiang, W., and Weliky, D. P.: Investigation of finite-pulse radiofrequency-driven recoupling
513 methods for measurement of intercarbonyl distances in polycrystalline and membrane-associated HIV
514 fusion peptide samples, *Magn. Reson. Chem.*, 45, S247–S260, <https://doi.org/10.1002/mrc.2160>, 2007.
- 515 Zhou, D. H. and Rienstra, C. M.: High-performance solvent suppression for proton detected solid-state
516 NMR, *J. Magn. Reson.*, 192, 167–172, <https://doi.org/10.1016/j.jmr.2008.01.012>, 2008.
- 517 Zhou, D. H., Nieuwkoop, A. J., Berthold, D. A., Comellas, G., Sperling, L. J., Tang, M., Shah, G. J., Brea, E.
518 J., Lemkau, L. R., and Rienstra, C. M.: Solid-state NMR analysis of membrane proteins and protein
519 aggregates by proton detected spectroscopy, *J. Biomol. NMR*, 54, 291–305,
520 <https://doi.org/10.1007/s10858-012-9672-z>, 2012.
- 521 Zinke, M., Fricke, P., Lange, S., Zinn-Justin, S., and Lange, A.: Protein–Protein Interfaces Probed by
522 Methyl Labeling and Proton-Detected Solid-State NMR Spectroscopy, *Chemphyschem*, 19, 2457–2460,
523 <https://doi.org/10.1002/cphc.201800542>, 2018.
- 524
- 525