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The Suplimentary Information consists of four sections. In the first section, “1D HET-RFDR 9 

Experiments” we show additional 1D 1H-13C HET-RFDR spectra. The second “HET-RFDR Simulations” 10 

section provides additional HET-RFDR simulations, which were performed under conditions that closely 11 

match the experiments. The third section, “Operator Paths” shows the possible paths of RFDR and HET-12 

RFDR transfers via heteronuclear and homonuclear operators during the first two rotor periods. The last 13 

part, “RFDR Phase Cyling”, shows the formal proof of zero signal transfer for a homonuclear I2 spin 14 

system with zero offset difference and when all π-pulses have the same phase.    15 

1D HET-RFDR Experiments 16 

Figure S1 shows a 1D HET-RFDR pulse sequence. The sequence consists of two π/2-pulses on 17 

the 1H channel (with two step phase cycling to eliminate the signal from directly excited spins of carbons) 18 

followed by a series of HET-RFDR pulses and finally a π/2-pulse and detection on the 13C channel. The 19 

evolution of the magnetization from proton to carbon spins through the HET-RFDR pulse sequence 20 

(Figure S1) can be described with cartesian operators as follows: 21 
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𝐻𝑧

𝑓𝑖𝑟𝑠𝑡 𝑝𝑟𝑜𝑡𝑜𝑛  (
𝜋

2
)
𝑥
  𝑝𝑢𝑙𝑠𝑒

⇒                  −𝐻𝑦

𝑠𝑒𝑐𝑜𝑛𝑑 𝑝𝑟𝑜𝑡𝑜𝑛  (
𝜋

2
)
∓𝑥
  𝑝𝑢𝑙𝑠𝑒

⇒                     ±𝐻𝑧22 

𝐻𝐸𝑇−𝑅𝐹𝐷𝑅 𝑏𝑙𝑜𝑐𝑘
⇒             ±𝑎𝐻𝐶(𝑡𝑚𝑖𝑥)𝐶𝑧

𝑓𝑖𝑟𝑠𝑡 𝑐𝑎𝑟𝑏𝑜𝑛  (
𝜋

2
)
𝑥
  𝑝𝑢𝑙𝑠𝑒

⇒                   ∓𝑎𝐻𝐶(𝑡𝑚𝑖𝑥)𝐶𝑦
𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛±𝑥
⇒        −𝑎𝐻𝐶(𝑡𝑚𝑖𝑥),    Eq. (S1) 23 

where, 𝑎𝐻𝐶(𝑡𝑚𝑖𝑥), is an amplitude of the transferred signal. 24 

 25 

Figure S1 1D HET-RFDR pulse sequence. The sequence consists of two π/2-pulses on the 1H channel, HET-RFDR blocks ( a 26 

train of π-pulses with a single pulse during each rotor period applied on both channels), π/2-pulse on the 13C channel and 27 

detection with proton decoupling. The phases of the π/2-pulses are 𝜑1 = 𝑥; 𝜑2 = −𝑥, 𝑥; 𝜑3 = −𝑥,−𝑥, 𝑥, 𝑥, 𝑦, 𝑦, −𝑦,−𝑦. 𝜑𝑎𝑐𝑞 =28 

𝑥, −𝑥, −𝑥, 𝑥, −𝑦, 𝑦, 𝑦, −𝑦. π-pulses on the both channels follow the XY8 scheme (Gullion et al., 1990). During acquisition, SWf-29 

TPPM (Thakur et al., 2006) at 55.555 kHz or SPINAL64 (Fung et al., 2000) at 10 kHz decoupling is applied on the proton 30 

channel to narrow the detected resonances. 31 

Figures. S2-S3 demonstrate 1D HC HET-RFDR spectra using [13C, 15N] labeled SH3. On proton 32 

and carbon channels π-pulses with different lengths were applied: 3.4 us (147 kHz) and 5 us (100 kHz), 33 

respectively. Figure S2a shows HC spectra under different mixing times: 0.576 ms, 1.728 ms, 2.888 ms, 34 
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4.032 ms, 5.184 ms and 6.336 ms. Figure S2b shows HC spectra, which were obtained with 6.336 ms 35 

HET-RFDR (blue) and RFDR (cyan, π-pulses were applied on carbon channel only) . As expected, HET-36 

RFDR provides 1H to 13C transfer. The efficiency depends on the spectral region. For some aromatic 37 

carbons, the transfer\ achieves ~100% efficiency with respect to CP at 1.5 ms (Figure S2b, red), but for 38 

other regions, like Cα, the polarization transfer is ~50%. 39 

 40 

Figure S2 1D HC [13C,15N] labeled SH3 spectra at 55.555 kHz (a) HET-RFDR spectra with different mixing times: 0.576 ms, 41 

1.728 ms, 2.888 ms, 4.032 ms, 5.184 ms, 6.336 ms. (b) Comparaison of 1D HC CP spectrum (red, 1.5 ms of CP mixing) and 42 

HET-RFDR spectrum (blue, 6.336 ms of HET-RFDR mixing). The cyan spectrum shows a HC RFDR spectrum, for which π-43 

pulses were applied only on the 13C channel. The carbon refference frequency was set up on 40 ppm. The MAS rate was 55.555 44 

kHz. The experimental parameters are shown in Table S1.        45 

The transfer of the magnetization from Hz operators to Cz operators is minimally affected by flip 46 

angle deviations, since XY8 phase cycling is used (Gullion et al., 1990). To show this, we recorded 47 

additional 1D HC HET-RFDR spectra with a series of flip angles on the carbon channel. (Figure S3).   48 
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 49 

Figure S3 1D proton-carbon HET-RFDR spectra of [13C, 15N] labeled SH3 with a 6.336 ms transfer time as a function of the 50 

flip angle of the pulses on the carbon channel between 157.34° and 184.64° (17 spectra). The width of π-pulses on the proton 51 

channel was 3.4 us. The width of the applied pulses on the carbon channel was constant and equal to 5 us. 55.555 kHz MAS was 52 

used. The rf-field values in kHz on the carbon channel from left to right were:87.41, 88.2, 89.01, 89.83, 90.66, 91.51, 92.38, 53 

93.26, 94.16, 95.08, 96.02, 96.97, 97.94, 98.94, 99.95, 100.98, 102.04. 54 

Solid state NMR spectroscopy: The CP and HET-RFDR spectra of 13C,15N SH3 were acquired at 14.1 T 55 

(600 MHz) using a Bruker AVIIIHD spectrometer using a MASDVT600W2 BL1.3 HXY probe. The 56 

experiments were performed at 55.555 kHz MAS with the temperature of the cooling gas set to 235 K.  57 

For 1D 1H13C spectra during the HET-RFDR periods, the widths of pulses on proton and carbon channels 58 

were 3.4 us and 5 us, respectively. 13.89 kHz SWf-TPPM (Thakur et al., 2006) with 36 us pulses was used 59 

during the acquisition. Table S1 summarizes the applied experimental parameters.  60 

Table S1 Summary of the experimental parameters used in the CP (the start and the end values are shown) and HET-RFDR H13C 61 

[13C,15N] SH3 experiments.  62 
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 CP HET-RFDR 
1H (kHz) 92-115 147 
13C (kHz) 43 100, [87.41-102.04] 

transfer time (ms) 1.5  [0.576-6.336] 

NS 48 48 

D1 (s) 1.5 1.5 

AQ (s) 0.01536 0.01536 

SW (kHz) 50 50 
NS – number of scans; D1 – a recycle delay; AQ – the acquisition time; SW – the spectral width.  63 

HET-RFDR Simulations 64 

Figure S4 shows simulated HET-RFDR polarization transfers for four (S2I2, Figure S4a) and three (SI2,  65 

Figure S4b) spin systems with conditions that closely match the experiments: 55.555 kHz MAS and 5.4 66 

us π-pulses. 67 

Figure S4a shows the HET-RFDR polarization trasfers between a directly bonded spin pair (I1-C2, solid 68 

lines) and the remote pair (I1-C3, lines with circles). The lines with diamonds represent signals that are not 69 

transferred, but remain on the spin I1. We consider three cases: rigid C2H2 chain (black lines), dynamic 70 

C2H2 chain (red lines) and rigid N2C2 chain (blue lines). For the rigid (black solid line) and dynamic (red 71 

solid line) C2H2 chains when the heteronuclear dipolar coupling constants are larger than the homonuclear 72 

dipolar constants, the polarization transfer from H1 to C2 oscillates about ~35% efficiency. However, for 73 

the spin system with the weak heteronuclear dipolar coupling constants (blue lines), the HET fp-RFDR 74 

polarization transfer between directly bonded spins is lower (blue solid line) and achieves only ~20% 75 

transfer efficiency. 76 

The signal that remains on the starting spin (lines with diamonds) are ~40% for first two cases (black and 77 

solid lines with diamonds) and ~70% for weak dipolar coupling constants (blue line with diamonds). 78 

The HET-RFDR transfer between remote spins, e.g. H1 and C3 are about ~10% of the initial polarization 79 

for all these three cases (black, red and blue lines with circles). The transfer of magnetization mostly 80 

occurs via relayed transfer (I1-C2-C3) and not directly from I1 to C3, which more clearly can be seen in the 81 

simulations on Figure S4b 82 
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Figure S4b considers the HET-RFDR polarization transfer between directly bonded spins (N1-H2, solid 83 

lines) and remote pair (N1-H3, lines with cirles). The heteronuclear dipolar coupling constant between N1 84 

to H2 spins is kept constant and the homonuclear dipolar constant between H2 and H3 is changed. When 85 

the distance between H2 and H3 spins is 6 Å (green lines), the fp-RFDR polarization transfer between N1 86 

and H2 achieves the maximal transfer of about 50% (solid green line). The direct HET-RFDR polarization 87 

transfer efficiency between N1 and H3 is very low (green line with circles). For the H2 - H3 distances of 4 88 

Å (blue line with circles), 3 Å (red line with circles) and 2 Å (black line with circles), the polarization 89 

transfer between N1 and H3 achieves ~10%. Since the distance between N1 and H3 is not changed, the 90 

transfer between N1 and H3 is achieved via sequential relayed transfer, N1-H2-H3. The homonuclear 91 

distance also has influence on the HET-RFDR polarization tranfer. With decreased H2-H3 distance the 92 

amplitude of the HET-RFDR polarization tranfer between dirctly bonded spins (solid lines) is decreased. 93 

 94 

Figure S4 Simulated HET-RFDR signals. The simulated HET-RFDR polarization transfers for S2I2 (a) and SI2 (b) spin systems 95 

are shown as a function of mixing time. For all simulations MAS was 55.555 kHz and hard π-pulses with 5.4 us width (92.59 96 

kHz rf-field) were applied simuntaneously every rotor period. The offset and CSA values (the offset and CSA values are defined 97 

in the same way as in (Bak et al., 2000)) of spins [I1;C2;C3;I4] are [1;2;5.5;6] (kHz) and [4;1;2;3] (kHz), respectively. The initial 98 

and the final operators were in the direction 𝑧̂. (a) The solid lines represent the HET-RFDR polarization transfers between I1 and 99 

C2 spins; the lines with circles represent the HET-RFDR polarization transfers between I1 and C3 spins and the lines with 100 

diamonds represent the decay of starting signals. The carbon-carbon distance as well as the dipolar coupling constant between C2 101 
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and C3 were kept unchanged at 1.5 Å (2.22 kHz). The black lines represent the rigid H2C2 spin system (with I1, I4 of the inset as 102 

protons). The proton-carbon dipolar coupling constants were: 𝜈12 = 𝜈34 = 22 𝑘𝐻𝑧; 𝜈13 = 𝜈34 = 3.03 𝑘𝐻𝑧 and the proton-proton 103 

coupling constant was: 𝜈14 = 4.9 𝑘𝐻𝑧. The red lines represent the dynamic H2C2 spin system with reduced proton-carbon 104 

couplings of are: 𝜈12 = 𝜈34 = 8 𝑘𝐻𝑧; 𝜈13 = 𝜈34 = 1.01 𝑘𝐻𝑧 and a reduced proton-proton coupling 𝜈14 = 1.8 𝑘𝐻𝑧. The blue 105 

lines represent the rigid N2C2 spin system (with I1, I4 of the inset as nitrogens). The nitrogen-carbon dipolar coupling constants 106 

are: 𝜈12 = 𝜈34 = 1 𝑘𝐻𝑧; 𝜈13 = 𝜈34 = 0.195 𝑘𝐻𝑧 and for the nitrogen-nitrogen coupling, 𝜈14 = 0.01 𝑘𝐻𝑧. (b) The solid lines 107 

represent the HET-RFDR polarization trasnfer between N1 and H2 spins with unchanged dipolar coupling constant of 11 kHz. 108 

The lines with circles represent the transfer between N1 and H3 spins for different distances (dipolar coupling constants) between 109 

H2 and H3 spins: black lines – 2 Å (15 kHz), red lines – 3 Å (4.4 kHz), blue lines – 4 Å (1.9 kHz) and green lines – 6 Å (0.5 kHz). 110 

The distance as well as the dipolar coupling constant between N1 and H3 were kept unchanged at 3 Å and 0.45 kHz.  111 

Operator Paths 112 

In this section we indentify the paths via which the signals are transferred from Iz to Sz operators 113 

and from  Iz1 to Iz2 operators during the first two rotor periods of HET-RFDR and RFDR blocks, 114 

respectively. We consider the amplitudes of the operators that are generated as a result of the evolution of 115 

the other operators through pulses or dealys: 𝑡(𝜋𝑥)  →   𝑑𝑒𝑙1  →  𝑡(𝜋𝑦)  →  𝑑𝑒𝑙2. We first consider the 116 

heteronuclear case of an IS spin system during HET-RFDR. Table S2 consists of four subsections. The 117 

first, second , third and fourth subsections represent the amplitudes of four operators, Iz, Sz, 2IxSy, 2IySx, 118 

measured at four points.  119 

Table S2 Transfer paths during HET-RFDR. The single crystal amplitudes (Euler angles: 184°; 141°; 349°) of the operators  at 120 

four time points: 𝜋𝑥 – the end of the first pulse; 𝑑𝑒𝑙1 – the end of the first delay; 𝜋𝑦 – the end of the second pulse; 𝑑𝑒𝑙2 – in the 121 

end of the second delay. The first column shows the initial operators. The first, second, third and fourth subsections represent the 122 

amplitudes with the initial operators Iz, Sz, 2IxSy, 2IySx, respectively. The used simulated parameters were as in Figure 5a in the 123 

main text. 124 

Op  Iz   Sz   2IxSy  2IySx  

 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 

Iz -

0.95 

1 -

0.95 

1 0 0 0 0 0.31 0 0 0 0 0 -

0.31 

0 

Sz 0 0 0 0 -

0.95 

1 -

0.95 

1 0 0 -

0.31 

0 0.31 0 0 0 

2IxSy -

0.31 

0 0 0 0.31 0 0.31 0 -

0.95 

1 -

0.95 

1 0 0 0 0 

2IySx 0 0 0.31 0 0 0 0 0 0 0 0 0 -

0.95 

1 -

0.95 

1 
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 125 

For example, the path 𝐼𝑧
𝜋𝑥
→ 𝐼𝑧

𝑑𝑒𝑙1
→  𝐼𝑧

𝜋𝑦
→ 𝐼𝑧

𝑑𝑒𝑙2
→  𝐼𝑧 gives the amplitude of  −0.95 ∙ 1 ∙ (−0.95) ∙ 1 =126 

0.9 (the bold font in the Table S2), which equals the amplitude of the Iz operator at the end of 2TR in 127 

Figure 5a in the main text (black line). The path 𝐼𝑧
𝜋𝑥
→ 𝐼𝑧

𝑑𝑒𝑙1
→  𝐼𝑧

𝜋𝑦
→ 𝐼𝑧

𝑑𝑒𝑙2
→  𝑆𝑧 gives the amplitude of  128 

−0.95 ∙ 1 ∙ (−0.95) ∙ 0 = 0. If we analyze all 64 possibilities, we find only one heteronuclear path, 129 

conecting Iz and Sz operators through the first two rotor periods of HET-RFDR: 𝐼𝑧130 

𝜋𝑥
→ 2𝐼𝑥𝑆𝑦

𝑑𝑒𝑙1
→  2𝐼𝑥𝑆𝑦

𝜋𝑦
→ 𝑆𝑧

𝑑𝑒𝑙2
→  𝑆𝑧 with nonzero amplitude of −0.31 ∙ 1 ∙ (−0.31) ∙ 1 = 0.097.  131 

In the same way we tabulate the homonuclear I2 spin system during the first two rotor periods of 132 

RFDR block in Table S3.  133 

Table S3 Transfer paths during RFDR. The single crystal amplitudes (Euler angles: 184°; 141°; 349°) of the operators atfour 134 

time points: 𝜋𝑥 – the end of the first pulse; 𝑑𝑒𝑙1 – the end of the first delay; 𝜋𝑦 – the end of the second pulse; 𝑑𝑒𝑙2 – the end of 135 

the second delay. The first column shows the initial operators. The first, second, third and fourth subsections represent the 136 

amplitudes with the initial operators Iz1, Iz2, 2Ix1Iy2, 2Iy1Ix2, respectively. The simulated parameters were as in Figure 5b in the 137 

main text.   138 

Op Iz1 Iz2 2Ix1Iy2 2Iy1Ix2 

 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 𝜋𝑥 𝑑𝑒𝑙1 𝜋𝑦 𝑑𝑒𝑙2 

Iz1 -

0.97 

0.96 -

0.97 

0.96 0.02 0.04 0.02 0.04 0.1 -0.2 -

0.21 

-0.2 0.21 0.2 -0.1 0.2 

Iz2 0.02 0.04 0.02 0.04 -

0.97 

0.96 -

0.97 

0.96 0.21 0.2 -0.1 0.2 0.1 -0.2 -

0.21 

-0.2 

2Ix1Iy2 -0.1 0.21 0.21 0.2 -

0.21 

-0.2 0.1 -0.2 -

0.97 

0.96 -

0.97 

0.96 0.02 0.04 0.02 0.04 

2Iy1Ix2 -

0.21 

-0.2 0.1 -0.2 -0.1 0.2 0.21 0.2 0.02 0.04 0.02 0.04 -

0.97 

0.96 -

0.97 

0.96 

 139 

 Unlike the IS spin system, all 64 paths have nonzero amplitudes via which the signal is 140 

transferred from homonuclear operator Iz1 to operator Iz2 during the first two rotor periods of RFDR. 141 

These 64 paths can be divided into four groups.  142 
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The first group contains eight paths with combinations of Iz1, Iz2 operators only. For example, the 143 

path 𝐼𝑧1
𝜋𝑥
→ 𝐼𝑧1

𝑑𝑒𝑙1
→  𝐼𝑧1

𝜋𝑦
→ 𝐼𝑧1

𝑑𝑒𝑙2
→  𝐼𝑧2 has 0.0393 amplitude, whereas the path 𝐼𝑧1144 

𝜋𝑥
→ 𝐼𝑧2

𝑑𝑒𝑙1
→  𝐼𝑧2

𝜋𝑦
→ 𝐼𝑧2

𝑑𝑒𝑙2
→  𝐼𝑧2 has -0.0195 amplitude. The total amplitude of this group is 0.03920388.  145 

The second group contains 24 paths where each of the paths contains one of the operators 2𝐼𝑥1𝐼𝑦2 146 

or 2𝐼𝑦1𝐼𝑥2. For example, the path 𝐼𝑧1
𝜋𝑥
→ 𝐼𝑧1

𝑑𝑒𝑙1
→  𝐼𝑧1

𝜋𝑦
→ 2𝐼𝑥1𝐼𝑦2

𝑑𝑒𝑙2
→  𝐼𝑧2 has -0.0393 amplitude, whereas the 147 

path 𝐼𝑧1
𝜋𝑥
→ 𝐼𝑧1

𝑑𝑒𝑙1
→  2𝐼𝑥1𝐼𝑦2

𝜋𝑦
→ 𝐼𝑧2

𝑑𝑒𝑙2
→  𝐼𝑧2 has 0.0195 amplitude. The total amplitude of this group is -148 

0.0574702. 149 

The third group contains 24 paths where each of the paths contains two of the operators 2𝐼𝑥1𝐼𝑦2 150 

or 2𝐼𝑦1𝐼𝑥2. For example, the path 𝐼𝑧1
𝜋𝑥
→ 2𝐼𝑦1𝐼𝑥2

𝑑𝑒𝑙1
→  2𝐼𝑦1𝐼𝑥2

𝜋𝑦
→ 𝐼𝑧2

𝑑𝑒𝑙2
→  𝐼𝑧2 has 0.0393 amplitude, whereas 151 

the path 𝐼𝑧1
𝜋𝑥
→ 2𝐼𝑦1𝐼𝑥2

𝑑𝑒𝑙1
→  𝐼𝑧2

𝜋𝑦
→ 2𝐼𝑦1𝐼𝑥2

𝑑𝑒𝑙2
→  𝐼𝑧2 has -0.000179 amplitude. The total amplitude of this 152 

group is 0.13445302. 153 

The fourth group contains eight paths where each of the paths contains three instances of the 154 

operators 2𝐼𝑥1𝐼𝑦2, 2𝐼𝑦1𝐼𝑥2. For example, the path 𝐼𝑧1
𝜋𝑥
→ 2𝐼𝑦1𝐼𝑥2

𝑑𝑒𝑙1
→  2𝐼𝑦1𝐼𝑥2

𝜋𝑦
→ 2𝐼𝑦1𝐼𝑥2

𝑑𝑒𝑙2
→  𝐼𝑧2 has -155 

0.0393 amplitude, whereas the path 𝐼𝑧1
𝜋𝑥
→ 2𝐼𝑥1𝐼𝑦2

𝑑𝑒𝑙1
→  2𝐼𝑥1𝐼𝑦2

𝜋𝑦
→ 2𝐼𝑥1𝐼𝑦2

𝑑𝑒𝑙2
→  𝐼𝑧2 has 0.0197 amplitude. 156 

The total amplitude of this group is -0.0191567.  157 

The total amplitude of all four groups at the time point 2TR is 0.097, which is the same as for the 158 

heteronuclear IS spin system.  159 

RFDR Phase Cycling  160 

In this section we show that under the specific conditions of two spins and no chemical shift 161 

offsets, there is zero RFDR transfer between operators Iz1 and Iz2  at tmix=nTR (n=1,2,3,…) when XX phase 162 

cycling is used. The measured operator at this time is described with the Eq.: 163 
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〈𝐼𝑧2〉(𝑇𝑅) = 𝑇𝑟{𝐼𝑧2𝑈(𝑇𝑅)𝐼𝑧1𝑈
−1(𝑇𝑅)}. Eq. (S2) 

We take into account the dipolar interaction as well as the rf-field during the π-pulse. Then the unitary 164 

operator, 𝑈(𝑇𝑅) is written as follow: 165 

𝑈(𝑇𝑅) = 𝑈2𝑈1         Eq. (S3) 166 

𝑈1 = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡[𝜔𝐷,12(𝑡)(3𝐼𝑧1𝐼𝑧2 − 𝐼1̅𝐼2̅) + 𝜔𝑟𝑓(𝐼𝑥1 + 𝐼𝑥2)]
𝑡𝑝
0

},  Eq. (S3a) 167 

𝑈2 = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)(3𝐼𝑧1𝐼𝑧2 − 𝐼1̅𝐼2̅)
𝑇𝑅
𝑡𝑝

}.           Eq. (S3b) 168 

where 𝑇̂ is a Dyson operator and 𝜔𝐷,12(𝑡) is a periodic dipolar time dependent function(Olejniczak et al., 169 

1984) between spins I1 and I2. Firstly, we can simplify Eq. S3 omitting the scalar product, 𝐼1̅𝐼2̅, since it 170 

commutes with other parts of the Hamiltonian:  171 

[𝐼1̅𝐼2̅, 𝐼𝑧1𝐼𝑧2] = [𝐼1̅𝐼2̅, 𝐼𝑥1 + 𝐼𝑥2] = 0, Eq. (S4) 

and the dipolar function is periodic –  ∫ 𝑑𝑡𝜔𝐷,12(𝑡)𝐼1̅𝐼2̅
𝑇𝑅
0

= 0. Eq. S3a-b can be written as follow: 172 

𝑈1 = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡[𝜔𝐷,12(𝑡)3𝐼𝑧1𝐼𝑧2 +𝜔𝑟𝑓(𝐼𝑥1 + 𝐼𝑥2)]
𝑡𝑝
0

},           Eq. (S5a) 173 

𝑈2 = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)3𝐼𝑧1𝐼𝑧2
𝑇𝑅
𝑡𝑝

}.             Eq. (S5b) 174 

The next step is the rotation of all the operators by 90° around axis -y: 175 

𝐼𝑧1, 𝐼𝑧2, 𝐼𝑧1𝐼𝑧2, (𝐼𝑥1 + 𝐼𝑥2)  
90−𝑦
→    −𝐼𝑥1, −𝐼𝑥2, 𝐼𝑥1𝐼𝑥2, (𝐼𝑧1 + 𝐼𝑧2). 

Eq. (S6) 

Substituting Eq. (S6) into Eqs. S2 and Eq. (S5a-b), the modified Eq. (S2) is: 176 

〈𝐼𝑧2〉(𝑇𝑅) = 𝑇𝑟{𝐼𝑥2𝑈2𝑈1𝐼𝑥1𝑈1
−1𝑈2

−1}, Eq. (S7) 

whereas the modified Eq. (S5a-b) is: 177 

𝑈1 = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡[𝜔𝐷,12(𝑡)3𝐼𝑥1𝐼𝑥2 +𝜔𝑟𝑓(𝐼𝑧1 + 𝐼𝑧2)]
𝑡𝑝
0

}     Eq. (S8a) 178 
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𝑈2 = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)3𝐼𝑥1𝐼𝑥2
𝑇𝑅
𝑡𝑝

},          Eq. (S8b) 179 

The operators in Eq. (S8a-b) can be rewritten with fictitious spin ½ operator formalism(Vega, 1978): 180 

2𝐼𝑥1𝐼𝑥2 = 𝐼𝑥
(2,3)

+ 𝐼𝑥
(1,4)

, 

(𝐼𝑧1 + 𝐼𝑧2) = 2𝐼𝑧
(1,4)   . 

Eq. (S9) 

 

Therefore, Eqs. (S8a-b) can be written as follow: 181 

𝑈1 = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡 [𝜔𝐷,12(𝑡)3 (𝐼𝑥
(1,4) + 𝐼𝑥

(2,3)) + 𝜔𝑟𝑓2𝐼𝑧
(1,4)

]
𝑡𝑝
0

}       Eq. (S10a) 182 

𝑈2 = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)3 (𝐼𝑥
(1,4)

+ 𝐼𝑥
(2,3)

)
𝑇𝑅
𝑡𝑝

}.           Eq. (S10b) 183 

Since the operator 𝐼𝑥
(2,3)

 commutes with other operators and the dipolar function is periodic –  184 

∫ 𝑑𝑡𝜔𝐷,12(𝑡)𝐼𝑥
(2,3)𝑇𝑅

0
= 0 – the Eqs. (S7) and (S10a-b) can be rewritten as: 185 

〈𝐼𝑧2〉(𝑇𝑅) = 𝑇𝑟 {𝐼𝑥2𝑈2
(1,4)

𝑈1
(1,4)

𝐼𝑥1 (𝑈2
(1,4)

𝑈1
(1,4)

)
−1
},       Eq. (S11) 186 

𝑈1
(1,4)

= 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡 [𝜔𝐷,12(𝑡)3𝐼𝑥
(1,4)

+𝜔𝑟𝑓2𝐼𝑧
(1,4)

]
𝑡𝑝
0

},      Eq. (S12a) 187 

𝑈2
(1,4)

= 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)3𝐼𝑥
(1,4)𝑇𝑅

𝑡𝑝
}.             Eq. (S12b) 188 

On the basis of the fictitious spin ½ operator formalism(Vega, 1978), the next properties always hold: 189 

2𝐼𝑥𝑗𝐼𝑥
(1,4)2𝐼𝑥𝑗 = 𝐼𝑥

(2,3)
, 

2𝐼𝑥𝑗𝐼𝑧
(1,4)2𝐼𝑥𝑗 = −𝐼𝑧

(2,3),            j = 1,2. 

Eq. (S13) 

 

On the basis of these properties Eqs. (S11) and (S12) are:  190 

〈𝐼𝑧2〉(𝑇𝑅) = 𝑇𝑟 {𝐼𝑥2𝐼𝑥1𝑈̌2
(2,3)𝑈̌1

(2,3) (𝑈2
(1,4)𝑈1

(1,4))
−1
},        Eq. (S14) 191 

𝑈̌1
(2,3) = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡 [𝜔𝐷,12(𝑡)3𝐼𝑥

(2,3) − 𝜔𝑟𝑓2𝐼𝑧
(2,3)

]
𝑡𝑝
0

},           Eq. (S15a) 192 

𝑈̌2
(2,3) = 𝑇̂𝑒𝑥𝑝 {∫ 𝑑𝑡𝜔𝐷,12(𝑡)3𝐼𝑥

(2,3)𝑇𝑅
𝑡𝑝

}.     Eq. (S15b) 193 
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On the basis of Eq. (S9) the product of 𝐼𝑥2𝐼𝑥1 can be rewritten and therefore Eq. (S14) is:  194 

〈𝐼𝑧2〉(𝑇𝑅) = 0.5𝑇𝑟 {(𝐼𝑥
(2,3)

+ 𝐼𝑥
(1,4)

) (𝑈̌2
(2,3)

𝑈̌1
(2,3)

) (𝑈2
(1,4)

𝑈1
(1,4)

)
−1
} = 195 

=0.5𝑇𝑟 {𝐼𝑥
(2,3)

𝑈̌2
(2,3)

𝑈̌1
(2,3)

} + 0.5𝑇𝑟 {𝐼𝑥
(1,4)

(𝑈2
(1,4)

𝑈1
(1,4)

)
−1
}.       Eq. (S16) 196 

The next step is to use the properties of fictitious spin ½ operator formalism (Eq. S13) to arrive at: 197 

〈𝐼𝑧2〉(𝑇𝑅) = 0.5𝑇𝑟 {𝐼𝑥
(2,3)𝑈̌2

(2,3)𝑈̌1
(2,3)

} + 0.5𝑇𝑟 {𝐼𝑥
(2,3) (𝑈̌2

(2,3)𝑈̌1
(2,3))

−1
}.       Eq. (S17)      198 

The last step is to use the property: 199 

−2𝐼𝑦
(2,3)𝐼𝑥

(2,3)2𝐼𝑦
(2,3) = 𝐼𝑥

(2,3)
, 

−2𝐼𝑦
(2,3)𝐼𝑧

(2,3)2𝐼𝑦
(2,3) = 𝐼𝑧

(2,3)
. 

Eq. (S18) 

 

Substituting Eq. (S18) into Eq. (S115a-b), then the modified Eq. (S15a-b) into Eq. (S17) and considering 200 

that 2𝐼𝑦
(2,3)

2𝐼𝑦
(2,3)

= 1(2,3) and [𝐼𝑥
(2,3)

, 𝑈̌2
(2,3)

] = 0, the transferred signal is: 201 

〈𝐼𝑧2〉(𝑇𝑅) = −0.5𝑇𝑟 {𝐼𝑥
(2,3)

(𝑈̌2
(2,3)

𝑈̌1
(2,3)

)
−1
} + 0.5𝑇𝑟 {𝐼𝑥

(2,3)
(𝑈̌2

(2,3)
𝑈̌1
(2,3)

)
−1
} = 0.     Eq. (S19) 202 

Since the transferred signal is zero at the mixing time of one rotor period, it is always zero at integer 203 

multiples of rotor periods. 204 
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