Heteronuclear and Homonuclear Radio Frequency Driven Recoupling

3 Authors: Evgeny Nimerovsky*, Kai Xue, Kumar Tekwani Movellan & Loren B. Andreas*

4 Affiliations:

5 Department of NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am

6 Fassberg 11, Göttingen, Germany

7 *Corresponding authors: land@nmr.mpibpc.mpg.de ORCID: 0000-0003-3216-9065 and

8 evni@nmr.mpibpc.mpg.de

9 The Suplimentary Information consists of four sections. In the first section, "1D HET-RFDR

10 Experiments" we show additional 1D ¹H-¹³C HET-RFDR spectra. The second "HET-RFDR Simulations"

11 section provides additional HET-RFDR simulations, which were performed under conditions that closely

12 match the experiments. The third section, "Operator Paths" shows the possible paths of RFDR and HET-

13 RFDR transfers via heteronuclear and homonuclear operators during the first two rotor periods. The last

14 part, "RFDR Phase Cyling", shows the formal proof of zero signal transfer for a homonuclear I_2 spin

15 system with zero offset difference and when all π -pulses have the same phase.

16 **1D HET-RFDR Experiments**

17 Figure S1 shows a 1D HET-RFDR pulse sequence. The sequence consists of two $\pi/2$ -pulses on

18 the ¹H channel (with two step phase cycling to eliminate the signal from directly excited spins of carbons)

19 followed by a series of HET-RFDR pulses and finally a $\pi/2$ -pulse and detection on the ¹³C channel. The

20 evolution of the magnetization from proton to carbon spins through the HET-RFDR pulse sequence

21 (Figure S1) can be described with cartesian operators as follows:

1

22
$$H_{z} \xrightarrow{first \ proton \left(\frac{\pi}{2}\right)_{x} \ pulse} -H_{y} \xrightarrow{second \ proton \left(\frac{\pi}{2}\right)_{\mp x} \ pulse} \pm H_{z}$$

23
$$\xrightarrow{HET-RFDR \ block} \pm a_{HC}(t_{mix})C_{z} \xrightarrow{first \ carbon \left(\frac{\pi}{2}\right)_{x} \ pulse} \mp a_{HC}(t_{mix})C_{y} \xrightarrow{detection_{\pm x}} -a_{HC}(t_{mix}), \quad Eq. (S1)$$

24 where, $a_{HC}(t_{mix})$, is an amplitude of the transferred signal.

1D HET-RFDR

25

Figures. S2-S3 demonstrate 1D HC HET-RFDR spectra using [¹³C, ¹⁵N] labeled SH3. On proton
and carbon channels π-pulses with different lengths were applied: 3.4 us (147 kHz) and 5 us (100 kHz),
respectively. Figure S2a shows HC spectra under different mixing times: 0.576 ms, 1.728 ms, 2.888 ms,

4.032 ms, 5.184 ms and 6.336 ms. Figure S2b shows HC spectra, which were obtained with 6.336 ms
HET-RFDR (blue) and RFDR (cyan, π-pulses were applied on carbon channel only). As expected, HETRFDR provides ¹H to ¹³C transfer. The efficiency depends on the spectral region. For some aromatic
carbons, the transfer\ achieves ~100% efficiency with respect to CP at 1.5 ms (Figure S2b, red), but for
other regions, like Ca, the polarization transfer is ~50%.

41 Figure S2 1D HC [13 C, 15 N] labeled SH3 spectra at 55.555 kHz (a) HET-RFDR spectra with different mixing times: 0.576 ms, 42 1.728 ms, 2.888 ms, 4.032 ms, 5.184 ms, 6.336 ms. (b) Comparaison of 1D HC CP spectrum (red, 1.5 ms of CP mixing) and 43 HET-RFDR spectrum (blue, 6.336 ms of HET-RFDR mixing). The cyan spectrum shows a HC RFDR spectrum, for which π -44 pulses were applied only on the 13 C channel. The carbon refference frequency was set up on 40 ppm. The MAS rate was 55.555 45 kHz. The experimental parameters are shown in Table S1.

54 93.26, 94.16, 95.08, 96.02, 96.97, 97.94, 98.94, 99.95, 100.98, 102.04.

49

55 Solid state NMR spectroscopy: The CP and HET-RFDR spectra of ¹³C, ¹⁵N SH3 were acquired at 14.1 T

56 (600 MHz) using a Bruker AVIIIHD spectrometer using a MASDVT600W2 BL1.3 HXY probe. The

experiments were performed at 55.555 kHz MAS with the temperature of the cooling gas set to 235 K.

58 For 1D ¹H¹³C spectra during the HET-RFDR periods, the widths of pulses on proton and carbon channels

- 59 were 3.4 us and 5 us, respectively. 13.89 kHz SW_f-TPPM (Thakur et al., 2006) with 36 us pulses was used
- 60 during the acquisition. Table S1 summarizes the applied experimental parameters.
- **Table S1** Summary of the experimental parameters used in the CP (the start and the end values are shown) and HET-RFDR H¹³C
 [13C,15N] SH3 experiments.

	СР	HET-RFDR
¹ H (kHz)	92-115	147
¹³ C (kHz)	43	100, [87.41-102.04]
transfer time (ms)	1.5	[0.576-6.336]
NS	48	48
D1 (s)	1.5	1.5
AQ (s)	0.01536	0.01536
SW (kHz)	50	50

63 NS – number of scans; D1 – a recycle delay; AQ – the acquisition time; SW – the spectral width.

64 HET-RFDR Simulations

Figure S4 shows simulated HET-RFDR polarization transfers for four (S_2I_2 , Figure S4a) and three (SI_2 , Figure S4b) spin systems with conditions that closely match the experiments: 55.555 kHz MAS and 5.4 us π -pulses.

68 Figure S4a shows the HET-RFDR polarization trasfers between a directly bonded spin pair (I_1 - C_2 , solid lines) and the remote pair (I_1 - C_3 , lines with circles). The lines with diamonds represent signals that are not 69 70 transferred, but remain on the spin I_1 . We consider three cases: rigid C_2H_2 chain (black lines), dynamic 71 C_2H_2 chain (red lines) and rigid N_2C_2 chain (blue lines). For the rigid (black solid line) and dynamic (red 72 solid line) C_2H_2 chains when the heteronuclear dipolar coupling constants are larger than the homonuclear 73 dipolar constants, the polarization transfer from H_1 to C_2 oscillates about ~35% efficiency. However, for 74 the spin system with the weak heteronuclear dipolar coupling constants (blue lines), the HET fp-RFDR 75 polarization transfer between directly bonded spins is lower (blue solid line) and achieves only $\sim 20\%$ 76 transfer efficiency. 77 The signal that remains on the starting spin (lines with diamonds) are ~40% for first two cases (black and

solid lines with diamonds) and ~70% for weak dipolar coupling constants (blue line with diamonds).

The HET-RFDR transfer between remote spins, e.g. H_1 and C_3 are about ~10% of the initial polarization

80 for all these three cases (black, red and blue lines with circles). The transfer of magnetization mostly

81 occurs via relayed transfer (I_1 - C_2 - C_3) and not directly from I_1 to C_3 , which more clearly can be seen in the

82 simulations on Figure S4b

83 Figure S4b considers the HET-RFDR polarization transfer between directly bonded spins (N_1 - H_2 , solid lines) and remote pair (N_1 - H_3 , lines with cirles). The heteronuclear dipolar coupling constant between N_1 84 to H_2 spins is kept constant and the homonuclear dipolar constant between H_2 and H_3 is changed. When 85 86 the distance between H_2 and H_3 spins is 6 Å (green lines), the fp-RFDR polarization transfer between N_1 87 and H_2 achieves the maximal transfer of about 50% (solid green line). The direct HET-RFDR polarization transfer efficiency between N_1 and H_3 is very low (green line with circles). For the H_2 - H_3 distances of 4 88 89 Å (blue line with circles), 3 Å (red line with circles) and 2 Å (black line with circles), the polarization transfer between N_1 and H_3 achieves ~10%. Since the distance between N_1 and H_3 is not changed, the 90 91 transfer between N_1 and H_3 is achieved via sequential relayed transfer, N_1 - H_2 - H_3 . The homonuclear 92 distance also has influence on the HET-RFDR polarization transfer. With decreased H_2 - H_3 distance the 93 amplitude of the HET-RFDR polarization tranfer between dirctly bonded spins (solid lines) is decreased.

95 Figure S4 Simulated HET-RFDR signals. The simulated HET-RFDR polarization transfers for S_2I_2 (a) and SI_2 (b) spin systems **96** are shown as a function of mixing time. For all simulations MAS was 55.555 kHz and hard π -pulses with 5.4 us width (92.59 **97** kHz rf-field) were applied simuntaneously every rotor period. The offset and CSA values (the offset and CSA values are defined **98** in the same way as in (Bak et al., 2000)) of spins [I_1 ; C_2 ; C_3 ; I_4] are [1;2;5.5;6] (kHz) and [4;1;2;3] (kHz), respectively. The initial **99** and the final operators were in the direction \hat{z} . (a) The solid lines represent the HET-RFDR polarization transfers between I_1 and **100** C_2 spins; the lines with circles represent the HET-RFDR polarization transfers between I_1 and C_3 spins and the lines with **101** diamonds represent the decay of starting signals. The carbon-carbon distance as well as the dipolar coupling constant between C_2

- 102 and C_3 were kept unchanged at 1.5 Å (2.22 kHz). The black lines represent the rigid H_2C_2 spin system (with I_1 , I_4 of the inset as
- 103 protons). The proton-carbon dipolar coupling constants were: $v_{12} = v_{34} = 22 \ kHz$; $v_{13} = v_{34} = 3.03 \ kHz$ and the proton-proton
- 104 coupling constant was: $v_{14} = 4.9 \text{ kHz}$. The red lines represent the dynamic H_2C_2 spin system with reduced proton-carbon
- 105 couplings of are: $v_{12} = v_{34} = 8 \ kHz$; $v_{13} = v_{34} = 1.01 \ kHz$ and a reduced proton-proton coupling $v_{14} = 1.8 \ kHz$. The blue
- 106 lines represent the rigid N₂C₂ spin system (with I₁, I₄ of the inset as nitrogens). The nitrogen-carbon dipolar coupling constants
- 107 are: $v_{12} = v_{34} = 1 \ kHz$; $v_{13} = v_{34} = 0.195 \ kHz$ and for the nitrogen-nitrogen coupling, $v_{14} = 0.01 \ kHz$. (b) The solid lines
- 108 represent the HET-RFDR polarization trasnfer between N_1 and H_2 spins with unchanged dipolar coupling constant of 11 kHz.
- 109 The lines with circles represent the transfer between N_1 and H_3 spins for different distances (dipolar coupling constants) between
- 110 H_2 and H_3 spins: black lines -2 Å (15 kHz), red lines -3 Å (4.4 kHz), blue lines -4 Å (1.9 kHz) and green lines -6 Å (0.5 kHz).
- 111 The distance as well as the dipolar coupling constant between N_1 and H_3 were kept unchanged at 3 Å and 0.45 kHz.

112 Operator Paths

- 113 In this section we indentify the paths via which the signals are transferred from I_z to S_z operators 114 and from I_{z1} to I_{z2} operators during the first two rotor periods of HET-RFDR and RFDR blocks,
- respectively. We consider the amplitudes of the operators that are generated as a result of the evolution of the other operators through pulses or dealys: $t(\pi_x) \rightarrow del_1 \rightarrow t(\pi_y) \rightarrow del_2$. We first consider the heteronuclear case of an *IS* spin system during HET-RFDR. Table S2 consists of four subsections. The first, second, third and fourth subsections represent the amplitudes of four operators, I_z , S_z , $2I_xS_y$, $2I_yS_x$,
- 119 measured at four points.

Table S2 Transfer paths during HET-RFDR. The single crystal amplitudes (Euler angles: 184° ; 141° ; 349°) of the operators at four time points: π_x – the end of the first pulse; del_1 – the end of the first delay; π_y – the end of the second pulse; del_2 – in the end of the second delay. The first column shows the initial operators. The first, second, third and fourth subsections represent the amplitudes with the initial operators I_z , S_z , $2I_xS_y$, $2I_yS_x$, respectively. The used simulated parameters were as in Figure 5a in the main text.

Op	Iz				Sz				$2I_{\rm x}S_{\rm y}$				$2I_yS_x$			
	π_x	del_1	π_y	del_2	π_{x}	del_1	π_y	del_2	π_{χ}	del_1	π_y	del2	π_x	del_1	π_y	del_2
Iz	-	1	-	1	0	0	0	0	0.31	0	0	0	0	0	-	0
	0.95		0.95												0.31	
Sz	0	0	0	0	-	1	-	1	0	0	-	0	0.31	0	0	0
					0.95		0.95				0.31					
$2I_{\rm x}S_{\rm y}$	-	0	0	0	0.31	0	0.31	0	-	1	-	1	0	0	0	0
	0.31								0.95		0.95					
$2I_yS_x$	0	0	0.31	0	0	0	0	0	0	0	0	0	-	1	-	1
-													0.95		0.95	

126	For example, the path $I_z \xrightarrow{\pi_x} I_z \xrightarrow{del_1} I_z \xrightarrow{\pi_y} I_z \xrightarrow{del_2} I_z$ gives the amplitude of $-0.95 \cdot 1 \cdot (-0.95) \cdot 1 =$
127	0.9 (the bold font in the Table S2), which equals the amplitude of the I_z operator at the end of $2T_R$ in
128	Figure 5a in the main text (black line). The path $I_z \xrightarrow{\pi_x} I_z \xrightarrow{del_1} I_z \xrightarrow{\pi_y} I_z \xrightarrow{del_2} S_z$ gives the amplitude of
129	$-0.95 \cdot 1 \cdot (-0.95) \cdot 0 = 0$. If we analyze all 64 possibilities, we find only one heteronuclear path,
130	connecting I_z and S_z operators through the first two rotor periods of HET-RFDR: I_z
131	$\xrightarrow{\pi_x} 2I_x S_y \xrightarrow{del_1} 2I_x S_y \xrightarrow{\pi_y} S_z \xrightarrow{del_2} S_z \text{ with nonzero amplitude of } -0.31 \cdot 1 \cdot (-0.31) \cdot 1 = 0.097.$
132	In the same way we tabulate the homonuclear I_2 spin system during the first two rotor periods of
133	RFDR block in Table S3.
134	Table S3 Transfer paths during RFDR. The single crystal amplitudes (Euler angles: 184°; 141°; 349°) of the operators atfour
135	time points: π_x – the end of the first pulse; del_1 – the end of the first delay; π_y – the end of the second pulse; del_2 – the end of
136	the second delay. The first column shows the initial operators. The first, second, third and fourth subsections represent the
137	amplitudes with the initial operators I_{z1} , I_{z2} , $2I_{x1}I_{y2}$, $2I_{y1}I_{x2}$, respectively. The simulated parameters were as in Figure 5b in the
138	main text.

Op	I _{z1}				Iz2				$2I_{x1}I_{y2}$				$2I_{y1}I_{x2}$			
	π_x	del_1	π_y	del ₂	π_x	del_1	π_y	del ₂	π_{χ}	del_1	π_y	del ₂	π_x	del_1	π_y	del ₂
Iz1	-	0.96	-	0.96	0.02	0.04	0.02	0.04	0.1	-0.2	-	-0.2	0.21	0.2	-0.1	0.2
	0.97		0.97								0.21					
I_{z2}	0.02	0.04	0.02	0.04	-	0.96	-	0.96	0.21	0.2	-0.1	0.2	0.1	-0.2	-	-0.2
					0.97		0.97								0.21	
$2I_{x1}I_{y2}$	-0.1	0.21	0.21	0.2	-	-0.2	0.1	-0.2	-	0.96	-	0.96	0.02	0.04	0.02	0.04
					0.21				0.97		0.97					
$2I_{y1}I_{x2}$	-	-0.2	0.1	-0.2	-0.1	0.2	0.21	0.2	0.02	0.04	0.02	0.04	-	0.96	-	0.96
	0.21												0.97		0.97	

Unlike the IS spin system, all 64 paths have nonzero amplitudes via which the signal is

transferred from homonuclear operator I_{z1} to operator I_{z2} during the first two rotor periods of RFDR.

These 64 paths can be divided into four groups.

143 The first group contains eight paths with combinations of I_{z1} , I_{z2} operators only. For example, the 144 path $I_{z1} \xrightarrow{\pi_x} I_{z1} \xrightarrow{del_1} I_{z1} \xrightarrow{\pi_y} I_{z1} \xrightarrow{del_2} I_{z2}$ has 0.0393 amplitude, whereas the path I_{z1}

145 $\xrightarrow{\pi_x} I_{z2} \xrightarrow{del_1} I_{z2} \xrightarrow{\pi_y} I_{z2} \xrightarrow{del_2} I_{z2}$ has -0.0195 amplitude. The total amplitude of this group is 0.03920388.

146 The second group contains 24 paths where each of the paths contains one of the operators $2I_{x1}I_{y2}$ 147 or $2I_{y1}I_{x2}$. For example, the path $I_{z1} \xrightarrow{\pi_x} I_{z1} \xrightarrow{del_1} I_{z1} \xrightarrow{\pi_y} 2I_{x1}I_{y2} \xrightarrow{del_2} I_{z2}$ has -0.0393 amplitude, whereas the 148 path $I_{z1} \xrightarrow{\pi_x} I_{z1} \xrightarrow{del_1} 2I_{x1}I_{y2} \xrightarrow{\pi_y} I_{z2} \xrightarrow{del_2} I_{z2}$ has 0.0195 amplitude. The total amplitude of this group is -149 0.0574702.

150 The third group contains 24 paths where each of the paths contains two of the operators $2I_{x1}I_{y2}$ 151 or $2I_{y1}I_{x2}$. For example, the path $I_{z1} \xrightarrow{\pi_x} 2I_{y1}I_{x2} \xrightarrow{del_1} 2I_{y1}I_{x2} \xrightarrow{\pi_y} I_{z2} \xrightarrow{del_2} I_{z2}$ has 0.0393 amplitude, whereas 152 the path $I_{z1} \xrightarrow{\pi_x} 2I_{y1}I_{x2} \xrightarrow{del_1} I_{z2} \xrightarrow{\pi_y} 2I_{y1}I_{x2} \xrightarrow{del_2} I_{z2}$ has -0.000179 amplitude. The total amplitude of this 153 group is 0.13445302.

The fourth group contains eight paths where each of the paths contains three instances of the operators $2I_{x1}I_{y2}$, $2I_{y1}I_{x2}$. For example, the path $I_{z1} \xrightarrow{\pi_x} 2I_{y1}I_{x2} \xrightarrow{del_1} 2I_{y1}I_{x2} \xrightarrow{\pi_y} 2I_{y1}I_{x2} \xrightarrow{del_2} I_{z2}$ has -0.0393 amplitude, whereas the path $I_{z1} \xrightarrow{\pi_x} 2I_{x1}I_{y2} \xrightarrow{del_1} 2I_{x1}I_{y2} \xrightarrow{\pi_y} 2I_{x1}I_{y2} \xrightarrow{del_2} I_{z2}$ has 0.0197 amplitude. The total amplitude of this group is -0.0191567.

158 The total amplitude of all four groups at the time point $2T_R$ is 0.097, which is the same as for the 159 heteronuclear *IS* spin system.

160 **RFDR Phase Cycling**

161 In this section we show that under the specific conditions of two spins and no chemical shift 162 offsets, there is zero RFDR transfer between operators I_{z1} and I_{z2} at $t_{mix}=nT_R$ (n=1,2,3,...) when XX phase 163 cycling is used. The measured operator at this time is described with the Eq.:

$$\langle I_{z2} \rangle (T_R) = Tr \{ I_{z2} U(T_R) I_{z1} U^{-1}(T_R) \}.$$
 Eq. (S2)

164 We take into account the dipolar interaction as well as the rf-field during the π -pulse. Then the unitary 165 operator, $U(T_R)$ is written as follow:

166
$$U(T_R) = U_2 U_1$$
 Eq. (S3)

167
$$U_1 = \hat{T}exp\left\{\int_0^{t_p} dt \left[\omega_{D,12}(t)(3I_{z1}I_{z2} - \bar{I}_1\bar{I}_2) + \omega_{rf}(I_{x1} + I_{x2})\right]\right\}, \text{ Eq. (S3a)}$$

168
$$U_2 = \hat{T}exp\left\{\int_{t_p}^{T_R} dt \omega_{D,12}(t)(3I_{z1}I_{z2} - \bar{I}_1\bar{I}_2)\right\}.$$
 Eq. (S3b)

169 where \hat{T} is a Dyson operator and $\omega_{D,12}(t)$ is a periodic dipolar time dependent function(Olejniczak et al., 170 1984) between spins I_1 and I_2 . Firstly, we can simplify Eq. S3 omitting the scalar product, $\bar{I}_1\bar{I}_2$, since it 171 commutes with other parts of the Hamiltonian:

$$[\bar{I}_1\bar{I}_2, I_{z1}I_{z2}] = [\bar{I}_1\bar{I}_2, I_{x1} + I_{x2}] = 0,$$
 Eq. (S4)

172 and the dipolar function is periodic $-\int_0^{T_R} dt \omega_{D,12}(t) \bar{I}_1 \bar{I}_2 = 0$. Eq. S3a-b can be written as follow:

173
$$U_1 = \hat{T}exp\left\{\int_0^{t_p} dt \left[\omega_{D,12}(t) 3I_{z1}I_{z2} + \omega_{rf}(I_{x1} + I_{x2})\right]\right\}, \qquad \text{Eq. (S5a)}$$

174
$$U_2 = \hat{T}exp\left\{\int_{t_p}^{T_R} dt \omega_{D,12}(t) 3I_{z1}I_{z2}\right\}.$$
 Eq. (S5b)

175 The next step is the rotation of all the operators by 90° around axis -y:

$$I_{z1}, I_{z2}, I_{z1}I_{z2}, (I_{x1} + I_{x2}) \xrightarrow{90_{-y}} -I_{x1}, -I_{x2}, I_{x1}I_{x2}, (I_{z1} + I_{z2}).$$
 Eq. (S6)

176 Substituting Eq. (S6) into Eqs. S2 and Eq. (S5a-b), the modified Eq. (S2) is:

$$\langle I_{z2} \rangle (T_R) = Tr \{ I_{x2} U_2 U_1 I_{x1} U_1^{-1} U_2^{-1} \},$$
 Eq. (S7)

177 whereas the modified Eq. (S5a-b) is:

178
$$U_1 = \hat{T}exp\left\{\int_0^{t_p} dt \left[\omega_{D,12}(t) 3I_{x1}I_{x2} + \omega_{rf}(I_{z1} + I_{z2})\right]\right\} \quad \text{Eq. (S8a)}$$

179
$$U_2 = \hat{T}exp\left\{\int_{t_p}^{T_R} dt \omega_{D,12}(t) 3I_{x1}I_{x2}\right\},$$
 Eq. (S8b)

180 The operators in Eq. (S8a-b) can be rewritten with fictitious spin ½ operator formalism(Vega, 1978):

$$2I_{x1}I_{x2} = I_x^{(2,3)} + I_x^{(1,4)},$$

$$(I_{z1} + I_{z2}) = 2I_z^{(1,4)}.$$

Eq. (S9)

181 Therefore, Eqs. (S8a-b) can be written as follow:

182
$$U_1 = \hat{T}exp\left\{\int_0^{t_p} dt \left[\omega_{D,12}(t) \Im\left(I_x^{(1,4)} + I_x^{(2,3)}\right) + \omega_{rf} \Im I_z^{(1,4)}\right]\right\} \quad \text{Eq. (S10a)}$$

183
$$U_2 = \hat{T}exp\left\{\int_{t_p}^{T_R} dt\omega_{D,12}(t) 3\left(I_x^{(1,4)} + I_x^{(2,3)}\right)\right\}.$$
 Eq. (S10b)

184 Since the operator $I_x^{(2,3)}$ commutes with other operators and the dipolar function is periodic – 185 $\int_0^{T_R} dt \omega_{D,12}(t) I_x^{(2,3)} = 0$ – the Eqs. (S7) and (S10a-b) can be rewritten as:

186
$$\langle I_{z2} \rangle (T_R) = Tr \left\{ I_{x2} U_2^{(1,4)} U_1^{(1,4)} I_{x1} \left(U_2^{(1,4)} U_1^{(1,4)} \right)^{-1} \right\}, \quad \text{Eq. (S11)}$$

187
$$U_1^{(1,4)} = \hat{T}exp\left\{\int_0^{t_p} dt \left[\omega_{D,12}(t)3I_x^{(1,4)} + \omega_{rf}2I_z^{(1,4)}\right]\right\}, \quad \text{Eq. (S12a)}$$

188
$$U_2^{(1,4)} = \hat{T}exp\left\{\int_{t_p}^{T_R} dt \omega_{D,12}(t) 3I_x^{(1,4)}\right\}.$$
 Eq. (S12b)

189 On the basis of the fictitious spin ½ operator formalism(Vega, 1978), the next properties always hold:

$$2I_{xj}I_x^{(1,4)}2I_{xj} = I_x^{(2,3)},$$
Eq. (S13)
$$2I_{xj}I_z^{(1,4)}2I_{xj} = -I_z^{(2,3)}, \qquad j = 1,2.$$

190 On the basis of these properties Eqs. (S11) and (S12) are:

191
$$\langle I_{z2} \rangle (T_R) = Tr \left\{ I_{x2} I_{x1} \breve{U}_2^{(2,3)} \breve{U}_1^{(2,3)} \left(U_2^{(1,4)} U_1^{(1,4)} \right)^{-1} \right\}, \quad \text{Eq. (S14)}$$

192
$$\widetilde{U}_{1}^{(2,3)} = \widehat{T}exp\left\{\int_{0}^{t_{p}} dt \left[\omega_{D,12}(t)3I_{x}^{(2,3)} - \omega_{rf}2I_{z}^{(2,3)}\right]\right\}, \qquad \text{Eq. (S15a)}$$

193
$$\widetilde{U}_{2}^{(2,3)} = \widehat{T}exp\left\{\int_{t_{p}}^{T_{R}} dt \omega_{D,12}(t) 3I_{x}^{(2,3)}\right\}.$$
 Eq. (S15b)

194 On the basis of Eq. (S9) the product of $I_{x2}I_{x1}$ can be rewritten and therefore Eq. (S14) is:

195
$$\langle I_{z2} \rangle (T_R) = 0.5Tr \left\{ \left(I_x^{(2,3)} + I_x^{(1,4)} \right) \left(\breve{U}_2^{(2,3)} \breve{U}_1^{(2,3)} \right) \left(U_2^{(1,4)} U_1^{(1,4)} \right)^{-1} \right\} =$$

196
$$= 0.5Tr \left\{ I_x^{(2,3)} \breve{U}_2^{(2,3)} \breve{U}_1^{(2,3)} \right\} + 0.5Tr \left\{ I_x^{(1,4)} \left(U_2^{(1,4)} U_1^{(1,4)} \right)^{-1} \right\}.$$
 Eq. (S16)

197 The next step is to use the properties of fictitious spin ¹/₂ operator formalism (Eq. S13) to arrive at:

198
$$\langle I_{z2} \rangle (T_R) = 0.5Tr \left\{ I_x^{(2,3)} \breve{U}_2^{(2,3)} \breve{U}_1^{(2,3)} \right\} + 0.5Tr \left\{ I_x^{(2,3)} \left(\breve{U}_2^{(2,3)} \breve{U}_1^{(2,3)} \right)^{-1} \right\}.$$
 Eq. (S17)

199 The last step is to use the property:

$$-2I_{y}^{(2,3)}I_{x}^{(2,3)}2I_{y}^{(2,3)} = I_{x}^{(2,3)},$$

$$-2I_{y}^{(2,3)}I_{z}^{(2,3)}2I_{y}^{(2,3)} = I_{z}^{(2,3)}.$$

Eq. (S18)

Substituting Eq. (S18) into Eq. (S115a-b), then the modified Eq. (S15a-b) into Eq. (S17) and considering that $2I_y^{(2,3)}2I_y^{(2,3)} = 1^{(2,3)}$ and $\left[I_x^{(2,3)}, \breve{U}_2^{(2,3)}\right] = 0$, the transferred signal is:

202
$$\langle I_{z2} \rangle (T_R) = -0.5Tr \left\{ I_x^{(2,3)} \left(\breve{U}_2^{(2,3)} \breve{U}_1^{(2,3)} \right)^{-1} \right\} + 0.5Tr \left\{ I_x^{(2,3)} \left(\breve{U}_2^{(2,3)} \breve{U}_1^{(2,3)} \right)^{-1} \right\} = 0.$$
 Eq. (S19)

203 Since the transferred signal is zero at the mixing time of one rotor period, it is always zero at integer

204 multiples of rotor periods.

205

- 206 Bak, M., Rasmussen, J. T., and Nielsen, N. C.: SIMPSON : A General Simulation Program for Solid-
- 207 State NMR Spectroscopy, J. Magn. Reson. San Diego Calif 1997, 1–35,
- 208 https://doi.org/10.1006/jmre.2000.2179, 2000.
- Fung, B. M., Khitrin, A. K., and Ermolaev, K.: An Improved Broadband Decoupling Sequence for Liquid
 Crystals and Solids, J. Magn. Reson., 142, 97–101, https://doi.org/10.1006/jmre.1999.1896, 2000.
- 211 Gullion, T., Baker, D. B., and Conradi, M. S.: New, compensated Carr-Purcell sequences, J. Magn.
- 212 Reson. 1969, 89, 479–484, https://doi.org/10.1016/0022-2364(90)90331-3, 1990.

Olejniczak, E. T., Vega, S., and Griffin, R. G.: Multiple pulse NMR in rotating solids, J. Chem. Phys., 81, 4804–4817, https://doi.org/10.1063/1.447506, 1984.

- 215 Thakur, R. S., Kurur, N. D., and Madhu, P. K.: Swept-frequency two-pulse phase modulation for
- heteronuclear dipolar decoupling in solid-state NMR, Chem. Phys. Lett., 426, 459–463,
- 217 https://doi.org/10.1016/j.cplett.2006.06.007, 2006.
- 218 Vega, S.: Fictitious spin 1/2 operator formalism for multiple quantum NMR, J. Chem. Phys., 68, 5518–
- 219 5527, https://doi.org/10.1063/1.435679, 1978.

220

221