Comments on Jean's reciprocity. Tom Barbara 5/13/21
Here are further aspects of my previous comments on the Jeans reciprocity that this submission uses in their design efforts. For each prescribed source \mathbf{M}_{1} and \mathbf{M}_{2} we have (in Gaussian units)

$$
\begin{array}{r}
\boldsymbol{B}_{i}-\mathbf{H}_{\boldsymbol{i}}=4 \pi \mathbf{M}_{\boldsymbol{i}} \tag{1}\\
\boldsymbol{\nabla} \times \boldsymbol{H}_{\boldsymbol{i}}=0 \\
\boldsymbol{\nabla} \cdot \boldsymbol{B}_{\boldsymbol{i}}=0
\end{array}
$$

It is important to emphasize that the $\mathbf{M}_{\mathbf{i}}$ are prescribed sources, that is that the magnetizations are saturated or fixed, as discussed in Jackson's book on E\&M.

We can take scalar products of (1) for each source and \mathbf{H}_{j} for the other, and take their difference

$$
\begin{aligned}
& \mathbf{H}_{2} \cdot\left(\boldsymbol{B}_{1}-\mathbf{H}_{1}\right)=4 \pi \mathbf{H}_{2} \cdot \mathbf{M}_{1} \\
& \mathbf{H}_{\mathbf{1}} \cdot\left(\boldsymbol{B}_{2}-\mathbf{H}_{2}\right)=4 \pi \mathbf{H}_{\mathbf{1}} \cdot \mathbf{M}_{2}
\end{aligned}
$$

The terms in \mathbf{H} for each source are thereby eliminated. After integrating over all space, the mixed field terms vanish by the fact that they are "Helmholtz pairs", so that we are left with

$$
\int d^{3} x \mathbf{H}_{1} \cdot \mathbf{M}_{2}=\int d^{3} x \mathbf{H}_{2} \cdot \mathbf{M}_{1}
$$

I believe this is a clearer statement of the Jeans reciprocity. Of course the validity of this theorem does require linear superposition which follows from the assumption that the sources are prescribed.

